-
The finiteness condition of 5D action in AdS space is provided by cutoff at the IR boundary in the hard-wall model. The confinement and chiral symmetry breaking properties of QCD are ensured by this cut-off. The action for the hard-wall model is expressed as [35–41]
$ \begin{equation} S=\int_{0}^{z_m} {\rm d}^4x {\rm d}z\sqrt{G} \mathcal{L}\left(x,z\right), \end{equation} $
(1) where
$ G=|\det g_{MN}| $ is the determinant of the$ g_{MN} $ metric of the AdS space$ (M,N=0,1,2,3,5) $ ,$ \mathcal{L}\left(x,z\right) $ is the Lagrangian, and the z coordinate varies in the range$ \epsilon\leq z\leq z_{m}\left(\epsilon\rightarrow0\right) $ , where$ \epsilon\rightarrow0 $ is ultraviolet (UV), and$ z_{m} $ is the IR boundary of AdS space. The$ AdS_{5} $ metric in Poincare coordinates is written as$ \begin{aligned}[b] {\rm d} s^{2}=&\frac{R^{2}}{z^{2}}\left(-{\rm d} z^{2}+\eta_{\mu \nu}{\rm d} x^{\mu}\mu {\rm d} x^{\nu}\right)=g_{MN} {\rm d} x^{M} {\rm d} x^{N},\\ \mu,\nu=& 0,1,2,3, \end{aligned} $
(2) where
$\eta_{\mu\nu}={\rm diag}(1,-1,-1,-1)$ is a 4D Minkowski metric. -
The bulk-to-boundary propagator of the vector field in the framework of the hard-wall AdS/QCD model is given in Refs. [35–39]. A vector field in the bulk is introduced as a sum of the gauge fields
$ A_L^M $ and$ A_{R}^{M} $ , which transform as left and right chiral fields under the$S U(2)_L\times S U(2)_R$ chiral symmetry group of the model [35–39]:$ V^M=\dfrac{1}{\sqrt{2}}\left(A_L^M +A_{R}^{M}\right) $ . The UV boundary value of the vector field corresponds to the photon wave function. The 5D bulk action for the free vector field sector is written as [35–39]$ \begin{equation} S=\int_{0}^{z_m} {\rm d}^5x \sqrt{G} \left(-\frac{1}{2g_5^2}\right) {\rm Tr}\left(F_{MN}F^{MN}\right), \end{equation} $
(3) where
$ F_{MN}=\partial_MV_N-\partial_NV_M $ is a field stress tensor of an EM field,$ V_M=V_M^at^a $ ,$ t^a=\sigma^a/2 $ , and$ \sigma^a $ are Pauli matrices,$ g_5^2=12\pi^2/N_c $ is the 5D coupling constant, and for the dual boundary$S U(2)$ gauge group$ g_5=2\pi $ ,$ N_c $ is the number of colors [35–39].For the
$ V_z=0 $ gauge choice, the EOM obtained from the action in Eq. (3) for the Fourier components$ \widetilde{V}_{\mu}^a(q,z) $ is [35–39]$ \begin{equation} z\partial_z\left(\frac{1}{z}\partial_z\widetilde{V}_{\mu}^a(q,z)\right)+q^{2}\widetilde{V}_{\mu}^a(q,z)=0. \end{equation} $
(4) For the
$ \widetilde{V}_{\mu}^a(q,z)=V_{\mu}^a(q)V(q,z) $ separation, the$ V(q,0)=1 $ UV and$ V'(q,z_{0})=0 $ IR boundary conditions are imposed on the solution of Eq. (4) for the vector field. By solving the EOM in Eq. (4), the bulk-to-boundary propagator of the vector field is found as [35, 37–39]$ \begin{equation} V\left(q,z\right)=\frac{\pi}{2}qz\left[\frac{Y_{0}\left( qz_{m}\right)}{J_{0}\left(qz_{m}\right) }J_{1}\left(qz\right)-Y_{1}\left(qz\right) \right], \end{equation} $
(5) where
