-
The NJL model is an effective model with a four-fermion interaction, which is widely used to study quark-quark and quark-antiquark pairings that correspond to chiral phase transition, superfluidity, and superconductivity. Besides the usual scalar channels, we consider vector channels to construct vector ρ mesons. The Lagrangian of the two-flavor NJL model in a co-rotating frame is given by [16,21]
$ \begin{aligned}[b]\mathcal{L} =& \bar{\psi}[{\rm i}\bar{\gamma}^{\mu}(\partial_{\mu}+\Gamma_{\mu})-m]\psi+G_S[(\bar{\psi}\psi)^2+(\bar{\psi}{\rm i}\gamma_5\vec{\tau}\psi)^2]\\&-G_V[(\bar{\psi}\gamma_{\mu}\psi)^2+(\bar{\psi}\gamma_{\mu}\gamma_5\psi)^2],\end{aligned} $
(1) where m is the current quark mass, and
$ G_{S} $ and$ G_{V} $ are the coupling constants in the scalar and vector channels, respectively. In a curved co-rotating frame, the gamma matrices$ \bar{\gamma}^{\mu} $ should be defined according to the corresponding Clifford algebra. The curved gamma matrices are related to their flat counterparts using the vierbein as$ \bar{\gamma}^{\mu} = e_{a}^{\ \mu}\gamma^{a} $ in which$ e_{a}^{\ \mu} $ should satisfy$ g_{\mu\nu} = \eta_{ab}e^{a}_{\ \mu}e^{b}_{\ \nu} $ , where$ \eta_{ab} $ is the metric of flat space-time and$ \gamma^{a} $ represents the flat gamma matrices. In our case, a simple choice is$ e^{a}_{\ \mu} = \delta^a_{\ \mu}+ \delta^a_{\ i}\delta^0_{\ \mu} \, v_i $ and$ e_{a}^{\ \mu} = \delta_a^{\ \mu} - \delta_a^{\ 0}\delta_i^{\ \mu} \, v_i $ , where$ v_i $ is the linear velocity$ \vec{v} = \vec{\omega}\times\vec{x} $ in the presence of a constant angular velocity$ \vec{\omega} $ . The spinor connection is given by$ \Gamma_\mu = \dfrac{1}{4}\times\dfrac{1}{2}[\gamma^a,\gamma ^b] \, \Gamma_{ab\mu} $ , where$ \Gamma_{ab\mu} = \eta_{ac}(e^c_{\ \sigma} G^\sigma_{\ \mu\nu}e_b^{\ \nu}- $ $ e_b^{\ \nu}\partial_\mu e^c_{\ \nu}) $ , and$ G^\sigma_{\ \mu\nu} $ is the general Christoffel connection determined by$ g_{\mu\nu} $ [13-15]. Within the slow velocity limit$ |\vec{\omega}\times\vec{x}|\ll c $ , only the$ O(\vec{v}) $ terms can be retained, which are reduced to the ordinary polarization form$ \vec{\omega}\cdot\vec{J} $ , where$ \vec{J} = \vec{x}\times\vec{p}+\vec{S} $ is the total angular momentum [14,15], and$ \vec{S} = \dfrac{1}{2}\left( \begin{array}{cc} \vec{\sigma} & 0 \\ 0 & \vec{\sigma} \\ \end{array} \right) $ is the spin operator.By applying the mean field approximation and choosing the direction of rotation to be the z-axis, the bilinear part of the Lagrangian at a finite chemical potential is given by [16]
$ \mathcal{L} = \bar{\psi}[{\rm i}\gamma^{\mu}\partial_{\mu}+\gamma^{0}(\omega \hat{J_{z}}+\mu)-M]\psi-\frac{(M-m)^{2}}{4G_{S}}, $
(2) where
$ J_{z} $ is the third component of the total angular momentum$ \vec{J} $ , and μ is the quark chemical potential. The angular velocity plays a similar role to the chemical potential, and M is the constituent quark mass, which is given by the chiral condensate using$M = m - $ $ 2G_S\left < \bar\psi\psi\right >$ .Quantum field theory for a rotating system was established by Vilenkin in [22], in which the Green function without the boundary condition was introduced. However, it was emphasized that a rotating system cannot have a radius R size larger than
