-
By considering the interpretation of
$ {d^*} $ in the nonrelativistic quark model in Refs. [11, 13-17], we write the effective Lagrangian of$ {d^*}\; (3^+) $ and its two constituents (for example two Δs) as$\begin{aligned}[b] {L_{{d^*}\Delta \Delta }}(x) =& {g_{{d^*}\Delta \Delta }}\int {{{\rm d}^4}} y\Phi ({y^2}){\bar \Delta _\alpha }(x + y/2){\Gamma ^{\alpha,({\mu _1}{\mu _2}{\mu _3}),\;\beta }}\\&\times\Delta _\beta ^C(x - y/2)d_{{\mu _1}{\mu _2}{\mu _3}}^*(x;\lambda ) + {\rm h.c.} \end{aligned}$
(1) where
$ \Delta_{\alpha} $ is the spin-3/2 Δ field, and$ \Delta^C_{\alpha} $ stands for its charge-conjugate with$ \Delta^C_{\alpha} = C\bar{\Delta}^T_{\alpha} $ and$ C = {\rm i}\gamma^2\gamma^0 $ . In the above equation,$ d^*_{\mu_1\mu_2\mu_3}(x;\lambda) $ represents the spin-3$ {d^*} $ field with polarization λ. It is a rank-3 field. The coupling of the two Δs to$ {d^*} $ relates to the two spin-3/2 particles and a spin-3 particle. The three-particle vertex reads [46]$ \begin{aligned}[b] \Gamma^{\alpha,(\mu_1\mu_2\mu_3),\beta} = &\frac16\Big [\gamma^{\mu_1} \Big (g^{\mu_2\alpha}g^{\mu_3\beta}+g^{\mu_2\beta}g^{\mu_3\alpha}\Big )\\&+\gamma^{\mu_2} \Big (g^{\mu_3\alpha}g^{\mu_1\beta}+g^{\mu_1\beta}g^{\mu_3\alpha}\Big )\\&+\gamma^{\mu_3} \Big (g^{\mu_1\alpha}g^{\mu_2\beta}+g^{\mu_1\beta}g^{\mu_2\alpha}\Big )\Big ]. \end{aligned} $
(2) The correlation function
$ \Phi(y^2) $ introduced in Eq. (1) describes the distribution of the two constituents in the system and makes the integral of Feynman diagrams finite in the ultraviolet. This function is related to its Fourier transform in momentum space,$ \tilde\Phi(-p^2) $ , by$ \Phi(y^2) = $ $ \int \dfrac{{\rm d}^4 p}{(2\pi)^4} {\rm e}^{-{\rm i}py} $ $ \times \tilde\Phi(-p^2) $ where p stands for the relative Jacobi momentum between the two constituents of$ {d^*} $ . For simplicity,$ \tilde\Phi $ is phenomenologically chosen in a Gaussian-like form as$ \tilde\Phi(-p^2) = \exp(p^2/\Lambda^2), $
(3) where Λ is a model parameter, relating to the scale of the distribution of the constituents inside
$ d^* $ , and has dimension of mass. All calculations for the loop integral, hereafter, are performed in Euclidean space after the Wick transformation, and all the external momenta go like$ p^\mu = (p^0,\vec{p\,}) \to p^\mu_E = (p^4,\vec{p\,}) $ (where the subscript "E" stands for the momentum in Euclidean space) with$ p^4 = -{\rm i}p^0 $ . In Euclidean space the Gaussian correlation function ensures that all loop integrals are ultraviolet finite (details can be found in Ref. [9]).Then, one can determine the coupling of
