-
There are many candidate sources of PeV cosmic rays in the Milky Way. Gamma-ray detection of these sources at the ultrahigh-energy band proves their potential of acceleration of PeV protons as particle accelerators. High-energy neutrino detection would serve as a smoking gun to identify that acceleration of PeV protons are indeed proceeding in these sources.
-
Detection of the so-called 'knee' at
$ \sim $ PeV in the cosmic ray proton spectrum implies that there are petaelectronvolt accelerators ('PeVatron') residing in our Galaxy. Power-law spectra of gamma-rays extending to at least several tens of TeV without a cut-off has been suggested as the identifier of such kind of powerful proton accelerators. However, despite of a large amount of cosmic ray accelerators has been found at TeV in our Galaxy, none of them has shown the unequivocal feature of PeVatron, except that HESS experiment has discovered a likely existence of proton PeVatron within the central 10 parsecs of the Galaxy at roughly$ 2\sigma $ confidence level [1]. LHAASO has a good sensitivity for gamma-ray with$ >10 $ TeV, in particular, reaching an unprecedented level around 100 TeV and hence can serve as an efficient PeVatron detector. Among 78 VHE sources in the HESS Galactic Plane Survey catalog [2], 21 of them are in the field of view of LHAASO. By extrapolating the spectrum of these sources with the best-fitting spectral model (power-law model or exponential cutoff power-law model) to 1 PeV, 19 of them is beyond the$ 5\sigma $ detection limit of LHAASO with one-year observation. There are many more PeVatron candidates beyond the field of view of HESS but in that of LHAASO. For example, the star-forming region Cygnus Cocoon is one of the proposed cosmic-ray accelerator [3]. Gamma-ray emission from this region has been detected by Fermi-LAT [4], Milagro [5], ARGO-YBJ [6], Veritas [7] and HAWC [8] in GeV–TeV band with a quite complex morphology, implying contributions from multiple sources. In fact, some of these sources have already been detected by half of LHAASO-KM2A at the ultrahigh-energy (UHE) gamma-ray band ($ E\geq 100 $ TeV, [9]). Among 12 UHE gamma-ray sources detected by LHAASO, most of them are associated with supernova remnants (SNRs), pulsar wind nebulae (PWNe) and star-forming regions, implying these sources as proton PeVatron candidates.To put it shortly, LHAASO has revealed many sources as potential proton PeVatrons and is promising to discover more new PeVatron candidates in the future. Based on the current observation, however, it is difficult to differentiate the hadronic origin and the leptonic origin for most of LHAASO detected sources. High-energy neutrinos from these sources would be a smoking gun for the hadronic origin, since high-energy gamma rays and neutrinos are produced associately in hadronic interactions of cosmic rays with comparable flux. However, no astrophysical neutrino sources had been clearly identified by IceCube yet and hence only neutrino flux upper limit are available [10]. Even so, the upper limits can already put interesting constraints on the origin of UHE gamma rays of some LHAASO sources [11]. We note that using the LHAASO measured spectrum as a prior in IceCube's analysis may enhance the post-trial significance of the sources and in turn leads to more stringent neutrino flux upper limits.
-
SNRs, especially young SNRs with age less than one thousand years such as Tycho, Cas A and so on, are believed to be able to accelerate CRs up to PeV energies, and contribute to the Galactic CRs. The interaction between accelerated CRs and the surrounding matters would produce γ-rays and neutrinos.
$ \pi^{0} $ bumps are observed in the γ-ray spectra of SNRs W44 and IC443 as the indications of hadronic interactions [12]. Previous studies on the TeV gamma-ray emissions associated with SNRs W28, W41, W51C and CTB37A also suggested that these TeV emissions are possibly powered by the hadronic interactions. In particular, a middle-aged SNR G106.3+2.7 has been extensively studied in GeV band [13], TeV band [14–16], and X-ray band [17, 18]. Theoretical studies have also been carried out to investigate its possibility as a proton PeVatron [17, 19]. LHAASO's measurement extended its spectrum up to about 600 TeV. It is predicted that IceCube can detect 0.4 muon neutrinos above 50 TeV for the ten-year operation in the hadronic model. Future observation of LHAASO and IceCube (as well as the next-generation neutrino telescope) should be able to test the hadronic model. -
PWNe are also believed to be a kind of Galactic cosmic ray sources. The pulsar wind interacting with the ambient medium around a pulsar forms a terminal wind shock, which will accelerate particles to high energy. The accelerated CRs interact with matters or photons in the nebulae would produce gamma-rays and neutrinos. More than 30 PWNe have been detected at TeV energies. A stacking analysis to search for neutrino emission from 35 TeV PWNe using 9.5 years of all-sky IceCube data finds no significant correlation between PWNe and neutrinos [20]. Extended TeV γ-ray emission are detected from nearby sources Geminga pulsar and B0656+14 by HAWC [21]. More extended TeV images of PWNe might be discovered by LHAASO. The spectral features and the gamma-ray profiles of PWNe detected by the LHAASO would help IceCube to improve the neutrino searches. It is interesting to note that the latest observation of LHAASO on the Crab Nebula has extended its spectrum up to 1.1 PeV and reveal a possible hardening of its spectrum above several hundred TeV [22]. This might be interpreted as an additional hadronic component at the highest energies.