$ \omega^{-1} $ , which is constrained by causality with the angular velocity ω and the radius of the system R. In this study, we apply an explicit form of the propagator in [22]. In realistic heavy-ion collisions, the average global velocity$ \langle\omega\rangle $ of QGP generally requires approximately 20 MeV [3,23], which should be safe when using an infinite size approximation. When considering the local vorticity, as shown in [3], the boundary conditions would become more important for a small vorticity lattice with a high angular velocity. In general, one should consider the inhomogeneity of the rotating fluid and solve M as r-dependent while considering the boundary conditions, as investigated in Refs. [24-34]. It was observed in [24] that M is almost constant except in the vicinity of the boundary. Furthermore, the bounded rotating system was studied self-consistently in [25], that is, beyond the local potential approximation. It is shown that the chiral condensate suppression effect is qualitatively unchanged by the boundary conditions and are quantitatively comparable in the bounded and boundless cases at finite temperatures. From a realistic point of view, boundary conditions always have effects in the near-surface part of QGP, and chiral condensation will not be significantly affected in the inner part of QGP. Instead of fully considering the inhomogeneous rotation and subtle boundary conditions, we choose a simplified scheme as the first step of this study to introduce the$ M(\omega) $ qualitative relation, which is easily estimated by noting the energy shifts of quarks owing to the polarization effects induced by rotation. We reserve the more self-consistent treatment of$ M(\omega) $ for future studies.In this study, we aim to investigate meson properties under rotation. To perform calculations in the NJL model, a
$ M(\omega) $ relation is required; hence,$ M(\omega) $ is extracted from the general grand potential given by [15,16]$ \begin{aligned}[b] \\[-8pt] \Omega(T,\mu,M,\omega) = &\int {\rm d}^3 \mathbf{r}\; \Bigg\{\frac{(M-m)^2}{4G_S} -\frac{N_c N_f}{16\pi^2} T \sum_n\int {\rm d} k_t^2 \int {\rm d} k_z[J_n(k_t r)^2+J_{n+1}(k_t r)^2]\left[ \ln(1+{\rm e}^{(E_k-(n+\frac{1}{2})\omega-\mu)/T})\right. \\& + \left. \ln(1+{\rm e}^{-(E_k-(n+\frac{1}{2})\omega-\mu)/T})+\ln(1+{\rm e}^{-(E_k+(n+\frac{1}{2})\omega+\mu)/T})+ \ln(1+ {\rm e}^{(E_k+(n+\frac{1}{2})\omega+\mu)/T})\right]\Bigg\}. \\ \end{aligned} $ (3) Here,
$ E_k = \sqrt{k_t^2+k_z^2+M^2} $ and$ k_{t, z} $ are the transverse and longitudinal momenta, respectively. The local potential approximation$ \partial_r M(r)\simeq 0 $ is adopted while solving the eigen modes, and$ N_c = 3 $ and$ N_f = 2 $ are chosen for subsequent computation. In this study, we neglect four-fermion contributions to the ground state; therefore, the chiral condensate is entirely computed by the gap equation$ \dfrac{\partial \Omega}{\partial M} = 0 $ with the constraint$ \dfrac{\partial^2 \Omega}{\partial M^2} > 0 $ . In Sec. IV, we will reveal the numerical result for the constituent quark mass M. For the constituent quark mass at a particular radial coordinate, we have chosen$r = 0.1\; {\rm GeV}^{-1}$ , as in Ref. [15]. This serves as the environment in which mesons originate and thus modifies their masses. In the mean field approximation, the gap equation is simply a one-loop diagram of the quark propagator, which reads as$ \begin{aligned}[b]\\[-8pt] S(\tilde{r};\tilde{r'}) =& \frac{1}{(2 \pi )^2}\sum\limits_n\int\frac{{\rm d} k_0}{2\pi } \int k_t {\rm d} k_t \int d k_z \frac{{\rm e}^{{\rm i} n \left(\phi -\phi '\right)}{\rm e}^{-{\rm i} k_0 \left(t-t'\right)+{\rm i} k_z \left(z-z'\right)}}{\left[k_{0}+\left(n+\dfrac{1}{2}\right)\omega\right]^{2}-k_{t}^{2}-k_{z}^{2}-M^{2}+{\rm i}\epsilon} \\ & \times\Bigg\{\left[\left[k_{0}+\left(n+\frac{1}{2}\right)\omega\right]\gamma^{0}-k_{z}\gamma^{3}+M\right][J_{n}(k_{t}r)J_{n}(k_{t}r')\mathcal{P}_++{\rm e}^{{\rm i} (\phi-\phi)'}J_{n+1}(k_{t}r)J_{n+1}(k_{t}r')\mathcal{P}_-]\\ &-{\rm i}\gamma^{1}k_{t}{\rm e}^{{\rm i} \phi}J_{n+1}(k_{t}r)J_{n}(k_{t}r')\mathcal{P}_+-\gamma^{2}k_{t}{\rm e}^{-{\rm i}\phi '}J_{n}(k_{t}r)J_{n+1}(k_{t}r')\mathcal{P}_- \Bigg\}, \end{aligned} $ (4) where