$ {d^*} $ to its constituents by using the Weinberg–Salam compositeness condition [47-50]. This condition means that the probability of finding the dressed bound state as a bare (structureless) state is equal to zero. In the case of$ {d^*} $ , our previous calculation in QDF [11, 13-17] shows that$ {d^*} $ contains$ |\Delta\Delta> $ and also$ |CC> $ components, which are orthogonal to each other. As a rough estimate, a simplest chain approximation is used. Then this condition can be written as$ \begin{aligned}[b] Z_{{d^*}} =& 1 - \frac{\partial\Sigma^{(1)}_{({\Delta \Delta})}({{\cal P}}^2)} {\partial{{\cal P}}^2}\Bigg |_{{{\cal P}}^2 = M^2_{{d^*}}}- \frac{\partial\Sigma^{(1)}_{(CC)}({{\cal P}}^2)} {\partial{{\cal P}}^2}\Bigg |_{{{\cal P}}^2 = M^2_{d^*}} \\=& Z_{{d^*}, ({\Delta \Delta})}+Z_{{d^*}, (CC)} = 0\,, \end{aligned} $
(4) where
$ {{\cal P}} $ is the momentum of$ {d^*}(2380) $ ,$ \Sigma^{(1)}_{({\Delta \Delta})\; \text{or}\; (CC)}(M^2_{{d^*}}) $ is the non-vanishing part of the structural integral of the mass operator of$ {d^*} $ with spin-parity 3+ (the detailed derivation can be found in Refs. [51, 52]). Here we assume these$ Z_{{d^*}, ({\Delta \Delta})} $ and$ Z_{{d^*}, (CC)} $ are independent. Since the probabilities of the$ {\Delta \Delta} $ and$ CC $ components are about$ P_{{\Delta \Delta}}\sim 1/3 $ and$ P_{CC}\sim 2/3 $ , respectively in quark model calculation, therefore,$ Z_{{d^*}, ({\Delta \Delta})} = \frac13-\frac{\partial\Sigma^{(1)}_{({\Delta \Delta})}({{\cal P}}^2)} {\partial{{\cal P}}^2}\Bigg |_{{{\cal P}}^2 = M^2_{{d^*}}} = 0 $
(5) $ Z_{{d^*}, (CC)} = \frac23-\frac{\partial\Sigma^{(1)}_{(CC)}({{\cal P}}^2)} {\partial{{\cal P}}^2}\Bigg |_{{{\cal P}}^2 = M^2_{{d^*}}} = 0, $
(6) and the coupling
$ g_{{d^*}\Delta\Delta} $ can be extracted from the compositeness condition of Eq. (5). The mass operator of the$ {d^*} $ dressed by the$ \Delta\Delta $ channel is given in Fig. 1. It should be stressed that the coupling constant determined from the compositeness condition of Eq. (5) contains the renormalization effect since the chain approximation is considered (also refer to Refs. [51, 52]).The explicit expression of the full mass operator can be written as
$ \begin{aligned}[b] \Sigma_{{\Delta}}^{(\mu_i'), (\mu_j)}({\cal P}) =& \big| g_{{d^*}{\Delta \Delta}}(\Lambda)\big|^2\int \frac{{\rm d}^4k}{(2\pi)^4i} \exp\Bigg (-\frac{2(k-\frac{{\cal P}}{2})_E^2}{\Lambda^2}\Bigg )\\ &\times {\rm Tr}\Bigg\{\Gamma_{\alpha'\; \; \; \beta'}^{\; (\mu_i')} \times\frac{\not k+M_{{\Delta}}}{k^2-M_{{\Delta}}^2} \Bigg (-g^{\beta\beta'}+\frac{\gamma^{\beta}\gamma^{\beta'}}{3} \\ &+ \frac{2k^{\beta}k^{\beta'}}{3M_{{\Delta}}^2}+\frac{\gamma_{\beta}k_{\beta'}-\gamma^{\beta'}k^{\beta}}{3M_{{\Delta}}} \Bigg )\times\Gamma_{\beta\; \; \; \alpha}^{\; (\mu_j)} \\ &\times\frac{\not k_1-M_{{\Delta}}}{k_1^2-M_{{\Delta}}^2}\times \Bigg (-g^{\alpha'\alpha}+\frac{\gamma^{\alpha'}\gamma^{\alpha}}{3}+ \frac{2k^{\alpha'}_{1}k^{\alpha}_{1}}{3M_{{\Delta}}^2} \\ &-\frac{\gamma^{\alpha'}k^{\alpha}_{1}-\gamma^{\alpha}k^{\alpha}_{1}}{3M_{{\Delta}}} \Bigg )\Bigg \}\Bigg |_{k_1 = {\cal P}-k}, \end{aligned} $
(7) with
