-
In the proton rest frame, for exclusive vector meson production in the dipole model representation [20, 34, 61], as shown in Fig. 1 (right), even though the momentum transfer
$ {\bf{\Delta}} \neq 0 $ ($ {t}=-{\bf{\Delta}}^{2} $ ), the imaginary part of its amplitude can be similarly expressed as [19]Figure 1. (left) Elastic scattering amplitude for DIS and (right) amplitude of exclusive vector meson production in dipole model.
$ \begin{aligned}[b] &{\cal{A}}_{\rm T, L}^{\gamma^{*} p \rightarrow V p}(x, Q^{2}, t)= \mathrm{i} \int \mathrm{d}^{2} \boldsymbol{r} \int_{0}^{1} \frac{\mathrm{d} z}{4 \pi} \int \mathrm{d}^{2}\boldsymbol{b}\\ &\times \left(\Psi_{V}^{*} \Psi\right)_{\rm T, L}\left(r,z,Q\right) \mathrm{e}^{-\mathrm{i}[\boldsymbol{b}-(1-z)\boldsymbol{r}]{\bf{\Delta}}}\cdot \frac{ \mathrm{\; d} \sigma_{q \bar{q}}}{\mathrm{\; d}^{2} \boldsymbol{b}}\left(x,r,b\right)\\ =&\mathrm{i} \int_{0}^{\infty} \mathrm{d} r(2 \pi r) \int_{0}^{1} \frac{\mathrm{d} z}{4 \pi} \int_{0}^{\infty} \mathrm{d} b(2 \pi b) \\ &\times\left(\Psi_{V}^{*} \Psi\right)_{\rm T, L} J_{0}(b \Delta) J_{0}([1-z] r \Delta) \frac{\mathrm{d} \sigma_{q \bar{q}}}{\mathrm{\; d}^{2} \boldsymbol{b}}, \end{aligned} $
(1) where
$ \left(\Psi_{V}^{*} \Psi\right)_{\rm T, L} $ is the amplitude of the conversion of a virtual photon into a vector meson.$ { \mathrm{\; d} \sigma_{q \bar{q}}}/{\mathrm{\; d}^{2} \boldsymbol{b}} $ is the dipole scattering differential cross section where$ \boldsymbol{b} $ is the impact parameter. The total dipole-target cross section$ \sigma_{q \bar{q}} $ is obtained by the BK equation.$ J_{0} $ is the first kind of Bessel function. To determine the real part of the amplitude, the ratio of the real to the imaginary parts of the scattering amplitude are used.Thereby, the differential cross section for exclusive vector meson production is given by [14, 16, 20, 21, 61]
$ \frac{\mathrm{d} \sigma_{\rm T, L}^{\gamma^{*} p \rightarrow V p}}{\mathrm{\; d} t}\left(x,Q^2,t \right)=\frac{R^2_g}{16 \pi}\left|{\cal{A}}_{\rm T, L}^{\gamma^{*} p \rightarrow V p}\right|^{2}\left(1+\beta^{2}\right), $
(2) where
$ \beta $ denotes the ratio of the real to the imaginary parts of the scattering amplitude.$ \beta $ is written as$ \beta=\tan (\pi \lambda / 2), \quad {\rm { with }} \quad \lambda \equiv \frac{\partial \ln \left({\cal{A}}_{\rm T, L}^{\gamma^{*} p \rightarrow V p}\right)}{\partial \ln (1 / x)}. $
(3) $ R^2_g $ reflects the skewed effect, given by [62]$ R_{g}=\frac{2^{2 \lambda+3}}{\sqrt{\pi}} \frac{\Gamma(\lambda+5 / 2)}{\Gamma(\lambda+4)}. $
(4) If the dependence of