$\mathcal{P}_{\pm} = \dfrac{1}{2}(1\pm {\rm i}\gamma^{1}\gamma^{2})$ are projection operators, and$ \tilde{r} = (t,r,\phi,z) $ is the expression for position in cylindrical coordinates. -
In the NJL model, meson are regarded as
$ q \bar q $ bound states or resonances, which can be obtained from the quark-antiquark scattering amplitude [9,35-37]. The mesonmass is extracted from the pole of the one-loop quark polarization function, as described in detail in [9].In the RPA, the full propagator of the σ meson
$ D_{\sigma}(q^2) $ can be expressed to its leading order with$ 1/N_c $ as an infinite sum of quark-loop chains.$ D_{\sigma}(q^2) = \frac{2G_{S}}{1-2G_{S}\Pi_{s}(q^2)},$
(5) where
$ \Pi_{s}(q^2) $ is the one-loop quark polarization function and takes the form [11,38,39]$ \Pi_{s}(q) = -{\rm i} \int {\rm d}^{4}\tilde{r}{\rm Tr}_{sfc}[{\rm i} S(0;\tilde{r}){\rm i} S(\tilde{r};0)]{\rm e}^{{\rm i} q\cdot \tilde{r}}, $
(6) where
${\rm Tr}_{sfc}$ represents the trace in spin, flavor, and color space. In Appendix A, the polarization function is simplified to the following form:$ \begin{aligned}[b]\\[-10pt] \Pi_{s}(q^2)=& -2 {\rm i} N_{f}N_{c}\int \frac{{\rm d}^{4} p}{(2\pi)^{4}} \left\{ \frac{\left(p_{0}+q_{0}+\dfrac{1}{2}\omega \right) \left(p_{0}+\dfrac{1}{2}\omega \right)+M^2-(\vec{p}+\vec{q})\cdot \vec{p}} {\left[\left(p_{0}+q_{0}+\dfrac{1}{2}\omega\right)^{2}-(\vec{p}+\vec{q})^{2}-M^{2}\right] \left[\left(p_{0}+\dfrac{1}{2}\omega\right)^{2}-\vec{p}^{2}-M^{2}\right]}\right.\\ &+ \left.\frac{\left(p_{0}+q_{0}-\dfrac{1}{2}\omega \right) \left(p_{0}-\dfrac{1}{2}\omega \right)+M^2-(\vec{p}+\vec{q})\cdot \vec{p}} {\left[\left(p_{0}+q_{0}-\dfrac{1}{2}\omega\right)^{2}-(\vec{p}+\vec{q})^{2}-M^{2}\right] \left[\left(p_{0}-\dfrac{1}{2}\omega\right)^{2}-\vec{p}^{2}-M^{2}\right]} \right\}. \end{aligned} $ (7) If we use the finite temperature theory with a chemical potential [40], the polarization function will be
$ \Pi_{s}(\vec{q},{\rm i}\nu_{n}) = 2N_{f} N_{c}T \sum\limits_{s = \pm}\sum\limits_N\int \frac{{\rm d}^{3}\vec{p}}{(2\pi)^{3}} \frac{\left[({\rm i} \tilde{\omega}_{N}+{\rm i} \nu_{n})+\dfrac{1}{2}s\omega+\mu\right]\left[{\rm i} \tilde{\omega}_{N}+\dfrac{1}{2}s\omega+\mu\right]+M^{2}-(\vec{p}+\vec{q})\cdot\vec{p}}{\left[\left({\rm i} \tilde{\omega}_{N}+{\rm i} \nu_{n}+\dfrac{1}{2}s\omega+\mu\right)^{2}-(\vec{p}+\vec{q})^{2}-M^{2}\right]\left[\left({\rm i} \tilde{\omega}_{N}+\dfrac{1}{2}s\omega+\mu\right)^{2}-\vec{p}^{2}-M^{2}\right]}, $
(8) where
$ \tilde{\omega}_{N} = (2N+1)\pi T $ is the Matsubara frequency. By considering the analytic continuation$\Pi_{s}(\vec{q},\tilde{\nu}) = \Pi_{s}(\vec{q},{\rm i}\nu_{n})|_{\tilde{\nu}+{\rm i} \eta}$ and setting$ \vec{q} = 0 $ , an explicit form of$ \Pi_{s}(0,\tilde{\nu}) $ can be contructed, as shown in Appendix A.From the pole of propagator used in Eq. (5), the σ mass can be obtained by solving
$ 1-2 G_{S} \Pi_{s}(0,\tilde{\nu}) = 0, $
(9) We perform a similar operation for the pseudoscalar meson π. In the polarization functions, the operators are defined as