$ \mu_i' $ and$ \mu_j $ being the abbreviations of$ (\mu_1',\mu_2',\mu_3') $ and$ (\mu_1,\mu_2,\mu_3) $ , respectively. In general, according to its Lorentz structure, the mass operator$ \Sigma_{(c)}^{(\mu_i'),(\mu_j)}({\cal P}) $ takes the form$ \Sigma_{(c)}^{(\mu_i'),(\mu_j)}({\cal P}) = \sum\limits_{l = 1}^8 L^{(\mu_i'), (\mu_j)}_{(l),(c)}\Sigma^{(l)}_{(c)}({\cal P}^2),\, $
(8) with
$ \Sigma^{(l)}_{(c)}({\cal P}^2) $ being the structural integrals appeared in the expression of the full mass operator, and the Lorentz structures being$ \begin{aligned}[b] L^{(\mu_i'), (\mu_j)}_{(1)} = &\frac{1}{6}\big [g^{\mu_1'\mu_1} \big (g^{\mu_2'\mu_2}g^{\mu_3'\mu_3}+g^{\mu_2'\mu_3}g^{\mu_3'\mu_2}\big )\\&+g^{\mu_1'\mu_2} \big (g^{\mu_2'\mu_1}g^{\mu_3'\mu_3}+g^{\mu_2'\mu_3}g^{\mu_3'\mu_1}\big )\\ & +g^{\mu_1'\mu_3}\big (g^{\mu_2'\mu_2}g^{\mu_3'\mu_1}+g^{\mu_2'\mu_1}g^{\mu_3'\mu_2}\big )\big ]\,,\\ = &\frac16 \big [g^{\alpha_1\beta_1}(g^{\alpha_2\beta_2}g^{\alpha_3\beta_3}+g^{\alpha_2\beta_3}g^{\alpha_3\beta_2})+......\big ] \end{aligned} $
(9) with
$ \alpha_i\in (\mu_1',\mu_2',\mu_3') $ and$ \beta_j\in (\mu_1,\mu_2,\mu_3) $ ,$ L^{(\mu_i'), (\mu_j)}_{(2)} = \frac19\big [g^{\alpha_1\alpha_2}\big (g^{\alpha_3\beta_1}g^{\beta_2\beta_3}+g^{\alpha_3\beta_2}g^{\beta_3\beta_1} +g^{\alpha_3\beta_3}g^{\beta_1\beta_2}\big )+......\big ]\,, $
(10) $ L^{(\mu_i'), (\mu_j)}_{(3)} = \frac{1}{18}\big [{{\cal P}}^{\alpha_1}{{\cal P}}^{\beta_1} \big (g^{\alpha_2\beta_2}g^{\alpha_3\beta_3}+g^{\alpha_2\beta_3}g^{\alpha_3\beta_2}\big )+...... \big ]\,, $
(11) $ L^{(\mu_i'), (\mu_j)}_{(4)} = \frac19\big [{{\cal P}}^{\alpha_1}{{\cal P}}^{\beta_1}\big (g^{\alpha_2\alpha_3}g^{\beta_2\beta_3}\big )+...... \big ]\,, $
(12) $ \begin{aligned}[b] L^{(\mu_i'), (\mu_j)}_{(5)} = &\frac{1}{18}\big [{{\cal P}}^{\alpha_1}{{\cal P}}^{\alpha_2}\big (g^{\alpha_3\beta_1}g^{\beta_2\beta_3}+ g^{\alpha_3\beta_2}g^{\beta_1\beta_3}\\ &+g^{\alpha_3\beta_3}g^{\beta_1\beta_2}\big )+...... +{{\cal P}}^{\beta_1}{{\cal P}}^{\beta_2}\big (g^{\alpha_1\beta_3}g^{\alpha_2\alpha_3}\\ &+ g^{\alpha_2\beta_3}g^{\alpha_2\alpha_3}+g^{\alpha_3\beta_3}g^{\alpha_1\alpha_2}\big )+......\big ]\,, \end{aligned} $
(13) $ L^{(\mu_i'), (\mu_j)}_{(6)} = \frac{1}{9}\big [{{\cal P}}^{\alpha_1}{{\cal P}}^{\alpha_2}{{\cal P}}^{\beta_1}{{\cal P}}^{\beta_2}\big (g^{\alpha_3\beta_3}\big )+...... \big ]\,, $
(14) $\begin{aligned}[b] L^{(\mu_i'), (\mu_j)}_{(7)} =& \frac{1}{6}\big [{{\cal P}}^{\alpha_1}{{\cal P}}^{\alpha_2}{{\cal P}}^{\alpha_3}{{\cal P}}^{\beta_1}\big (g^{\beta_2\beta_3}\big )\\&+ {{\cal P}}^{\beta_1}{{\cal P}}^{\beta_2}{{\cal P}}^{\beta_3}{{\cal P}}^{\alpha_1}\big (g^{\alpha_2\alpha_3}\big )+......\big ]\,,\end{aligned}$
(15) $ L^{(\mu_i'), (\mu_j)}_{(8)} = {{\cal P}}^{\mu_1'}{{\cal P}}^{\mu_2'}{{\cal P}}^{\mu_3'}{{\cal P}}^{\mu_1}{{\cal P}}^{\mu_2}{{\cal P}}^{\mu_3}. $