-
Star-forming regions are factories of stars/star clusters, and usually associated with molecular clouds, such as W51A, W51B, Cygnus region, W49A and W43. The young OB star clusters, super bubbles supplied by supernova explosions or collective stellar winds, or SNRs/PWNe in the star-forming regions could accelerate CRs to high energy. The high energy CRs that are confined in the star-forming regions would interact with molecular clouds, and produce gamma-rays and neutrinos.
We assume that, in a star-forming region in the Galaxy, a PeV CR accelerator are accompanied with molecular clouds, and the accelerated PeV CRs escape from the accelerator and are confined in the molecular clouds with the total energy of
$ E_{ {\rm {inj}}} $ . Gamma-rays and neutrinos are produced via the interaction between CRs and molecular clouds. The corresponding extended sources might be observed with the gamma-ray and neutrino profiles following the distribution of the molecular clouds. The gamma-ray flux at the energy of 100 TeV is about$ f_\gamma = \dfrac{1}{3}E_{ {\rm {inj}}}n_{\rm H}\sigma_{\rm pp}^{\rm inel}c/(4\pi D_{ {\rm {L}}}^2) $ , i.e.,$\begin{aligned}[b] f_\gamma =& 3\times10^{-12}{\; \; {\rm {TeV}}\; {\rm{cm}}^{-2} \; {\rm{s}}^{-1}}\\ &\times \left(\frac{E_{ {\rm {inj}}}}{10^{50}{\rm \; erg}}\right)\left(\frac{n_{\rm H}}{1{\; {\rm {cm}}^{-3}}}\right)\left(\frac{D_{ {\rm {L}}}}{10\; {\rm kpc}}\right)^{-2} \end{aligned} $
(1) where
$ \sigma_{\rm pp}^{\rm inel}\simeq 50{\rm \; mb} $ is the approximated cross-section for inelastic$ pp $ collision [23], and$ n_{\rm H} $ is the density of the molecular clouds. The muon neutrino flux at 50 TeV is about$ 10^{-12}{\; \; {\rm {TeV}}\; {\rm{cm}}^{-2} \; {\rm{s}}^{-1}}(n_{\rm H}/1{\; {\rm {cm}}^{-3}}) $ for$ E_{ {\rm {inj}}} = 10^{50} $ erg and$ D_{ {\rm {L}}} = 10 $ kpc, and the integrated counts of muon neutrinos for ten year operation of IceCube can be estimated to be$ N_\mu = 4 (A_{ {\rm {eff}}}/1{\; {\rm {m}}^2})({E_{ {\rm {inj}}}}/{10^{50}{\rm erg}})({n_{\rm H}}/{1{\; {\rm {cm}}^{-3}}})({D_{ {\rm {L}}}}/ $ $ {10\; {\rm kpc}})^{-2} $ . IceCube reported the results of searching for extended sources of neutrino emission with 7 years of IceCube data, with the discovery potential flux at$ 50$ % confidence level for the Northern Hemisphere about$ \sim10^{-12}-10^{-11} {\; {\rm {TeV}}\; {\rm{cm}}^{-2}\; {\rm {s}}^{-1}} $ [24]. Therefore, a PeVatron associated with molecular clouds in the Galactic star-forming region might be a possible extended gamma-ray source candidate for LHAASO, and also a possible extended neutrino source candidate for IceCube, depending on the total injected energy, the source distance, and the mass of molecular clouds. LHAASO's future discovery on new extended sources in the Galaxy will improve the discovery potential of IceCube. -
In γ-ray binary systems, such as LS 5039, HESS J0632+057, and LS I+61
$ ^\circ $ 303 [25], particles might be accelerated to high energy via the pulsar wind interacting with the strong wind of massive star, the jet activities in micro-quasars, or relativistic outflow interacting with the ISM, and further produce gamma-rays and neutrinos. In particular, HAWC detected TeV emission above 25 TeV from the jet's lobe of microquasar SS433 [26], demonstrating that the binary system could be an efficient particle accelerator. The searches for time dependent neutrino sources with IceCube data from 2008 to 2012, find no significant time dependent point sources of neutrinos, but the most significant neutrino excess from the binary system HESS J0632+057 with pre-trial p-value of 0.087 [27]. Chances are that LHAASO would discover more nearby gamma-ray binaries, and provide a gamma-ray binary catalog for the IceCube to search for more neutrino sources. -