$ Y_{0}\left(qz_{m}\right) $ and$ Y_{1}\left(qz\right) $ are second kind Bessel functions,$ J_{0}\left(qz_{m}\right) $ and$ J_{1}\left(qz\right) $ are first kind Bessel functions, and q is the 4D momentum. The solution (5) in the$ q^{2}=-Q^{2}<0 $ domain acquires the form [35]$ \begin{equation} V\left(Q,z\right)=\frac{\pi}{2}Qz\left(\frac{K_{0}\left(Qz_{m}\right)}{I_{0}\left(Qz_{m}\right)}I_{1}\left(Qz\right)+K_{1}\left(Qz\right)\right), \end{equation} $
(6) where
$ K_{0}\left(Qz_{m}\right) $ and$ K_{1}\left(Qz\right) $ are second kind Bessel functions, and$ I_{0}\left(Qz_{m}\right) $ and$ I_{1}\left(Qz\right) $ are first kind modified Bessel functions. -
In this subsection, we find the deuteron profile function within the hard-wall AdS/QCD model. Similar to the deuteron description in the soft-wall model [19, 20], we express an action for another bulk vector field F with the twist
$ \tau=6 $ , which has a UV boundary value corresponding to the deuteron wavefunction:$ \begin{aligned}[b] S=&\int_{0}^{z_{m}}{\rm d}^4 x {\rm d}z \sqrt{G}\Big[-(D^M F_N)^+ \left(x,z\right) D_{M} F^{N}\left(x,z\right)\\&+\mu^{2} F_M^+\left(x,z\right)F^{M}\left(x,z\right)\Big], \end{aligned} $
(7) where
$D^{M}=\partial^{M}-{\rm i}eV^{M}\left(x,z\right)$ is a covariant derivative,$ V^{M}\left(x,z\right) $ is vector field dual to the EM field,$ \begin{aligned}[b] \mu^{2}=&\frac{\left(\Delta-1\right)\left(\Delta-3\right)}{R^{2}}=\frac{\left(\tau+L-1\right)\left(\tau+L-3\right)}{R^{2}}\\=&\frac{\left(L+5\right)\left(L+3\right)}{R^{2}} \nonumber \end{aligned} $
is the 5D mass,
$ \Delta=\tau+L $ is the conformal dimension of the$ F^{N} \left(x,z\right) $ field, and L is the orbital angular momentum.We use the axial gauge condition for the F field
$ F^{z}\left(x,z\right)=0 $ . For the free deuteron field, the Lagrange-Euler EOM is$ \begin{equation} \partial_R\left(\frac{\partial{L}}{\partial\left(\partial_{R}F_B^+\right)}\right)-\frac{\partial{L}}{\partial{F_{B}^+}}=0, \end{equation} $
(8) $ \begin{equation} \left[-\frac{\partial^{2}}{\partial z^{2}}+\frac{1}{z} \frac{\partial }{\partial z}+\frac{\left(L+4\right)^2-1}{z^{2}}\right] F^{\nu}\left(x,z\right)=M^{2}_{D,n} F^{\nu}\left(x,z\right). \end{equation} $
(9) Note that in Eq. (9), the
$\partial_{\alpha} \partial_{\beta} F^{\nu}\left(x,z\right) \eta^{\alpha\beta} = -M^{2}_{D,n} F^{\nu}\left(x,z\right)$ 4D EOM is applied.Kaluza-Klein (KK) decomposition of the F deuteron field
$ \begin{equation} F^{\nu}\left(x,z\right)=\exp^{-\frac{A\left(z\right)}{2}}\sum\limits_{n}F_{n}^{\nu}\left(x\right) \Phi_{n}\left(z\right) \end{equation} $
(10) is used along with the
$ F_{n}^{\nu}\left(x\right) $ tower of KK components dual to deuteron states with the radial quantum number n.Thus, we obtain a Schrodinger-type EOM for the
$ \Phi_{n}\left(z\right) $ bulk profile.$ \begin{equation} \left[-\frac{{\rm d}^{2}}{{\rm d}z^{2}}+\frac{4\left(L+4\right)^{2}-1}{4z^{2}}\right]\Phi_{n}\left(z\right)=M^{2}_{D,n} \Phi_{n}\left(z\right), \end{equation} $
(11) where