$\tau^{\pm} = {1}/{\sqrt{2}}(\tau_{1}\pm {\rm i}\tau_{2})$ , where$ \tau_{i} $ are the Pauli Matrices, and we choose$ \tau^a = \tau^3,\tau^b = \tau^3 $ for neutral pions and$ \tau^a = \tau^+,\tau^b = \tau^- $ for charged pions. However, these polarization functions have the same form for different charged mesons.$ \begin{aligned}[b]\\[-10pt] \Pi_{ps}(q^2) =& -{\rm i} \int {\rm d}^{4}\tilde{r}Tr_{sfc}[{\rm i} \gamma^{5}\tau^{a} {\rm i} S(0;\tilde{r}){\rm i} \gamma^{5}\tau^{b}{\rm i} S(\tilde{r};0)]{\rm e}^{{\rm i} q\cdot \tilde{r}} \\ = & 4 {\rm i} N_{f}N_{c}\int \frac{{\rm d}^{4} p}{(2\pi)^{4}} \left\{ \frac{\left(p_{0}+q_{0}+\dfrac{1}{2}\omega \right) \left(p_{0}+\dfrac{1}{2}\omega \right)-M^2-(\vec{p}+\vec{q})\cdot \vec{p}} {\left[\left(p_{0}+q_{0}+\dfrac{1}{2}\omega\right)^{2}-(\vec{p}+\vec{q})^{2}-M^{2}\right] \left[\left(p_{0}+\dfrac{1}{2}\omega\right)^{2}-\vec{p}^{2}-M^{2}\right]}\right. \end{aligned} $ $\begin{aligned}[b]+ \left.\frac{\left(p_{0}+q_{0}-\dfrac{1}{2}\omega \right) \left(p_{0}-\dfrac{1}{2}\omega \right)-M^2-(\vec{p}+\vec{q})\cdot \vec{p}} {\left[\left(p_{0}+q_{0}-\dfrac{1}{2}\omega\right)^{2}-(\vec{p}+\vec{q})^{2}-M^{2}\right] \left[\left(p_{0}-\dfrac{1}{2}\omega\right)^{2}-\vec{p}^{2}-M^{2}\right]} \right\} . \end{aligned} $
(10) For the finite temperature formalism with a chemical potential, the polarization function will be
$ \Pi_{ps}(\vec{q},{\rm i}\nu_{n}) = -4N_{f} N_{c}T \sum\limits_{s = \pm}\sum\limits_N\int \frac{{\rm d}^{3}\vec{p}}{(2\pi)^{3}} \frac{\left[({\rm i} \tilde{\omega}_{N}+{\rm i} \nu_{n})+\dfrac{1}{2}s\omega+\mu\right]\left[{\rm i} \tilde{\omega}_{N}+\dfrac{1}{2}s\omega+\mu\right]-M^{2}-(\vec{p}+\vec{q})\cdot\vec{p}}{\left[\left({\rm i} \tilde{\omega}_{N}+{\rm i} \nu_{n}+\dfrac{1}{2}s\omega+\mu\right)^{2}-(\vec{p}+\vec{q})^{2}-M^{2}\right]\left[\left({\rm i} \tilde{\omega}_{N}+\dfrac{1}{2}s\omega+\mu\right)^{2}-\vec{p}^{2}-M^{2}\right]}. $
(11) By considering the analytic continuation
$\Pi_{ps}(\vec{q},\tilde{\nu}) = $ $ \Pi_{ps}(\vec{q}, {\rm i}\nu_{n})|_{\tilde{\nu}+{\rm i} \eta}$ and setting$ \vec{q} = 0 $ , an explicit form of$ \Pi_{ps}(0,\tilde{\nu}) $ can be constructed, as shown in Appendix A.From the pole of above propagator, the pion mass can be obtained by solving
$ 1-2 G_{S} \Pi_{ps}(0,\tilde{\nu}) = 0. $
(12) -
For a vector meson under magnetic fields and rotation, the medium has a preferred direction along z, and the extraction process for the vector meson pole mass is more complex. In [11], the vector meson polarization tensor was divided into its transverse and longitudinal parts and eventually divided into its spin-components
$ s_z = \pm1,0 $ ; thus, the pole mass can be extracted as spin-components.Following Ref. [11], we construct a vector meson using a similar method with rotation-modified quark propagators. For the two-flavor model, we take, for example, the vector ρ meson. Its one-loop polarization function reads as
$ \Pi^{\mu\nu,ab}(q) = -{\rm i} \int {\rm d}^{4}\tilde{r}{\rm Tr}_{sfc}[{\rm i} \gamma^{\mu}\tau^{a}S(0;\tilde{r}){\rm i} \gamma^{\nu}\tau^{b}S(\tilde{r};0)]{\rm e}^{{\rm i} q\cdot \tilde{r}}. $
(13) As there is no isospin breaking in the quark propagators
$ S(0;\tilde{r}) $ , the polarization functions of charged and neutral ρ mesons are expected to be the same under rotation. Nonzero elements of the matrix read as$ \Pi^{\mu\nu}_{\rho} = \left( \begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & \Pi^{11} & \Pi^{12} & 0 \\ 0 & \Pi^{21} & \Pi^{22} & 0 \\ 0 & 0 & 0 & \Pi^{33} \end{array} \right). $
(14) Explicit expressions for the matrix elements are shown in Appendix B. The analysis of the Lorentz structure suggests the tensor can be divided according to its polarization directions, as follows:
$ \Pi^{\mu\nu}_{\rho} = A_{1}^{2}P^{\mu\nu}_{1}+A_{2}^{2}P^{\mu\nu}_{2}+A_{3}^{2}L^{\mu\nu}+A_{4}^{2}u^{\mu}u^{\nu}, $
(15) where
$ u^{\mu} $ is the four momentum in the rest frame,$ u^\mu = (1,0,0,0) $ is a unit vector, and the projection operators are given as$\begin{aligned}[b] P^{\mu\nu}_{1}& = -\epsilon^{\mu}_{1}\epsilon^{\nu}_{1}, ~~ (s_{z} = -1 \text{ for } \rho \text{ meson }),\\ P^{\mu\nu}_{2}& = -\epsilon^{\mu}_{2}\epsilon^{\nu}_{2}, ~~ (s_{z} = +1\text{ for } \rho \text{ meson }),\\ L^{\mu\nu}& = -b^{\mu}b^{\nu}, ~~ (s_{z} = 0 \text{ for } \rho \text{ meson }). \end{aligned} $
(16) In the flat frame,
$\epsilon^{\mu}_{1} = \dfrac{1}{\sqrt{2}}(0,1,{\rm i},0)$ and$\epsilon^{\mu}_{2} = \dfrac{1}{\sqrt{2}} $ $ (0,1,-{\rm i},0)$ are the right- and left-hand polarization vectors, respectively, and$ b^{\mu} = (0,0,0,1) $ is the direction of rotation. As a result, the ρ meson propagator can be broken down in a similar way.$\begin{aligned}[b] D^{\mu\nu}_{\rho}(q^{2}) =& D_{1}(q^{2})P^{\mu\nu}_{1}+D_{2}(q^{2})P^{\mu\nu}_{2}\\&+D_{3}(q^{2})L^{\mu\nu}+D_{4}(q^{2})u^{\mu}u^{\nu}, \end{aligned}$
(17) where the coefficients
$ D_{i} $ are of the RPA summation form$ D_{i}(q^2) = \frac{2G_{V}}{1+2G_{V}A_{i}^2}. $
(18) Here, the momentum poles correspond to the masses of vector ρ mesons, which are solutions to the equation
$ 1+2G_{V}A_{i}^{2} = 0, $
(19) where
$ \begin{aligned}[b] A_{1}^{2}& = -(\Pi_{11} - {\rm i} \Pi_{12}), ~~ (s_{z} = -1 \text{ for } \rho \text{ meson }),\\ A_{2}^{2}& = -\Pi_{11} - {\rm i} \Pi_{12}, ~~ (s_{z} = +1\text{ for } \rho \text{ meson }),\\ A_{3}^{2}& = -\Pi_{33}, ~~ (s_{z} = 0 \text{ for } \rho \text{ meson }). \end{aligned} $
(20) -
To evaluate the mass of the ρ meson at a finite chemical potential and relatively large vorticity, we choose the soft cut-off scheme to prevent leakage of the energy scale. The cut-off function is [41-43]
$ f_{\Lambda}(\mathit{\boldsymbol{p}}) = \frac{\Lambda^{10}}{\Lambda^{10}+\mathit{\boldsymbol{p}}^{10}}, $
(21) where Λ = 582 MeV. In numerical calculations, momentum integrals are understood as [41]
$ \int \frac{{\rm d} \mathit{\boldsymbol{p}}}{2 \pi}\rightarrow \int \frac{{\rm d} \mathit{\boldsymbol{p}}}{2 \pi}f_{\Lambda}(\mathit{\boldsymbol{p}}). $
(22) The other parameters are taken from Ref. [11], i.e.,
$ G_{S}\Lambda^{2} = 2.388 $ ,$ G_{V}\Lambda^{2} = 1.73 $ , and the current quark mass$ m_{0} = 5 $ MeV. We use a soft cutoff in the calculation and maintain the angular velocity at less than 1 GeV and the chemical potential at less than 200 MeV; hence, for each quark, the energy shift owing to rotation and chemical potential is no more than 700 MeV. This is a safe value for the model.By neglecting meson fluctuations, the gap equation for the chiral condensate at a finite temperature as well as chemical potential under rotation can be easily solved. As shown in the phase diagram of Refs. [15,16,18], the vorticity serves as another form of chemical potential that weakens the chiral condensate in the finite temperature case and complements the chemical potential in the finite density case. As shown in Fig. (2b), there is a crossover at medium temperatures along the rotation speed. At low temperatures, the increase in chemical potential changes the first-order chiral restoration to a crossover in Fig. (2a), (2c), and (2d). Because the phase structure determines the macroscopic properties of the system, it is reasonable to expect that the dependence of meson mass on the rotation speed would be smooth at medium temperatures and in high-density systems and kinked at the first-order point for low density systems.