The IceCube neutrino observatory is sending public real-time alerts on single muon neutrino-induced track events with a high probability of being of astrophysical origin. Since 2019, more than 40 neutrino singlet alerts located within LHAASO's field of view (FOV) were reported. If the source is nearby with no photon attenuation inside the source and along the propagation path, there is a high chance that LHAASO can observe high energy photons associated with the IceCube announced single muon neutrino alerts. Besides performing observations following up the IceCube neutrino alerts, LHAASO can also provide public alerts for the follow-up neutrino detections. What's more, LHAASO's observations on nearby blazars and starburst galaxies can provide more details on the nonthermal processes operating in the neutrino source candidates.
-
The IceCube neutrino observatory, located under the Antarctic ice, is the largest neutrino detector to date. Since 2016, IceCube started to send public real-time alerts on single-muon neutrino-induced track events with a high probability of being of astrophysical origin, based on the real-time, online event reconstruction, through Astrophysical Multimessenger Observatory Network (AMON) and Gamma-ray Coordination Network (GCN) [28]. In 2019 June, the HESE (High Energy Starting Events) notices and EHE (Extremely High Energy) notices are replaced by so called "ICECUBE ASTROTRACK GOLD notices" and "BRONZE notices", with the rate about
$ 12/ $ yr and$ 16/ $ yr, the chance of$ >50$ % and$ >30$ % to be astrophysical [29], and the position error of$ 0.2^\circ-0.75^\circ $ . Since 2019 September, more than 40 neutrino singlet alerts within LHAASO's field of view were reported. In addition to muon neutrino-induced event alerts, IceCube has a real-time program to search for muon-neutrino multiplets. In 2016, the IceCube real-time neutrino search identified a muon-neutrino multiplet, with no likely electromagnetic counterpart detected [30]. -
The large FOV, high duty cycle and high sensitivity make LHAASO a perfect detector on searching for very high energy gamma-ray transients or steady sources associated with the IceCube neutrino alerts. What's more, IceCube is more sensitive to sources in the Northern hemisphere, since events from the Southern hemisphere are highly contaminated by the muon backgrounds [31], and most of the LHAASO's FOV is in the Northern hemisphere. This fact also makes LHAASO a suitable detector to do the follow-up observations to the direction of the IceCube neutrino alerts. Since most of IceCube neutrino alerts locate to the direction of high galactic latitude, if they are of astrophysical origins, they are likely to be from extragalactic sources. Due to the extragalactic background light (EBL) absorption, the flux of
$ \gtrsim $ 10 TeV photons from sources with distance larger than a few Mpc will be suppressed. Therefore, the detection horizon of LHAASO KM2A is limited to be a few Mpc. The EBL absorption is weak for TeV photons from sources within a few hundred Mpc, thus, the LHAASO WCDA are able to detect photons from sources within a few hundred Mpc.For steady neutrino sources, the duration of the neutrino emission at the source can be as high as the IceCube operation time. Let us denote the energy of a neutrino by