(16) Clearly, due to the property of the polarization vector of spin-3 particles, like
$ \epsilon_{\mu_1\mu_2\mu_3}({{\cal P}},\lambda) $ shown in Ref. [26], only the first term on the right-hand side of Eq. (8) gives a contribution while the other terms do not. We introduce the Lorentz projector$ \begin{aligned}[b] T_{\perp}^{(\mu_i'),(\mu_j)} =& \frac{1}{42} \big [{{\tilde g}}^{\mu_1'\mu_1}\big ({{\tilde g}}^{\mu_2'\mu_2}{{\tilde g}}^{\mu_3'\mu_3}+{{\tilde g}}^{\mu_2'\mu_3}{{\tilde g}}^{\mu_3'\mu_2}\big )\\ &+{{\tilde g}}^{\mu_1'\mu_2}\big ({{\tilde g}}^{\mu_2'\mu_1}{{\tilde g}}^{\mu_3'\mu_3}+{{\tilde g}}^{\mu_2'\mu_3}{{\tilde g}}^{\mu_3'\mu_1}\big )\\& +{{\tilde g}}^{\mu_1'\mu_3}\big ({{\tilde g}}^{\mu_2'\mu_2}{{\tilde g}}^{\mu_3'\mu_1}+{{\tilde g}}^{\mu_2'\mu_1}{{\tilde g}}^{\mu_3'\mu_2}\big )\big ]\\ & -\frac{1}{105}\big [{{\tilde g}}^{\mu_1'\mu_2'}\big ({{\tilde g}}^{\mu_3'\mu_1}{{\tilde g}}^{\mu_2\mu_3} +{{\tilde g}}^{\mu_3'\mu_2}{{\tilde g}}^{\mu_1\mu_3}+{{\tilde g}}^{\mu_3'\mu_3}{{\tilde g}}^{\mu_1\mu_2}\big )\\ & +{{\tilde g}}^{\mu_1'\mu_3'}\big ({{\tilde g}}^{\mu_2'\mu_1}{{\tilde g}}^{\mu_2\mu_3} +{{\tilde g}}^{\mu_2'\mu_2}{{\tilde g}}^{\mu_1\mu_3}+{{\tilde g}}^{\mu_2'\mu_3}{{\tilde g}}^{\mu_1\mu_2}\big )\\ &+{{\tilde g}}^{\mu_2'\mu_3'}\big ({{\tilde g}}^{\mu_1'\mu_1}{{\tilde g}}^{\mu_2\mu_3} +{{\tilde g}}^{\mu_1'\mu_2}{{\tilde g}}^{\mu_1\mu_3}+{{\tilde g}}^{\mu_1'\mu_3}{{\tilde g}}^{\mu_1\mu_2}\big )\big ]\,, \end{aligned} $
(17) with
$ {{\tilde g}}^{\mu\nu} = g_{\perp}^{\mu\nu} = -g^{\mu\nu}+\frac{{\cal P}^{\mu}{\cal P}^{\nu}}{M^2_{{d^*}}}. $
(18) It satisfies following relations
${\cal P}_iT_{\perp}^{(\mu_i'),(\mu_j)} = 0, \; \; \; \; \mu_i'\in (\mu_1',\mu_2',\mu_3')\; \rm{or}\; \mu_j\in (\mu_1,\mu_2,\mu_3), $
(19) $ L_{(\mu_i'), (\mu_i)}^{(1)}T_{\perp}^{(\mu_i'),(\mu_j)} = 1, $
(20) and
$ L_{(\mu_i'), (\mu_j)}^{(i)}T_{\perp}^{(\mu_i'),(\mu_j)} = 0,\; \; \; \; \; (i = 2,3,...,8). $
(21) Thus, when the full mass operator
$ \Sigma^{(\mu_i'),(\mu_j)}({\cal P}) $ acts with the Lorentz projector$ T_{\perp}^{(\mu_i'),(\mu_j)} $ , the product gives the scalar function$ \Sigma^{(1)}({\cal P}^2) $ in Eq. (4), and it will contribute to the compositeness condition. Finally the coupling constant$ |g|^2_{_{{d^*}\Delta\Delta}} $ can be determined from Eq. (5).It should be stressed that here we have adopted the Gaussian-type correlation function of Eq. (3),
$ \tilde\Phi(-p^2) = $ $ \exp(p^2/\Lambda^2) $ , where the model-dependent parameter Λ relates to the size of the system in the non-relativistic approximation, at least in physical meaning. Thus, one may roughly connect b, representing the size of the$ {d^*} $ in the non-relativistic wave function, to the parameter Λ by$ {b^2}/{2}\sim {1}/{\Lambda^2} $ . According to the quark model calculation in Ref. [14],$ b\sim 0.8 $ fm, and we choose the parameter value$ \Lambda\sim 0.34 $ GeV. -