$ M_n $ is the mass spectrum of the deuteron. Solving this equation for$ L=1 $ , we find the profile function of the n-th mode$ \Phi_{n}\left(z\right) $ deuteron.$ \begin{equation} \Phi_{n}\left(z\right)=b_{1}\sqrt{z} J_{5}\left(M_{D,n} z\right)+b_{2}\sqrt{z} Y_{5}\left(M_{D,n} z\right), \end{equation} $
(12) where
$ J_{5}\left(M_{D,n} z\right) $ and$ Y_{5}\left(M_{D,n} z\right) $ are the Bessel functions of the first and second kinds, respectively. The UV boundary condition requests$ b_{2} $ to be$ b_{2}=0 $ , and the normalization condition gives us the$ b_{1} $ constant as$ \begin{equation} b_{1}=\frac{1}{\sqrt{\int_{0}^{z_{m}}{\rm d} z\left[J_{5}\left(M_Dz\right)\right]^{2}}}. \end{equation} $
(13) Thus, the profile function of the deuteron in the framework of the hard-wall AdS/QCD model accepts the following form:
$ \begin{equation} \Phi\left(z\right)=\frac{\sqrt{z}J_{5}\left(M_Dz\right)}{\sqrt{\int_{0}^{z_{m}}{\rm d}z\left[J_{5}\left(M_Dz\right)\right]^{2}}}. \end{equation} $
(14) The IR boundary condition leads to
$ J_{5}\left(M_D z_m\right)= J_{5}\left(\alpha_{0}\right)=0 $ , where$ M_D $ is the ground state deuteron mass ($ M_{D}=1,876 $ $\rm GeV=9.508$ $\rm fm^{-1}$ ) and$ \alpha_{0} $ is the first zero of$ J_5 $ $ (\alpha_{0}=8.77) $ . We fix the value of the IR boundary at$ z_m=\dfrac{\alpha_{0}}{M_D}=4.6756 $ $\rm GeV^{-1}=0.9225$ $\rm fm$ . -
Here, we derive the deuteron EM form factors and tensor polarization observables in the framework of the hard-wall model. Hence, we present an effective action, which includes all interactions between the EM and deuteron fields in the bulk of AdS space. For clarity, we separately present all bulk Lagrangian terms used in the Refs. [19, 20] that contribute to the invariant form factors
$ G_{1}\left( Q^{2}\right) $ ,$ G_{2}\left( Q^{2}\right) $ , and$ G_{3}\left( Q^{2}\right) $ :1) A minimal bulk gauge action term
$ S^{\left(1\right)} $ , which describes the minimal gauge interaction of the EM field with the deuteron,$ \begin{equation} S^{\left(1\right)}=\int {\rm d}^{4}x\ \int_{0}^{z_{M}}{\rm d}z \sqrt{G}\left[-D^M F_N^+ \left(x,z\right) D_{M} F^{N}\left(x,z\right)\right], \end{equation} $
(15) 2) the action term
$ S^{\left(2\right)} $ , which leads to the magnetic dipole form factor of the deuteron,$ S^{\left(2\right)}=\int {\rm d}^{4}x\ \int_{0}^{z_{M}}{\rm d}z \sqrt{G}\left[-{\rm i}c_{2}F^{MN}\left(x,z\right) F^+_{M}\left(x,z\right)F_N\left(x,z\right)\right], $
(16) 3) a non-minimal bulk gauge action term
$ S^{\left(3\right)} $ , which was introduced in [19, 20] and contributes to the charge monopole and quadrupole form factors of the deuteron,$ \begin{aligned}[b] S^{\left(3\right)}=&\int {\rm d}^{4}x\ \int_{0}^{z_{M}} {\rm d} z \sqrt{G}\frac{c_{3}}{4M^2_D}\exp^{2A\left(z\right)}\partial^MF^{NK}\left(x,z\right)\\&\times\left[{\rm i} \partial_{K}F^+_{M}\left(x,z\right)F_N\left(x,z\right)- \right. \\& -F^+_{M}\left(x,z\right) {\rm i}\partial_K F_N\left(x,z\right)+ {\rm H.C.}\left.\right]. \end{aligned} $
(17) The general bulk action for the interaction will be a sum of these terms.