$ t $ on the amplitude$ {\cal{A}}_{\rm T, L}^{\gamma^{*} p \rightarrow V p} $ is exponential [63], then Eq. (2) is rewritten as$ \frac{\mathrm{d} \sigma_{\rm T, L}^{\gamma^{*} p \rightarrow V p}}{\mathrm{\; d} t}\left(x,Q^2,t \right)=\frac{R^2_g}{16 \pi}\left|{\cal{A}}_{\rm T, L}^{\gamma^{*} p \rightarrow V p}\right|_{t=0}^{2}\left(1+\beta^{2}\right){\rm e}^{-B_{D}|t|}. $
(5) Then, the total cross section is obtained as
$ \sigma_{\rm T, L}^{\gamma^{*} p \rightarrow V p}\left(x,Q^2\right)=\frac{R^2_g}{16\pi B_{D}}\left|{\cal{A}}_{\rm T, L}^{\gamma^{*} p \rightarrow V p}\right|_{t=0}^{2}\left(1+\beta^{2}\right), $
(6) $ \sigma_{\rm tot}^{\gamma^{*} p \rightarrow V p}\left(x,Q^2\right)=\sigma_{\rm T}^{\gamma^{*} p \rightarrow V p}\left(x,Q^2\right)+\sigma_{\rm L}^{\gamma^{*} p \rightarrow V p}\left(x,Q^2\right). $
(7) where
$ B_{D}=N\left(14.0\left(\dfrac{1\; \mathrm{GeV}^{2}}{Q^{2}+M_{V}^{2}}\right)^{0.2}+1\right) $ with$ N=0.55 \;{\rm{GeV}}^{-2} $ for$ \rho^0 $ [63]. For$ J/\psi $ ,$ B_D $ is written as [64, 65]$ B_D= \begin{cases} 4.15+4\times0.116 \ln\left(\dfrac{{W}}{90\;{\rm{GeV}}}\right) &Q^2 \leq 1 \;{\rm{GeV}}^2, \\ 4.72+4\times0.07 \ln\left(\dfrac{{W}}{90\,{\rm{GeV}}}\right) &Q^2 > 1 \;{\rm{GeV}}^2, \end{cases} $
(8) where
$ {W} $ is center of mass energy of$ \gamma^*p $ , which is related to$ x $ and$ Q^2 $ by$ x\,=\,x_{Bj}(1+M^2_V/Q^2)\,=\,\frac{Q^2+M^2_V}{W^2+Q^2}, $
(9) where
$ M_V $ is the mass of the vector meson, and$ x_{Bj} $ is the bjorken scale. For$ J/\psi $ ,$ M_V \,=\,3.097\; {\rm{GeV}} $ , and for$ \rho^0 $ ,$M_V \,=\; 0.776 \;{\rm{GeV}}$ .For overlaps between the photon and vector meson wave functions [19], the transverse and longitudinal polarization parts are
$ \begin{aligned}[b] \left(\Psi_{V}^{*} \Psi\right)_{\rm T}=& \hat{e}_{f} e \frac{N_{\rm c}}{\pi z(1-z)}\left\{m_{f}^{2} K_{0}(\epsilon r) \phi_{\rm T}(r, z)\right.\\ &\left.-\left[z^{2}+(1-z)^{2}\right] \epsilon K_{1}(\epsilon r) \partial_{r} \phi_{\rm T}(r, z)\right\}, \\ \left(\Psi_{V}^{*} \Psi\right)_{\rm L}=& \hat{e}_{f} e \frac{N_{\rm c}}{\pi} 2 Q z(1-z) K_{0}(\epsilon r)\left[M_{V} \phi_{\rm L}(r, z)\right.\\ &\left.+\delta \frac{m_{f}^{2}-\nabla_{r}^{2}}{M_{V} z(1-z)} \phi_{\rm L}(r, z)\right], \end{aligned} $
(10) where
$e = \sqrt{4\pi \alpha_{\rm em}}$ ,$N_{\rm c} = 3$ ,$ \nabla_{r}^{2} \equiv (1 / r) \partial_{r} + \partial_{r}^{2} $ ,$ \epsilon = \sqrt{z(1 - z)Q^2 + m^2_f} $ , Nc = 3 is the number of colors, and the effective charge$ \hat{e}_{f} $ is$ 2/3 $ or$ 1/\sqrt{2} $ for$ J/\psi $ or$ \rho^0 $ , respectively.$ m_f $ is the quark mass.$ K_{0} $ and$ K_{1} $ are the second kind of Bessel function. For the scalar wave functions,$ \phi_{L}(r, z) $ and$ \phi_{T}(r, z) $ , there are two models, "Gaus-LC" [21] and "boosted Gaussian" [61]. It should be noted that we follow the works of other researchers in using$ \delta=0 $ for the "Gaus-LC" model and$ \delta=1 $ for the "boosted Gaussian" model, as mentioned by H. Kowalski et al. [19].For the "Gaus-LC" model, the scalar wave functions,