There are only a few experiments of the
$ p\bar{p}\to $ $ \Delta(1232)\bar{\Delta}(1232) $ process in the literature [53-57]. Refs. [56, 57] studied$ p\bar{p}\to \Delta\bar{\Delta} $ at$ 7.23 $ and$ 12 \; {\rm GeV}$ . The samples were obtained from the large exposures of the 2-m hydrogen bubble-chamber (HBC) experiment to the U5 antiproton beam at CERN. The account of$ p\bar{p}\pi^+\pi^- $ was thought to come dominantly from the$ {\Delta}^{++}\overline{{\Delta}^{++}} $ channel. It was believed that the process can be described by the t-channel pion or reggeized pion exchange. A good description of the mass and t-distributions for the reaction at$ 3.6$ and$ 5.7\; {\rm GeV} $ was given by the one-pion exchange model [58]. Moreover, the cross section of the process, in terms of the Mandelstam variable of s, is parameterized as$ \sigma (s) = As^{-n} $ with$ A = (67\pm 20)\; {\rm mb} $ and$ n = 1.5\pm 0.1 $ [56].This
$ p\bar{p}\to \Delta\bar{\Delta} $ process can also be estimated theoretically by using an effective Lagrangian [59]$ {\cal L}^{(t_{z}^{\Delta}t_z^N)}_{\pi N\Delta} = g_{_{\pi N\Delta}}F(p_t)\bar{{\Delta}}_{\mu}^{(t_z^{{\Delta}})}\vec{\cal I}_{t_z^{{\Delta}}t_z^{N}}\cdot\partial^{\mu} \vec{\pi}^{(t_z^{\pi})}N^{(t_z^{N})}\; +\; {\rm h.c.}, $
(22) where
$ g_{_{\pi N\Delta}} $ and$ F(p_t) $ are the effective coupling constant and phenomenological form factor, respectively, the latter function is chosen to be$ F(p_t) = \Bigg(\frac{\Lambda_M^{*2}-m_{\pi}^2}{\Lambda_M^{*2}-p_t^2}\Bigg )^n\exp(\alpha p_t^2), $
(23) with the parameters
$ \Lambda_M^{*}\sim 1\; {\rm{GeV}} $ and$ n = 1 $ . In Eq. (22),$ \vec{\cal I}_{t_z^{{\Delta}}t_{z}^{N}} = C_{1t_{\pi},1/2t_z^N}^{3/2t_z^{{\Delta}}}\hat{e}^*_{t_{\pi}} $ is the isospin transition operator. Then, the cross section is$\begin{aligned}[b] \sigma =& \int\frac{(2\pi)^4\delta^4(p_1+p_2-p_3-p_4)}{4\sqrt{(p_1\cdot p_2)-m_1^2m_2^2}}\\& \times \sum\limits_{\rm Pol.}\Big |\overline{\cal M}_{if}\Big |^2\frac{{\rm d}^3p_3}{(2\pi)^32E_{p_3}}\frac{{\rm d}^3p_4}{(2\pi)^32E_{p_4}}, \end{aligned} $
(24) where
$ p_{1,2} $ (or$ p_{3,4} $ ) are the momenta of the incoming (or outgoing) particles,$ \big |\overline{\cal M}_{if}\big |^2 $ stands for averaging over the polarizations of the initial states and summing over the polarizations of final states. We can write the matrix element$ \overline{\cal M}_{if} $ , representing the contribution of the tree-diagram to$ p\bar{p}\to \Delta^{++}\overline{{\Delta}^{++}} $ , via π exchange with the Lagrangian of Eq. (22), as$\begin{aligned}[b] {\cal M}_{if}^{p\bar{p}\to {\Delta}^{++}\overline{{\Delta}^{++}}} =& g^2_{\pi N\Delta}F^2(p_t)\Big [\bar{U}^{{\Delta}}_{\alpha}p_t^{\alpha}u(p_1)\Big ] \\&\times\frac{1}{p_t^2-m_{\pi}^2}\Big [\bar{v}(p_2)p_t^{\beta}V^{{\Delta}}_{\beta}(p_4)\Big ]. \end{aligned} $