$ E_{\nu_\mu}^{\rm obs} $ , the effective area of the IceCube by$ A_{ {\rm {eff}}} $ , and the duration of neutrino emission at the source by$ T_{\nu} $ . Assuming the neutrino spectrum$ \dfrac{{\rm d}N_\nu}{{\rm d}E_\nu}\propto E_\nu^{-2} $ with$ E_{\nu, {\rm {min}}} = 1\; {\; {\rm {TeV}}} $ and$ E_{\nu, {\rm {max}}} = 10{\; \rm PeV} $ , the flux of a single muon neutrino-induced event is estimated as$ E_{\nu_\mu}^2{\rm d}N_{\nu_\mu}/{\rm d}E_{\nu_\mu} = E_{\nu_\mu}^{\rm obs}/ $ $ (\ln(E_{ \nu, {\rm {max}}}/ E_{\nu, {\rm {min}}})A_{ {\rm {eff}}}T_{\nu}) $ , i.e.,$\begin{aligned}[b] E_{\nu_\mu}^2\frac{{\rm d}N_{\nu_\mu}}{{\rm d}E_{\nu_\mu}} \simeq& 4\times 10^{-12}{\; \; {\rm {TeV}}\; {\rm{cm}}^{-2}\; {\rm {s}}^{-1}}\\ &\times \left(\frac{E_{\nu_\mu}^{\rm obs}}{100{\; \; {\rm {TeV}}}}\right)\left(\frac{A_{ {\rm {eff}}}}{1{\; {\rm {m}}^2}}\right)^{-1}\left(\frac{T_{\nu}}{10{\; \; {\rm {yr}}}}\right)^{-1}. \end{aligned} $
(2) Since the gamma ray flux is about 2 times larger than the muon neutrino flux considering the equipartition among the three neutrino flavors after their oscillations during the propagation, the gamma-ray flux at 100 TeV is about
$\begin{aligned}[b] \dfrac{{\rm d}N_{\gamma}}{{\rm d}E_{\gamma}}\sim & 8\times 10^{-16}{\; \; {\rm {TeV}}^{-1}\; {\rm{cm}}^{-2}\; \; {\rm {s}}^{-1}} \\&\times \left(\frac{E_{\nu_\mu}^{\rm obs}}{100{\; \; {\rm {TeV}}}}\right)^{-1} \left(\frac{A_{ {\rm {eff}}}}{1{\; {\rm {m}}^2}}\right)^{-1} \left(\frac{T_{ \nu}}{10{\; \; {\rm {yr}}}}\right)^{-1}\end{aligned} $
if there is no photon attenuation within the source and along the propagation path. Therefore, if a single neutrino with energy about
$ E_{\nu_\mu}^{\rm obs} = 100\; {\; {\rm {TeV}}} $ is observed from a nearby steady source, the expected gamma-ray flux at 100 TeV with no absorption is larger than the sensitivity of LHAASO at 100 TeV for one year operation, as shown in Fig. 1. To be noticed here, the effective area of IceCube is a function of declination. Therefore, if there is no photon attenuation inside the source and along the propagation path, there is a high chance that LHAASO KM2A can observe high energy photons associated with the IceCube announced single muon neutrino alerts and muon neutrino multiplets.Figure 1. (color online) 21 sources from HGPS catalogue that are in the field of view of LHAASO. Black data points are the measurement by HESS, and black curves show the best-fit spectrum model [2]. Red curves show the sensitivity of LHAASO for each source with one-year observation. The sensitivity is estimated by multiplying a factor of max(1,
$ \theta_s/\theta_{\rm PSF} $ ) to the sensitivity for Crab, where$ \theta_s $ is the angular size of the source measured by HESS while$ \theta_{\rm PSF} $ is the size of PSF of LHAASO.Besides performing observations following up the IceCube neutrino alerts, LHAASO can also provide public alerts for the follow-up neutrino detections. LHAASO are able to search for the hotspot with a cluster of events above the estimated cosmic-ray background level with an excess significance above 2.75 σ, and provide the information of the hotspot for the IceCube collaboration to search for neutrinos associated with the LHAASO hotspot temporally and spatially. Then, the IceCube and LHAASO collaborations can issue the IceCube LHAASO alert based on gamma rays and neutrino sub-threshold detections, similar to the IceCube HAWC alert. The combined analysis on the observed gamma-ray photons and neutrinos would help to improve the discovery potential of neutrino sources.
-
Blazars and starburst galaxies are two major source candidates for the IceCube diffuse neutrino background.
Blazars are relativistic jets driven by supermassive black holes with directions aligned with the observer's line of sight. They have been proposed as the high-energy neutrino sources for decades [32–35]. Ref. [36] found 11 significant neutrino flares using a sample of muon track neutrino events from 2012 April to 2017 May, associating with 10 AGN counterparts, including FSRQs, BL lac and radio galaxies. In addition, 9 blazars are summarized associated with single high-energy neutrino events, including both archival neutrino events and neutrino alert events [37].