$ \begin{equation} S_{\rm int}=S^{\left(1\right)}+S^{\left(2\right)}+S^{\left(3\right)}. \end{equation} $
(18) After performing several calculations, the action terms accept the following form:
$ \begin{equation} S^{\left(1\right)}=\int {\rm d}^{4}x\ \int_{0}^{z_{M}}{\rm d}z \sqrt{G} e V_{\mu}\left(x,z\right)\left[{\rm i} \partial^{\mu} F_{\nu}^+ \left(x,z\right) F^{\nu}\left(x,z\right)-F_{\nu}^+ \left(x,z\right) {\rm i}\partial^{\mu} F^{\nu}\left(x,z\right)\right], \end{equation} $ (19) $ S^{\left(2\right)}=\int {\rm d}^{4}x\ \int_{0}^{z_{M}}{\rm d}z\sqrt{G}c_{2}\left[{\rm i} \partial_{\nu}\left(x,z\right)V_{\mu}\left(x,z\right) F^{\mu+}\left(x,z\right)F^{N}\left(x,z\right)- \right. {\rm i} \partial_{\mu}\left(x,z\right)V_{\nu}\left(x,z\right)F^{\mu+}\left(x,z\right)F^{N}\left(x,z\right) \left.\right], $
(20) $ \begin{aligned}[b] S^{\left(3\right)}=&\int {\rm d}^{4}x\ \int_{0}^{z_{M}}{\rm d}z\sqrt{G}\frac{c_{3}}{2M^{2}_{D}}\exp^{2A\left(z\right)}\left[-2\partial^{\mu}\partial^{\nu}V^{K}\left(x,z\right)eV_{k}F_{\mu}^+\left(x,z\right)F_{\nu}\left(x,z\right) \right. -\partial^{\mu}\partial^{\nu}V^{K}\left(x,z\right)F_{\mu}^+\left(x,z\right) {\rm i}\partial_{k}F_{\nu}\left(x,z\right)\\&+2\partial^{\mu}\partial^{k}V^{\nu}\left(x,z\right)F_{\mu}^+\left(x,z\right)eV_{k}\left(x,z\right)F_{\nu}\left(x,z\right)+ \partial^{\mu}\partial^{\nu}V^{K}\left(x,z\right){\rm i}\partial_{k}F_{\mu}^+\left(x,z\right)F_{\nu}\left(x,z\right)-\partial^{\mu}\partial^{k}V^{\nu}\left(x,z\right){\rm i}\partial_{k}F_{\mu}^+\left(x,z\right)F_{\nu}\left(x,z\right) \\ & +\partial^{\mu}\partial^{k}V^{\nu}\left(x,z\right)F_{\mu}^+\left(x,z\right){\rm i}\partial_{k}F_{\nu}\left(x,z\right)-2\partial^{\mu}\partial^{k}V^{\nu}\left(x,z\right)F_{\mu}\left(x,z\right)eV_{k}\left(x,z\right)F_{\nu}^+\left(x,z\right) \\& +2\partial^{\mu}\partial^{\nu}V^{k}\left(x,z\right)eV_{k}\left(x,z\right)F_{\mu}\left(x,z\right)F_{\nu}^+\left(x,z\right)-\partial^{\mu}\partial^{\nu}V^{k}\left(x,z\right)F_{\mu}\left(x,z\right){\rm i}\partial_{k}F_{\nu}^+\left(x,z\right) \\ & +\partial^{\mu}\partial^{k}V^{\nu}\left(x,z\right)F_{\mu}\left(x,z\right){\rm i}\partial_{k}F_{\nu}^+\left(x,z\right)+\partial^{\mu}\partial^{\nu}V^{k}\left(x,z\right){\rm i}\partial_{k}F_{\mu}\left(x,z\right)F_{\nu}^+\left(x,z\right) -\partial^{\mu}\partial^{k}V^{\nu}\left(x,z\right){\rm i}\partial_{k}F_{\mu}\left(x,z\right)F_{\nu}^+\left(x,z\right)\left. \right]. \end{aligned} $