(25) The resultant cross section is shown and compared with the parameterized empirical cross section in Fig. 2. It should be mentioned that in Ref. [60]
$ F_{{\pi N\Delta}} = f_{{\pi N\Delta}}/m_{\pi} $ , and in order to fit the decay width of$ {\Delta}\to \pi N $ , where the initial momentum of Δ is set to be zero, the value of$ f_{{\pi N{\Delta}}} $ is taken as$ 2.2\pm 0.04 $ . Thus, their$ F_{{\pi N{\Delta}}}\sim (15.7\pm 0.285)\; $ GeV-1. In our present numerical calculation, to fit the parameterized cross section, we introduce an additional trajectory function$ \exp(0.2t) \; (p_t^2 = t\; <\; 0)$ and take$F_{{\pi N\Delta}}\sim 10.75 {\rm{GeV}}$ -1. Here, we find that the 10% variation in$ F_{{\pi N\Delta}} $ may cause about 50% change in the total cross section since the cross section is proportional to$ F^4_{{\pi N{\Delta}}} $ . In addition, the change of the estimated$ \sqrt{s} $ -dependent cross section with respect to the variations of the parameters$ \Lambda^*_M $ and α are shown in this figure as well. Those curves show that the cross section with smaller$ \sqrt{s} $ becomes larger when$ \Lambda^*_M $ deceases or α increases. The combined effect of$ \Lambda^*_M $ and α on the cross section, namely the effect of the phenomenological form factor, is more pronounced in the small$ \sqrt{s} $ region. Therefore, the current Lagrangian is flexible enough to fit the experimental data. It should be mentioned that in this calculation, we only consider the one-pion exchange, insert a phenomenological form factor, and take the coupling of$ F_{{\pi N\Delta}} $ as a free parameter. It seems that our tree diagram result is reasonable to reproduce the total cross section of$ p\bar{p}\to {\Delta}^{++}\overline{{\Delta}^{++}} $ , although we do not consider the contributions from other meson exchanges, for instance the ρ meson. In conclusion, the effective Lagrangian$ {\cal L}^{(t_{z}^{\Delta}t_z^N)}_{\pi N\Delta} $ mentioned above is appropriate for describing the cross section of the$ p\bar{p}\to \Delta\bar{\Delta} $ process, so it should also be acceptable and reasonable to be further used in the investigation of the$ d^*\bar{d^*} $ generation in the$ p\bar{p}\to\Delta\bar{\Delta}\to {d^*}\bar{{d^*}} $ process.Figure 2. (color online) Estimated cross sections for
$ p\bar{p} \to\Delta^{++}\overline{\Delta^{++}} $ compared to that with a parameterized form of$ \sigma (\text{mb}) = 67s^{-1.5} $ (red curve). The black solid, dashed, and dotted curves represent the calculated results with the parameters of$ (\lambda^*_{M}({\rm GeV}),\alpha({\rm GeV}^2)) $ being (1.15, 0.2), (1.0, 0.2), and (1.15, 0.25), respectively. -
The Feynman diagram of the