One of the most promising high-energy neutrino candidates to date is blazar TXS 0506+056, which is detected in spatial and temporal coincidence with a
$ \sim 300 $ TeV neutrino event IC-170922A at$ 3\sigma $ level during its flaring state [38]. A later analysis on the archival data revealed$ 13\pm 5 $ additional neutrino events from the same direction during about 4 months in 2014-2015 [39]. This may be an evidence of blazars as cosmic ray proton accelerators at least to$ \sim 10 $ PeV. If TXS 0506+056 is truly a neutrino emitter, it will be also a multi-TeV gamma-rays producer through the same hadronic interactions. However, due to the large distance of the blazar (at a redshift of about 0.34) to Earth, the produced multi-TeV gamma-ray photons will be severely absorbed during their propagation in the intergalactic space, even if the internal absorption due to the emission of the blazar itself is not important.Nevertheless, it'd be worth monitoring the closest blazars, such as Mrk 421 and Mrk 501 with distance 126 Mpc and 157 Mpc away from Earth, respectively, at which distance the attenuation for multi-TeV flux is not very strong. Another interesting source in the field of view of LHAASO is the radio galaxy M87, which is considered as the misaligned counterpart of blazars. It was found associated with a short neutrino flare in 2016 of a duration about 3.9 minutes with a p-value of
$ 1.91\times 10^{-3} $ [36]. Given the distance of M87 to be about 16.4 Mpc, the detection of 100 TeV gamma-ray photons is in principle possible, if the intrinsic flux is high and the internal absorption is not strong. Nevertheless, even if only upper limits of multi-TeV gamma-ray fluxes are obtained, the results may be useful to constrain the radiation model of blazars and relevant physical quantities, such as the size/location of the emitting region, particle acceleration capability and the composition of the jet.Starburst galaxies are another major candidates of high-energy neutrino sources. Theoretical studies have shown that starburst galaxies are able to contribute to, at least a considerable fraction of, the diffuse neutrino background detected by IceCube (e.g. [40–43]). In the ten-year search for steady point-like① neutrino sources by IceCube, the hottest spot with a post-trial significance of
$ 2.9\sigma $ [10] is in the direction of a nearby starburst galaxy NGC 1068 (M77) ($ 14.4 $ Mpc from Earth), which shows starburst activity and an active galactic nucleus.There are some other nearby starburst galaxies located in the LHAASO's FOV. For example, M82 (also known as Cigar galaxy) is one of the closest starburst galaxies (3.5 Mpc) and is usually considered as a prototype of starburst galaxy. It has been observed by VERITAS [44] up to a few TeV with a power-law spectrum showing no clear cutoff. The TeV emission is believed to arise from the
$ pp $ collision between cosmic rays in the galaxy and the interstellar medium (ISM), so high-energy neutrino emission from M82 is naturally expected. Although the IceCube has not found any neutrino excess in the direction of M82, the multi-TeV gamma-ray observation would help to determine the hadronic interaction efficiency in starburst galaxies at the energy regime interesting for high-energy neutrino astronomy. -
The origin of ultrahigh energy cosmic rays (UHECRs) is not solved yet. The sources of UHECRs may be also producing high energy gamma-rays and neutrinos via hadronic interactions. If the diffuse TeV-PeV neutrinos and UHECRs are produced in related processes, then LHAASO may be expected to identify TeV gamma-ray sources from a fraction
$ \sim0.1(n_s/10^{-5}\, {\rm {Mpc}}^{-3})^{-1/2} $ of the UHECR positions (with$ n_s $ being the source density). Even if the UHECR sources are too numerous and weak to detect, the non-detection can still put stringent constraint on the source density and hence the origin of UHECRs.The origin of the observed UHECRs,
$ >10^{19.5} $ eV, is still unknown (see review [103]). Because of the Greisen-Zatsepin-Kuzmin (GZK) effect, the effective propagation length of cosmic rays with$ >50 $ EeV is only$ d_{GZK}\lesssim1 $ Gpc. The UHECRs detected on the Earth should be originated from sources with a distance of$ d<d_{GZK} $ . Cosmic rays are deflected by magnetic field during propagation, but UHECRs of$ >50 $ EeV are expected to be deflected by only$ <2^\circ $ , assuming UHECRs are protons (see, e.g., [104]). Thus their arrival directions may trace back to the sources. Cosmic ray sources may also produce high energy gamma-rays and neutrinos by the hadronic interactions of cosmic rays. Using LHAASO to observe the positions of UHECRs may enhance the chance of finding the UHECR sources. Note, within 100 Mpc the gamma-gamma absorption due to the extra-galactic background lights may not be very important for TeV gamma rays. Therefore, high energy gamma-ray observations by LHAASO must be very helpufl to probe UHECR origin.The IceCube-detected TeV-PeV neutrino flux is comparable to the Waxman-Bahcall bound, which is derived from observed UHECR flux. This may indicate that the origin of TeV-PeV neutrinos is related to the origin of UHECRs, i.e., the cosmic rays that result in the TeV-PeV neutrinos are with the same origin as the UHECRs [105]. If so, a TeV-PeV gamma-ray flux comparable to the TeV-PeV neutrino flux should also be accompanying the production of UHECRs. We here suggest LHAASO to search the high energy gamma ray signals from the UHECR positions.