(21) We perform the decomposition (10) in Eqs. (19)–(21) and apply a Fourier transformation to the vector
$ V\left(x,z\right) $ and deuteron$ F_{\nu}\left(x\right) $ ,$ F_{\nu}^{+}\left(x\right) $ fields.$ \begin{equation} V_{\mu}\left(x,z\right)=\int \frac{{\rm d}^{4}q}{\left(2\pi\right)^4}\exp^{-{\rm i}qx}V_{\mu}\left(q\right)V\left(q,z\right) . \end{equation} $
(22) $ \begin{aligned}[b]\\[-5pt] F_{\nu}\left(x\right)=\int \frac{{\rm d}^{4}p}{\left(2\pi\right)^{4}}{\rm e}^{-{\rm i}px} \epsilon_{\nu}\left(p\right), \end{aligned} $
(23) $ \begin{equation} F_{\nu}^+\left(x\right)=\int \frac{{\rm d}^{4}p'}{\left(2\pi\right)^{4}}{\rm e}^{{\rm i}p'x}\epsilon_{\nu}^+\left(p'\right), \end{equation} $
(24) where p and
$p'$ are the four-momenta, and$ \epsilon $ and$ \epsilon^{+} $ are the polarizations of the initial and final deuterons, respectively. Substituting Eqs. (10) and (22)–(24) into Eqs. (19)–(21), we obtain action terms for the bulk deuteron-EM field interactions.$ \begin{aligned}[b] S^{\left(1\right)}=&-\left(2\pi\right)^{4}\int\frac{{\rm d}^{4}p}{\left(2\pi\right)^{4}}\int\frac{{\rm d}^{4}p'}{\left(2\pi\right)^{4}}\int\frac{{\rm d}^{4}q}{\left(2\pi\right)^{4}}\delta^{4}\left(p+q-p'\right)\\&\times eV_{\mu}\left(q\right)\int {\rm d}z V\left(q,z\right)\Phi^{2}\left(z\right) \epsilon^+(p')\epsilon\left(p\right)(p+p')^{\mu}),\\[-10pt] \end{aligned} $
(25) $ \begin{aligned}[b] S^{\left(2\right)}=&-c_{2}\left(2\pi\right)^{4}\int\frac{{\rm d}^{4}p}{\left(2\pi\right)^{4}}\int\frac{{\rm d}^{4}p'}{\left(2\pi\right)^{4}}\int\frac{{\rm d}^{4}q}{\left(2\pi\right)^{4}}\delta^{4}(p+q-p')\\&\times V_{\mu}\left(q\right)\int {\rm d}z V\left(q,z\right) \Phi^{2}\left(z\right) (\epsilon^{\mu}\left(p\right)\epsilon^+(p') q\\& -\epsilon^{+\mu}(p')\epsilon\left(p\right)\cdot q)(p,p'), \end{aligned} $
(26) $ \begin{aligned}[b] S^{\left(3\right)}=&\left(2\pi\right)^{4} \frac{c_{3}}{2M^{2}} \int\frac{{\rm d}^{4}p} {\left(2\pi\right)^{4}}\int\frac{{\rm d}^{4}p'}{\left(2\pi\right)^{4}}\int\frac{{\rm d}^{4}q}{\left(2\pi\right)^{4}}\delta^{4}(p+q-p')\\&\times V_{\mu}\left(q\right) \int {\rm d}z V\left(q,z\right) \Phi^{2}\left(z\right) \epsilon^+(p')\cdot q\epsilon\left(p\right)\cdot q(p+p')^{\mu}. \end{aligned} $
(27) Action terms (25)–(27) contribute to the
$ G_{1}\left( Q^{2}\right) $ ,$ G_{2}\left( Q^{2}\right) $ , and$ G_{3}\left( Q^{2}\right) $ form factors of the deuteron. -