$ p\bar{p}\to {d^*}\bar{{d^*}} $ process via$ \Delta\bar{{\Delta}} $ intermediate is shown in Fig. 3. In this diagram,$ {d^*}\bar{{d^*}} $ pair is generated from the$ p\bar{p}\to\Delta\bar{\Delta} $ annihilation reaction. It should be noted that in the loop, in the higher order approximation, when$ p\bar{p} $ annihilation generates a$ \Delta\bar{\Delta} $ pair, it can also create a corresponding$ C\bar{C} $ pair, therefore, when Δ interacts with Δ (or$ \bar{\Delta} $ interacts with$ \bar{\Delta} $ ), a corresponding hidden-color component$ CC $ (or$ \bar{C}\bar{C} $ ) would exist. According to the conclusion in our previous quark model calculations, about 1/3 of$ \Delta\Delta $ ($ \bar{\Delta}\bar{\Delta} $ ) and 2/3 of CC ($ \bar{C}\bar{C} $ ) can form a$ d^* $ ($ \bar{d^*} $ ), asFigure 3. (color online) Feynman diagram for the
$ p\bar{p}\to d^*(2380)+\bar{d}^*(2380) $ process, where the red bold line and black double line stand for the internal Δ (or$ {\Delta}^C $ ) field and the outgoing$ {d^*} $ , respectively.$ |{d^*}>\sim \sqrt{\frac{1}{3}}|{\Delta \Delta}>+\sqrt{\frac{2}{3}}|CC>, $
with the spin and isospin quantum numbers of the colored cluster C being 3/2 and 1/2. Thus, to estimate events of
$ {d^*} $ ($ \bar{{d^*}} $ ) creation, we can only use 1/3 of the$ \Delta\Delta $ ($ \bar{\Delta}\bar{\Delta} $ ) component, because it corresponds to one$ d^* $ ($ \bar{d^*} $ ). It should be further stressed that the process in this diagram can occur only when the Mandelstam variable satisfies$ \sqrt{s}>2M_{{d^*}}\sim 4.8\; {\rm GeV} $ . It is clear that the threshold of this production channel is lower than the upper limit of the CM energy of the$ {\bar{{\rm{P}}}} $ anda device.To calculate the matrix element of Fig. 3, we have to use the vertices of
$ {\cal L}_{\pi N\Delta} $ in Eq. (22) and$ {\cal L}_{{d^*}\Delta\Delta} $ in Eq. (1). The matrix element of$ {\cal M}_{if} $ for the process of$ p\bar{p}\to{d^*}\bar{{d^*}} $ reads$ \begin{aligned}[b] M_{if}^{(p\bar p \to {d^*}\overline {{d^*}} )} =& {\bar v_N}({p_2}){\Pi _{({\nu _i}),({\mu _j})}}{u_N}({p_1}){({d^*}({p_3}))^{({\mu _j})}}\\&\times(\lambda ){({\bar d^*}({p_4}))^{({\nu _i})}}(\bar \lambda ), \end{aligned}$
(26) with
$ \begin{aligned}[b] \Pi_{(\nu_i),(\mu_j)} = &\int\frac{{\rm d}^4p_t}{(2\pi)^4i}p_t^{\alpha_2}S^C_{3/2,(\alpha_2\beta_2)}(k_2)\Gamma^{\;\beta_2,\;\;\,\beta_1}_{\;\;\;\;(\nu_i)} S^C_{3/2,(\beta_1\beta_1')}(k_3) \\ &\times \Gamma^{\;\beta'_1,\;\;\,{\alpha'_1}}_{\;\;\;\;(\mu_{j})}S_{3/2,({\alpha'}_{1}{\alpha}_1)}(k_1)p_{t}^{\alpha_1}\frac{F^2(p_t)}{p_t^2-m_{\pi}^2} \\ & \times \exp\Bigg [-\Bigg (\frac{(k_1-k_3)^2_E}{4\Lambda^2}+\frac{(k_2-k_3)_E^2}{4\Lambda^2}\Bigg )\Bigg ]\times C_{\rm Iso}, \end{aligned} $
(27) where the exponential factors in the last bracket on the right side of Eq. (27) come from the consideration of the phenomenological bound state problem of