$ \phi_{L}(r, z) $ and$ \phi_{T}(r, z) $ are written as$ \begin{aligned}[b] \phi_{\rm T}(r, z)=&N_{\rm T}[z(1-z)]^{2} \exp \left(-r^{2} / 2 R_{\rm T}^{2}\right), \\ \phi_{\rm L}(r, z)=&N_{\rm L} z(1-z) \exp \left(-r^{2} / 2 R_{\rm L}^{2}\right). \end{aligned} $
(11) For the "boosted Gaussian" model,
$ \phi_{\rm L}(r, z) $ and$ \phi_{\rm T}(r, z) $ are given by$ \begin{aligned}[b] \phi_{\rm T}(r, z)=& {\cal{N}}_{\rm T} z(1-z) \exp \left(-\frac{m_{f}^{2} {\cal{R}}^{2}}{8 z(1-z)}\right.\left.-\frac{2 z(1-z) r^{2}}{{\cal{R}}^{2}}+\frac{m_{f}^{2} {\cal{R}}^{2}}{2}\right),\\ \phi_{\rm L}(r, z)=& {\cal{N}}_{\rm L} z(1-z) \exp \left(-\frac{m_{f}^{2} {\cal{R}}^{2}}{8 z(1-z)}\right.\left.-\frac{2 z(1-z) r^{2}}{{\cal{R}}^{2}}+\frac{m_{f}^{2} {\cal{R}}^{2}}{2}\right). \end{aligned} $
(12) The parameters in the Eq. (11) and Eq. (12) can be found in [19]. Transverse and longitudinal overlaps between the vector meson functions and the photon function integrated over
$ {z} $ as a function of the dipole size$ {r} $ are presented in Fig. 2.Figure 2. (color online) Transverse and longitudinal overlaps between the vector meson and photon functions as a function of dipole size
$ {r} $ , which are integrated over$ {z} $ . Solid line is for the "Boosted Gaussian" (BG) model, and dashed line is for the "Gaus-LC" (GLC) model.In the following calculations, both models, "Gaus-LC" and "boosted Gaussian," are used. We compare the effects of the two models on the calculation results.
-
In addition to wave functions, the dipole-target scattering amplitude also determines the exclusive vector meson production process. In
$ \left|{\cal{A}}_{\rm T, L}^{\gamma^{*} p \rightarrow V p}\right|_{t=0} $ of Eq. (6), the dipole scattering differential cross section$ \mathrm{d} \sigma_{q \bar{q}}/\mathrm{d}^{2} \boldsymbol{b} $ is integrated and written as$ \int \frac{ \mathrm{\; d} \sigma_{q \bar{q}}}{\mathrm{\; d}^{2} \boldsymbol{b}}(x,r,\boldsymbol{b}) \mathrm{d}^{2} \boldsymbol{b}=\sigma_{q \bar{q}}(x,r)=2\pi R_p^{2}N(x,r), $
(13) where
$ R_p $ is the proton radius, which will be obtained by fitting with the structure function$ F_2 $ data of the proton from the DIS process, and the scattering amplitude$ N(x,r) $ comes from the BK equation.In momentum space, with the proper approximation, the BK equation can be represented as a nonlinear evolution equation [51]
$ \frac{\partial {\cal{N}}({k}, Y)}{\partial Y}= \frac{\alpha_{\mathrm{s}} N_{\mathrm{c}}}{\pi} \chi\left(-\frac{\partial}{\partial \ln {k}^{2}}\right) {\cal{N}}({k}, Y) -\frac{\alpha_{\mathrm{s}} N_{\mathrm{c}}}{\pi} {\cal{N}}^{2}({k}, Y), $