According to AdS/CFT correspondence, the deuteron EM current can be found by taking a variation from the generating functional
$Z={\rm e}^{{\rm i}S_{\rm int}}$ over the vector field$ V_{\mu}\left(q\right) $ [38].$ \begin{equation} \langle J^{\mu}\left(p,p^{'}\right)\rangle=-\frac{\delta {\rm e}^{{\rm i} S_{\rm int}}}{\delta V_{\mu}\left(q\right)}\bigg|_{V_{\mu}=0}. \end{equation} $
(28) According to Eq. (28), the action terms of Eqs. (25)–(27) give the corresponding current terms,
$ \begin{aligned}[b] J^{\mu\left(1\right)}(p,p')=&-\int {\rm d}z V\left(Q,z\right) \phi^{2}\left(z\right) \epsilon^+(p^{'}) \cdot \epsilon\left(p\right)(p+p')^{\mu} \\ =&-G_{1}\left(Q^{2}\right)\epsilon^+(p') \cdot \epsilon\left(p\right)(p+p')^{\mu}, \\[-12pt]\end{aligned} $
(29) $ \begin{aligned}[b] J^{\mu(2)}(p,p')=&-c_{2} \int {\rm d}z V\left(Q,z\right) \phi^{2}\left(z\right) (\epsilon^{\mu}(p) \epsilon^+(p')\cdot q\\& -\epsilon^{+\mu}(p') \epsilon\left(p\right)\cdot q) \\ =&-G_{2}\left(Q^{2}\right)(\epsilon^{\mu}\left(p\right) \epsilon^+(p')\cdot q-\epsilon^{+\mu}(p') \epsilon\left(p\right)\cdot q), \end{aligned} $
(30) $ \begin{aligned}[b] J^{\mu\left(3\right)}(p,p')=&\frac{c_{3}}{2M^{2}_{D}}\int {\rm d}z V\left(Q,z\right) \phi^{2}\left(z\right) \epsilon^+(p')\\&\cdot q \epsilon\left(p\right)\cdot q (p+p')^{\mu} \\ =&\frac{G_{3}\left(Q^{2}\right)}{2M^{2}_{D}}\epsilon^+(p')\cdot q \epsilon\left(p\right)\cdot q (p+p')^{\mu}. \end{aligned} $
(31) The current conservation and P- and C-invariances provide three EM form factors of the deuteron, known as the charge monopole
$ G_C(Q^2) $ , quadrupole$ G_Q(Q^2) $ , and magnetic dipole$ G_M(Q^2) $ form factors.The EM current of a
$ e+d\rightarrow e+d $ electron-deuteron elastic scattering process is written in terms of$ G_{i}\left(Q^{2}\right) $ form factors:$ \begin{aligned}[b] J^{\mu}(p,p') = &-\left(G_{1}\left(Q^{2}\right)\epsilon^+(p')\cdot \epsilon\left(p\right)-\frac{G_{3}\left(Q^{2}\right)}{2M^2_{D}}\epsilon^+(p')\cdot q \epsilon\left(p\right)\cdot q \right)\\&\times (p+p')^{\mu} -G_{2}\left(Q^{2}\right)\\&\times\left(\epsilon^{\mu}\left(p\right) \epsilon^+(p')\cdot q-\epsilon^{+\mu}(p') \epsilon\left(p\right)\cdot q\right). \end{aligned} $
(32) According to AdS/CFT correspondence, the sum of current terms in Eqs. (29)–(31) is identified in the current form (32).