$ {d^*} $ discussed explicitly in Sec. II, and the subscripts "E" and "M" denote "Euclidean" and "Minkowski", respectively. The propagators of a spin-3/2 particle Δ and its charge conjugate are$ \begin{aligned}[b] S_{3/2,\; \mu\nu}(p,M_{{\Delta}}) = &(\not p-m)^{-1} \\& \times \Bigg(-g_{\mu\nu}+\frac{\gamma_\mu\gamma_\nu}{3} +\frac{2p_\mu p_\nu}{3M_{{\Delta}}^2} +\frac{\gamma_\mu p_\nu-\gamma_\nu p_\mu}{3M_{{\Delta}}}\Bigg ) \,,\\ S^C_{3/2,\nu\mu}(p,M_{{\Delta}}) = & CS^{T}_{3/2,\mu\nu}(p,M_{{\Delta}}) C \,, \end{aligned} $
(28) with the charge conjugate operator being
$ C = {\rm i}\gamma^2\gamma^0 $ . Moreover, the constant$ C_{\rm Iso.} = {7}/{18} $ represents the isospin factor since the intermediate state can be either$ {\Delta}^{++}\overline{{\Delta}^{++}} $ , or$ {\Delta}^+\overline{{\Delta}^+} $ , or$ {\Delta}^0\overline{{\Delta}^0} $ (here we only consider the pion-exchange in the$ p\bar{p}\to {\Delta}\bar{{\Delta}} $ process). Then, the cross section of such a process is formally expressed by Eq. (24), where the matrix element is replaced by$ {\cal M}_{if}^{(p\bar{p}\to{d^*}\bar{{d^*}})} $ given in Eq. (26). Notice that the square of the matrix element is proportional to$ g^4_{{d^*}{\Delta \Delta}} $ and$ g^4_{{\pi N{\Delta}}} $ , respectively. Here, since the$ {d^*} $ is a spin-3 particle, its field can be described by a traceless rank-3 polarization vector like$ \epsilon_{\mu_1\mu_2\mu_3}({{\cal P}},\lambda) $ . This polarization vector has the properties of$ \epsilon_{\alpha\alpha\beta} = 0 $ ,$ \epsilon_{\alpha\beta\gamma} = \epsilon_{\beta\alpha\gamma} $ , and$ {{\cal P}}^{\alpha}\epsilon_{\alpha\beta\gamma} = 0 $ . Therefore, in the summation calculation, we have$ \begin{aligned}[b] \sum\limits_{pol.}\epsilon_{\mu\nu\sigma}\epsilon^*_{\alpha\beta\gamma} = &\frac16\Big [{\tilde g}_{\mu\alpha}\Big ({\tilde g}_{\nu\beta}{\tilde g}_{\sigma\gamma} +{\tilde g}_{\nu\gamma}{\tilde g}_{\sigma\beta}\Big ) +{\tilde g}_{\mu\beta}\Big ({\tilde g}_{\nu\alpha}{\tilde g}_{\sigma\gamma} +{\tilde g}_{\nu\gamma}{\tilde g}_{\sigma\alpha}\Big ) \\&+{\tilde g}_{\mu\gamma}\Big ({\tilde g}_{\nu\alpha}{\tilde g}_{\sigma\beta} +{\tilde g}_{\nu\beta}{\tilde g}_{\sigma\alpha}\Big ) \Big ]\\ & -\frac{1}{15}\Big [{\tilde g}_{\mu\nu}\Big ({\tilde g}_{\sigma\alpha}{\tilde g}_{\beta\gamma} +{\tilde g}_{\sigma\beta}{\tilde g}_{\alpha\gamma} +{\tilde g}_{\sigma\gamma}{\tilde g}_{\alpha\beta}\Big )\\& +{\tilde g}_{\mu\sigma}\Big ({\tilde g}_{\nu\alpha}{\tilde g}_{\beta\gamma} +{\tilde g}_{\nu\beta}{\tilde g}_{\alpha\gamma} +{\tilde g}_{\nu\gamma}{\tilde g}_{\alpha\beta}\Big )\\ & +{\tilde g}_{\nu\sigma}\Big ({\tilde g}_{\mu\alpha}{\tilde g}_{\beta\gamma} +{\tilde g}_{\mu\beta}{\tilde g}_{\alpha\gamma} +{\tilde g}_{\mu\gamma}{\tilde g}_{\alpha\beta}\Big ) \Big ], \end{aligned} $
(29) with
$ {\tilde g}_{\mu\nu} $ showed in Eq. (18).
Possible dibaryon production at ${{\overline {\bf P} }}$ anda with a Lagrangian approach
- Received Date: 2021-09-06
- Available Online: 2022-02-15
Abstract: In order to confirm the existence of the dibaryon state