(14) where
$ \chi(\lambda)=\psi(1)-\dfrac{1}{2} \psi\left(1-\dfrac{\lambda}{2}\right)-\dfrac{1}{2} \psi\left(\dfrac{\lambda}{2}\right) $ is the BFKL kernel with$ \psi(\lambda)=\Gamma^{\prime}(\lambda) / \Gamma(\lambda) $ . In addition, αs is a strong coupling constant, and$ Y={\rm ln} $ $ \dfrac{1}{x} $ .When fixing the running strong coupling constant and expanding the BFKL kernel
$ \chi(\lambda) $ [56], we obtain$ A_{0} {\cal{N}}-{\cal{N}}^{2}-\frac{\partial {\cal{N}}}{\partial Y}-A_{1} \frac{\partial {\cal{N}}}{\partial L}+\sum\limits_{p=2}^{P}(-1)^{p} A_{p} \frac{\partial^{p} {\cal{N}}}{\partial^{p} L}=0. $
(15) Here, we need to clarify that the unit of
$ Y $ is$ \bar{\alpha}_{\rm s}=\dfrac{\alpha_{\rm s}N_{\rm c}}{\pi} $ , and$ L={\rm ln}\,k^2/k^2_0 $ . For the calculation, we have fixed$ \bar{\alpha}_{\rm s}=0.191 $ and$ {k}^2_0=\Lambda^{2}_{\rm QCD}=0.04 \; {\rm{GeV}}^2 $ . For$ P=2 $ , the simplified BK equation is given by$ A_{0} {\cal{N}}-{\cal{N}}^{2}-\frac{\partial {\cal{N}}}{\partial Y}-A_{1} \frac{\partial {\cal{N}}}{\partial L}+A_{2} \frac{\partial^{2} {\cal{N}}}{\partial^{2} L}=0. $
(16) The analytical solutions of Eq. (16) have been given as [60]
$ {\cal{N}}( L, Y)=\frac{A_{0} {\rm e}^{5 A_{0} Y / 3}}{\left[{\rm e}^{5 A_{0} Y / 6}+{\rm e}^{\left[-\theta+\sqrt{A_{0} / 6 A_{2}}\left( L- A_{1} Y\right)\right]}\right]^{2}}. $
(17) In this work, the values of
$ A_0 $ ,$ A_1 $ ,$ A_2 $ and$ \theta $ are given by fitting to the proton structure function$ F_2 $ with the following relationship between$ F_2 $ and$ {\cal{N}}(L, Y) $ [66]:$ F_{2}\left(x, Q^{2}\right)=\frac{Q^{2} R_{p}^{2} N_{\rm c}}{4 \pi^{2}} \int_{0}^{\infty} \frac{{\rm d} k}{k} \int_{0}^{1} {\rm d} z \left|\tilde{\Psi}_\gamma\left({k^{2}}, z ; Q^{2}\right)\right|^{2} {\cal{N}}( L, Y), $
(18) where
$ N_{\rm c} $ is the number of colors. Here$ x\,=\,x_{Bj} $ . As shown in Fig. 1 (left), the wave function$ \left|\tilde{\Psi}_\gamma\left({k^{2}}, z; Q^{2}\right)\right|^{2} $ expressed in momentum space represents the probability of a virtual photon splitting into a quark-antiquark pair. It is given by [66]$ \begin{aligned}[b] \left|\tilde{\Psi}_\gamma\left({{k}^{2}}, z ; Q^{2}\right)\right|^{2}= &\sum\limits_{f}\left(\frac{4 \bar{Q}_{f}^{2}}{{{k}^{2}}+4 \bar{Q}_{f}^{2}}\right)^{2} e_{f}^{2}\left.\bigg \{ \left[z^{2}+(1-z)^{2}\right]\right.\\ &\times\left[\frac{4\left({{k}^{2}}+\bar{Q}_{f}^{2}\right)}{\sqrt{{{k}^{2}}\left({{k}^{2}}+4 \bar{Q}_{f}^{2}\right)}} \operatorname{arcsinh}\left(\frac{{{k}}}{2 \bar{Q}_{f}}\right)\right.\\ &\left.+\frac{{{k}^{2}}-2 \bar{Q}_{f}^{2}}{2 \bar{Q}_{f}^{2}}\right]+\frac{4 Q^{2} z^{2}(1-z)^{2}+m_{f}^{2}}{\bar{Q}_{f}^{2}} \\ & \times\left[\frac{{{k}^{2}}+\bar{Q}_{f}^{2}}{\bar{Q}_{f}^{2}}-\frac{4 \bar{Q}_{f}^{4}+2 \bar{Q}_{f}^{2} {{k}^{2}+k^{4}}}{\bar{Q}_{f}^{2} \sqrt{{{k}^{2}}\left({{k}^{2}}+4 \bar{Q}_{f}^{2}\right)}}\right.\\ &\left.\left.\times \operatorname{arcsinh}\left(\frac{{{k}}}{2 \bar{Q}_{f}}\right)\right]\right.\bigg \}, \end{aligned} $