$ G_{1}\left(Q^{2}\right) $ ,$ G_{2}\left(Q^{2}\right) $ , and$ G_{3}\left(Q^{2}\right) $ are deuteron form factors that depend only on the virtual photonfour-momentum. Moreover, assuming hermiticity, they are real. The explicit expressions of these form factors are found by comparing Eqs. (29)–(31) with Eq. (32).$ \begin{aligned}[b] G_1(Q^2)=&\int {\rm d}z V\left(Q,z\right) \Phi^{2}\left(z\right), \\ G_2(Q^2)=& c_{2} \int {\rm d}z V\left(Q,z\right) \Phi^{2}\left(z\right), \\ G_3(Q^2)=& c_{3} \int {\rm d} z V\left(Q,z\right) \Phi^{2}\left(z\right). \end{aligned} $
(33) The charge monopole
$ G_C(Q^2) $ , quadrupole$ G_Q(Q^2) $ , and magnetic$ G_M(Q^2) $ form factors are related to the$ G_1(Q^2) $ ,$ G_2(Q^2) $ , and$ G_3(Q^2) $ form-factors as [3, 17, 19, 20]$ \begin{aligned}[b] G_C(Q^2)=&G_1(Q^2)+\frac{2}{3}\eta_{d}G_Q(Q^2), \\ G_Q(Q^2)=&G_1(Q^2)-G_2(Q^2)+\left(1+\eta_{d}\right)G_3(Q^2), \\ G_M(Q^2)=&G_2(Q^2), \end{aligned} $
(34) where
$ \eta_{d}=\dfrac{Q^2}{4M^2_D} $ . At$ Q^2=0 $ , the charge monopole$ G_C(Q^2) $ , quadrupole$ G_Q(Q^2) $ , and magnetic dipole$ G_M(Q^2) $ form factors are normalized experimentally as follows [17]:$ \begin{aligned}[b] G_C(0)=&1, \\ G_Q(0)=&M^{2}_{D}Q_{D}=25.83, \\ G_M(0)=&\frac{M_{D}}{m_{N}}\mu_D=1.714, \end{aligned} $
(35) where
$ m_{N} $ is the nucleon mass,$ Q_{D} $ is a quadrupole, and$ \mu_D $ is the magnetic moment of the deuteron. Using relation (34) and the normalization of the$ G_Q(Q^2) $ and$ G_M(Q^2) $ form-factors at$ Q^2=0 $ in Eq. (35), we fix the value of the constants$ c_2 $ and$ c_3 $ as$ c_2=1.67066 $ and$ c_3=22.507 $ , respectively. -
In elastic
$ e+d\rightarrow e+d $ electron-deuteron scattering, two unpolarized elastic structure functions,$ A(Q^2) $ and$ B(Q^2) $ , are applied in the description of the scattering process. The two unpolarized elastic structure functions are defined using the$ G_C(Q^2) $ ,$ G_Q(Q^2) $ , and$ G_M(Q^2) $ form factors as follows [3, 17, 19, 21, 22, 24, 29]:$ \begin{aligned}[b] A(Q^2)=G^2_C(Q^2)+\frac{2}{3}\eta_{d}G^2_M(Q^2)+\frac{8}{9}\eta^2_{d}G^2_Q(Q^2),\end{aligned} $
$ \begin{aligned}[b] B(Q^2)=\frac{4}{3}\eta_{d}(1+\eta_{d})G^2_M(Q^2). \end{aligned} $
(36) The
$ B(Q^2) $ unpolarized elastic structure function depends only on the$ G^2_M(Q^2) $ form factor. Therefore, this form factor can be determined by a Rosenbluth separation of$ A(Q^2) $ and$ B(Q^2) $ [3, 17],$ \begin{equation} \frac{{\rm d}\sigma}{{\rm d}\Omega}=\left(\frac{{\rm d}\sigma}{{\rm d}\Omega}\right)_{\rm Mott} S\left(Q^2\right), \end{equation} $
(37) or by a cross section measurement at