Let us estimate the possible observational results by LHAASO. Derived from the IceCube detection, the gamma-ray emissivity, i.e., the energy production rate density in the universe, at
$ \sim10 $ TeV should be about$ \dot{\rho}\sim10^{43}\dot{\rho}_{43}\rm erg \;Mpc^{-3}yr^{-1} $ [106]. If the source density is$ n_s = 10^{-5}n_{-5}\; {\rm {Mpc}}^{-3} $ , then the (average) gamma-ray luminosity of a single source is$ L = \dot{\rho}/n_s $ , and the maximum distance that the sources can be detected for a telescope of given sensitivity S is$ d_M = (L/4\pi S)^{1/2} $ . Since the integrated sensitivity of LHAASO at 3-TeV is$ S_3\sim6\times $ $ 10^{-14}\; {\rm {TeV}}\; {\rm{cm}}^{-2}\; {\rm {s}}^{-1} $ (for 1-yr exposure), the maximum distance is given by$ d_M = 54\dot{\rho}_{43}^{1/2}n_{-5}^{-1/2}(S_3/6\times10^{-14}\; {\rm {TeV}}\; {\rm{cm}}^{-2}\; {\rm {s}}^{-1})^{-1/2}\; {\rm {Mpc}}. $
(3) For comparison, the mean free path of 3-TeV gamma-rays in the intergalactic medium is larger,
$ d_\tau\sim100 $ Mpc. The number of sources that are within a distance of$ d_M $ is$ N_s\approx\frac 43\pi d_M^3n_s $ , i.e.,$ N_s\sim6.6\dot{\rho}_{43}^{3/2}n_{-5}^{-1/2}(S_3/6\times10^{-14}\; {\rm {TeV}}\; {\rm{cm}}^{-2}\; {\rm {s}}^{-1})^{-3/2}. $
(4) As the exposure time increases, the sensitivity goes as
$ S\propto t^{-1/2} $ , thus the number of observed sources for 10 yrs is$ N_s\sim40n_{-5}^{-1/2}(t/\rm 10 yr)^{3/4}. $
(5) Here the source density has been normalized to a value typical for starburst galaxies, whereas the number of observed sources will decrease if the sources are more numerous, and hence weaker,
$ N_s\propto n_s^{-1/2} $ .These gamma-ray sources should lie in the directions of the observed UHECRs. For a certain UHECR experiment, the fraction of its detected UHECRs that are originated within a distance
$ d_M $ is about$ f_s\sim d_M/d_{GZK} $ ($ d_M<d_{GZK} $ ), i.e.,$ f_s\sim0.1n_{-5}^{-1/2}(t/1\; {\rm {yr}})^{1/4} $ for UHECRs of$ >50 $ EeV, which does not vary much with exposure time,$ \propto t^{1/4} $ . LHAASO can search for these gamma-ray sources by carrying out observations at a few TeV at the positions of the UHECRs that are detected by the Telescope Array (TA) experiment and Pierre Auger Observatory (PAO). A fraction$ f_s $ of these UHECR positions are expected to be identified with TeV gamma-ray sources. If the sources are too weak (i.e.,$ n_s $ is large) to detect, we can carry out stacking analysis of all the TA and/or PAO detected UHECR positions. Due to the wide field of view and high sensitivity of LHAASO, even non-detection of signals will put stringent limit on the source density and hence the origin of UHECRs.
Chapter 6 Multimessenger Physics
- Received Date: 2021-12-02
- Available Online: 2022-03-15
Abstract: Combining observations of multi-messengers help in boosting the sensitivity of astrophysical source searches, and probe various aspects of the source physics. In this chapter we discuss how LHAASO observations of very high energy (VHE) gamma rays in combination with telescopes for the other messengers can help in solving the origins of VHE neutrinos and galactic and extragalactic cosmic rays.