(19) where
$ \bar{Q}_{f}^{2}=z(1-z) Q^{2}+m_{f}^{2} $ , ef and$ m_{f} $ are the charge and the mass of the quark, respectively.In [66], the fitting range for
$ Q^2 $ is$ 0.045 \, \leq Q^{2} \leq 150 \; \mathrm{GeV}^{2} $ , because the corrections from the DGLAP equation should be considered to be in a$ Q^2 $ range that is too high. Therefore, the kinematic fitting range we choose is$ x \, \leq \, 0.01, \quad 1 \, < \, Q^{2} \,\leq \, 45 \; \mathrm{GeV}^{2}. $
(20) The fitting results are presented in Figs. 3, 4. The values of the parameters obtained by fitting to 85
$ F_2 $ data points from H1 and ZEUS [67, 68] with$m_{u,d,s,}\,= \, 0.14\;{\rm{ GeV}} $ and$ m_c\,=\,1.4\;{\rm{GeV}} $ are listed in Table 1.$ \chi^2 $ is also provided in Table 1.$ x $ $ Q^2/{\rm{GeV}}^{2} $ $ m_{u,d,s}/\,\rm GeV $ $ m_{c}/\,\rm GeV $ $ \alpha_s $ ${k }_0/\;\rm GeV$ $A_0$ $A_1$ $A_2$ $ \theta $ $ R_p/\,\rm GeV^{-1} $ $ \chi^2/{\rm nop} $ $ \leq\,0.01 $ $ (1,45] $ 0.14 1.4 0.2 0.2 $ 0.696\,\pm\,0.0187 $ $ 0.661\,\pm\,0.0295 $ $ 0.112\,\pm\,8.0\times10^{-3} $ $ -0.463\,\pm\,0.0493 $ $ 5.484\,\pm\,0.106 $ 0.979 Figure 4. (color online) Continuation of Fig. 3.
Then, in the following calculation, we need the dipole scattering amplitude
$ {\cal{N}}(x,\boldsymbol{r}) $ in the coordinate space.$ {\cal{N}}(x,\boldsymbol{r}) $ is related to$ {\cal{N}}(x,\boldsymbol{k}) $ by the Fourier transformation,$ {\cal{N}}(x,\boldsymbol{k}) = \frac{1}{2\pi}\int\frac{{\rm d}^2\boldsymbol{r}}{r^2}{\rm e}^{{\rm i}\boldsymbol{k}\cdot\boldsymbol{r}}{\cal{N}}(x,\boldsymbol{r}). $
(21) By inverse Fourier transformation, we can get
$ \begin{aligned}[b] {\cal{N}}(x,\boldsymbol{r}) = \frac{r^2}{2\pi}\int{{\rm d}^2\boldsymbol{k}}{\rm e}^{-{\rm i} {k}\cdot\boldsymbol{r}}{\cal{N}}(x,\boldsymbol{k}) =r^2\int^{\infty}_{0}{\rm d}kkJ_0(k\cdot r){\cal{N}}(x,k). \end{aligned} $
(22) Then, we apply Eq. (22) to the total cross section calculations of the
$ J/\psi $ and$ \rho^0 $ productions.
Exclusive vector meson production with the analytical solution of Balitsky-Kovchegov equation
- Received Date: 2021-12-11
- Available Online: 2022-09-15
Abstract: Exclusive vector meson production is an excellent probe for describing the structure of protons. In this study, based on the dipole model, the differential cross sections, total cross sections, and ratios of the longitudinal to transverse cross section of the