$ \theta = 180^{o} $ , where$\left(\dfrac{{\rm d}\sigma}{{\rm d}\Omega}\right)_{\rm Mott}$ is the Mott cross section, θ is the electron scattering angle, and$ S=A(Q^2)+B(Q^2) $ [3, 17]. Because the first unpolarized elastic structure function$ A(Q^2) $ depends on all three form factors, only a quadratic combination of$ G_C(Q^2) $ and$ G_Q(Q^2) $ can be determined from the unpolarized cross section. A complete separation of the form factors requires the measurement of at least one tensor polarization observation, such as$ T_{20} $ ,$ T_{21} $ , and$ T_{22} $ , and all of the polarization observables depend on the momentum square$ Q^2 $ and scattering angle θ [3, 17, 19, 21, 24, 29–31].$ \begin{aligned}[b] T_{20}(Q^2,\theta)=&-\frac{1}{\sqrt{2}S(Q^2)}\left[\frac{8}{3}\eta_{d}(Q^2)G_C(Q^2)G_Q(Q^2)+\frac{8}{9}\eta_{d}^{2}(Q^2)G_Q^2(Q^2) \right. \left.+\frac{1}{3}\eta_{d}(Q^2)\left(1+2\left(1+\eta_{d}(Q^2)\right)\tan^{2}\frac{\theta}{2}\right)G_M(Q^2)\right], \\ T_{21}(Q^2,\theta)=&-\frac{2}{\sqrt{3}S(Q^2)}\eta_{d}(Q^2)\sqrt{\eta_{d}(Q^2)\left(1+\eta_{d}(Q^2)\sin^{2}\frac{\theta}{2}\right)}\frac{G_M(Q^2)G_Q(Q^2)}{\cos\dfrac{\theta}{2} }, \\ T_{22}(Q^2,\theta)=&-\frac{1}{2\sqrt{3}S(Q^2)}\eta_{d}(Q^2)G_M^2(Q^2). \end{aligned} $ (38) Because the first
$ T_{20} $ measurement [32] was performed close to$\theta= 70^\circ$ , observables are quoted at this angle. For experiments not performed at$70^\circ$ , the$ T_{20} $ observable is extrapolated to this angle using the structure functions. It is useful to use an alternative quantity,$ \tilde{T}_{20}(Q^2) $ , which is independent of scattering angle θ and thus depends only on$ Q^{2} $ [17, 19, 31].$ \begin{aligned}[b]\\[-5pt] \tilde{T}_{20}(Q^2)=&-\frac{\eta_{d}(Q^2)}{\sqrt{2}}\frac{3\beta(Q^2)+\eta_{d}(Q^2)}{\dfrac{9}{8}\beta^{2}(Q^2)+\eta_{d}^{2}(Q^2)}, \\ \tilde{T}_{20R}(Q^2)=&\frac{G_{Q}(Q^2)}{G_{Q}(0)}\frac{G_{C}(Q^2)+\dfrac{\eta_{d}}{3}G_{Q}(Q^2)}{G_{C}^{2}(Q^2)+\dfrac{8}{9}\eta_{d}^{2}G_{Q}^2(Q^2)}, \end{aligned} $
(39) where
$ \beta(Q^2)=\dfrac{G_{C}(Q^2)}{G_{M}(Q^2)} $ is the ratio of the charge monopoleand magnetic dipole EM form factorsof a deuteron, and$ \tilde{T}_{20R}(Q^2)=1 $ , normalized at$ Q^2=0 $ .
Deuteron electromagnetic form factors and tensor polarization observables in the framework of the hard-wall AdS/QCD model
- Received Date: 2022-07-06
- Available Online: 2023-01-15
Abstract: We study the electromagnetic form factors and tensor polarization observables of the deuteron in the framework of the hard-wall AdS/QCD model. We find a profile function for the bulk twist