-
As it carries no net angular momentum, the profile of scalar meson mass is completely determined by chiral symmetry in our model. For the zero chemical potential case shown in Fig. (2a) and (2b), as the rotation speed increases, the chiral condensate behaves the same as that in [15]. At extremely low temperatures, chiral restoration is first order; thus, the masses remain invariant before jumping together at the critical rotation speed. In hot matter, the condensate steadily melts until the crossover range
$ \omega\sim 0.6 $ GeV. As a consequence, the σ meson mass remains almost static, and pions serve as Goldstone particles in the chiral breaking phase. Once ω nears the crossover range, they approach each other and eventually become almost degenerate because of chiral symmetry restoration. The behavior at a finite density could also be explained using chiral symmetry by noticing the order of phase transition. As Fig. (2a), (2c), and (2d) show, at low densities, i.e.,$ \mu<100 $ MeV, and zero temperature, there is a first order gap at$ \omega\simeq 0.8 $ GeV owing to the dependence of the chiral condensate on rotation speed. Subsequently, the pion breaks the constraint of the Goldstone theorem, that is, the mass increases to meet that of the σ meson, which is driven by chiral symmetry. As the chemical potential increase further, the phase transition weakens into the crossover, and the mass dependence on the rotation speed becomes smoother, as shown in Fig. (2c) and (2d).The constituent quark mass at
$r = 0.1\; {\rm GeV}^{-1}$ is calculated using$ M = m - 2G_S\left<\bar\psi\psi\right> $ , and the constituent quark mass as a function of angular velocity is shown in Fig. 1 for different chemical potentials. The chiral condensate exhibits a first order phase transition at large angular velocities for small chemical potentials, while this is exhibited at small angular velocities for large chemical potentials; this is in agreement with the results presented in [16], where a first order phase transition was observed in two corners of the three-dimensional$ T-\mu-\omega $ phase diagram.Figure 1. (color online) The constituent quark mass as a function of angular velocity for different chemical potentials.
From the numerical results, it is clear that the rotation speed and chemical potential are complementary when driven by chiral restoration. At low chemical potentials, the critical/crossover rotation speed is large. This decreases with increasing chemical potential. However it is clear that the chemical potential and rotation speed are not exactly equivalent because, physically, the chemical potential is the energy shift from the difference between the particle and anti-particle, while the shift induced by rotation polarization occurs from the difference between spin up and spin down. From this aspect, the
$ \pm \dfrac{1}{2}\omega $ could be treated as the spin chemical potential. Analytically, the difference may be explicitly observed in the gap equation and the polarization functions, as follows:$ \begin{aligned}[b] \\[-8pt] \Pi_{s}(0,{\rm i} \nu_{n}) = &N_{f}N_{c}\sum\limits_{s = \pm}\int\frac{{\rm d}^{3}\vec{p}}{(2\pi)^{3}}\left[ {\rm Res}1(\vec{p},\nu_{n}) \theta \left(-\mu -\frac{s\omega }{2}+E_{p}\right) n_{f}\left(E_{p}-\mu -\frac{s\omega }{2},T\right)\right.\\ &+{\rm Res}3(\vec{p},\nu_{n}) \theta \left(-\mu -\frac{s\omega }{2}+E_{p}\right) n_{f}\left(E_{p}-\mu -\frac{s\omega }{2},T\right)-{\rm Res}1(\vec{p},\nu_{n}) \theta \left(\mu +\frac{s\omega }{2}-E_{p}\right) n_{f}\left(-E_{p}+\mu +\frac{s\omega }{2},T\right)\\ & -{\rm Res}2(\vec{p},\nu_{n}) n_{f}\left(E_{p}+\mu +\frac{s\omega }{2},T\right)-{\rm Res}3(\vec{p},\nu_{n}) \theta \left(\mu +\frac{s\omega }{2}-E_{p}\right) n_{f}\left(-E_{p}+\mu +\frac{s\omega }{2},T\right)\\ & -{\rm Res}4(\vec{p},\nu_{n}) n_{f}\left(E_{p}+\mu +\frac{s\omega }{2},T\right)+{\rm Res}1(\vec{p},\nu_{n}) \theta \left(\mu +\frac{s\omega }{2}-E_{p}\right) +{\rm Res}3(\vec{p},\nu_{n}) \theta \left(\mu +\frac{s\omega }{2}-E_{p}\right)\\ &-{\rm Res}1\left(\vec{p},\nu_{n}\right)-{\rm Res}3\left(\vec{p},\nu_{n}\right) \Big], \end{aligned} $ (23) where
${\rm Res}1(\vec{p},\nu_{n}),{\rm Res}2(\vec{p},\nu_{n}),{\rm Res}3(\vec{p},\nu_{n})$ , and${\rm Res}4(\vec{p},\nu_{n})$ are residues in Eq. (40).The polarization function
$ \Pi_{ps} $ is given as$ \begin{aligned}[b] \Pi_{ps}(0,{\rm i} \nu_{n}) = &N_{f}N_{c}\sum\limits_{s = \pm}\int\frac{{\rm d}^{3}\vec{p}}{(2\pi)^{3}}\left[ {\rm Res}1'(\vec{p},\nu_{n}) \theta \left(-\mu -\frac{s\omega }{2}+E_{p}\right) n_{f}\left(E_{p}-\mu -\frac{s\omega }{2},T\right)\right.\\ &+{\rm Res}3'(\vec{p},\nu_{n}) \theta \left(-\mu -\frac{s\omega }{2}+E_{p}\right) n_{f}\left(E_{p}-\mu -\frac{s\omega }{2},T\right)-{\rm Res}1'(\vec{p},\nu_{n}) \theta \left(\mu +\frac{s\omega }{2}-E_{p}\right) n_{f}\left(-E_{p}+\mu +\frac{s\omega }{2},T\right) \\ &-{\rm Res}2'(\vec{p},\nu_{n}) n_{f}\left(E_{p}+\mu +\frac{s\omega }{2},T\right)-{\rm Res}3'(\vec{p},\nu_{n}) \theta \left(\mu +\frac{s\omega }{2}-E_{p}\right) n_{f}\left(-E_{p}+\mu +\frac{s\omega }{2},T\right) \end{aligned} $
$ \begin{aligned}[b] &-{\rm Res}4'(\vec{p},\nu_{n}) n_{f}\left(E_{p}+\mu +\frac{s\omega }{2},T\right)+{\rm Res}1'(\vec{p},\nu_{n}) \theta \left(\mu +\frac{s\omega }{2}-E_{p}\right) +{\rm Res}3'(\vec{p},\nu_{n}) \theta \left(\mu +\frac{s\omega }{2}-E_{p}\right)\\ &-{\rm Res}1'(\vec{p},\nu_{n})-{\rm Res}3'(\vec{p},\nu_{n})\Big]. \end{aligned} $
(24) Here,
${\rm Res}1'(\vec{p},\nu_{n}),\; {\rm Res}2'(\vec{p},\nu_{n}),\; {\rm Res}3'(\vec{p},\nu_{n})$ , and${\rm Res}4'(\vec{p}, $ $ \nu_{n})$ are residues in Eq. (A18).It is clear that the functions depend on both
$ \mu\pm\omega/2 $ combinations. However, it is also reasonable to assume that the critical behavior will occur at a rotation speed that satisfies$ E_p-\mu\pm\dfrac{\omega}{2} = 0 $ . If we choose a positive value for both the chemical potential and rotation speed, the$ \omega = 2(m-\mu) $ part would dominate the critical behavior. Hence, the chemical potential and rotation speed appear to be complementary when determining the critical point. -
Taking the direction of rotation as the z-axis, the three components of a massive vector meson can be represented as
$ s_{z} = \pm 1 $ and$ s_{z} = 0 $ . The nonzero spin components are polarized by the Barnett effect, which introduces the shift$ -{\vec\omega}\cdot{\vec S} $ to the energy levels under rotation. In our two-flavor model, we use the ρ meson to explore the rotation-induced energy shift with self-consistent numerical calculations at the quark level. Fig. 3 shows the numerical results for ρ masses with$ s_{z} = \pm 1 $ and$ s_{z} = 0 $ as functions of angular velocity at temperature$ T = 10 $ MeV. It is clear that the splitting mass curves reveal the different influences of rotation. In the$ s_z = 0 $ case, there is no net angular momentum for particle polarization by rotation. This indicates that the mass dependence on rotation is similar to the scalar case, which remains invariant while the chiral condensate is below the critical rotation speed. In the$ s_z = \pm 1 $ cases, the rotation polarization generates the energy shift$ \mp \omega $ for the corresponding masses; this is confirmed by the numerical results in Fig. 3. The mass dependence on the rotation speed is indicated by two straight lines for the$ s_z = \pm 1 $ components. The behavior could be analytically proven with an explicit form of the polarization functions. In the pole approximation, the masses are determined by the pole of the meson propagators, as in Eq. (19). With straightforward computation, as shown in the Appendix, the polarization functions of the vector meson satisfyFigure 2. (color online) Scalar meson mass as a function of angular velocity at different chemical potentials and temperatures.
$ \frac{1}{2}A_{1}^{2}(m_{\rho}+\omega)+\frac{1}{2}A_{2}^{2}(m_{\rho}-\omega) = A_{3}^{2}(m_{\rho}). $
(25) Therefore,
$ m_\rho(\omega = 0)-s_z\omega $ is the exact mass of the$ s_z = 0,\pm 1 $ components. The mass of the$ s_z = 1 $ spin component decreases linearly with angular velocity and reaches zero at the critical angular velocity$\omega_c = $ $ m_\rho(\omega = 0)$ . Beyond this, the$ s_z = 1 $ spin component of the vector meson will develop condensation in the vacuum, indicating that the system will be spontaneously spin polarized under strong rotation. -
Rotating systems are not translationally invariant; however, a Green's function and polarization function can be defined in momentum space [22]. For the σ meson, the scalar polarization function under rotation is defined as [38,39]
$ \Pi_{s}(q) = -{\rm i} \int {\rm d}^{4}\tilde{r}{\rm Tr}_{sfc}\left[{\rm i} S(0;\tilde{r}){\rm i} S(\tilde{r};0)\right]{\rm e}^{{\rm i} q\cdot \tilde{r}} \tag{A1}$
where position
$ \tilde{r} $ can be expressed as$ (t,x,y,z) $ in Cartesian coordinates or$ (t,r,\phi,z) $ in cylindrical coordinates. Here, we have set$ \tilde{r}' = 0 $ for the propagators. Substituting Eq. (4) into the definition of the polarization function, a derivation can be expressed in cylindrical coordinates$ \begin{aligned}[b]\\[-8pt] \Pi_{s}(q) =& -{\rm i} N_{f} N_{c} \sum\limits_{n = -\infty}^{+\infty}\sum\limits_{l = -\infty}^{+\infty}\int {\rm d}^{4}\tilde{r} \int \frac{{\rm d} k_{0}{\rm d} k_{z}}{(2\pi)^{2}}\int_{0}^{+\infty}\frac{k_{t}{\rm d} k_{t}}{2\pi} \int \frac{{\rm d} p_{0}{\rm d} p_{z}}{(2\pi)^{2}} \int_{0}^{+\infty}\frac{p_{t}{\rm d} p_{t}}{2\pi} \\ &\times {\rm Tr}(A_{n}B_{l})\times \frac{{\rm e}^{-{\rm i}k_{0}t+ {\rm i}k_{z}z} {\rm e}^{{\rm i} n\phi}}{\left[k_{0}+\left(n+\dfrac{1}{2}\right)\omega\right]^{2}-k_{t}^{2}-k_{z}^{2}-M^{2}+{\rm i}\epsilon} \times \frac{{\rm e}^{{\rm i}p_{0}t-{\rm i}p_{z}z}{\rm e}^{-{\rm i} l\phi}}{\left[p_{0}+\left(l+\dfrac{1}{2}\right)\omega\right]^{2}-p_{t}^{2}-p_{z}^{2}-M^{2}+{\rm i}\epsilon}\times {\rm e}^{{\rm i} q\cdot \tilde{r}}, \end{aligned} \tag{A2}$ where
$ \begin{aligned}[b] A_{n}& = \begin{array}{l} \begin{pmatrix} \begin{smallmatrix} \left(k_{0}+M+\left(n+\frac{1}{2}\right) \omega \right) J_n(k_t r) J_n(0) & 0 & -k_z J_n(k_t r) J_n(0) & {\rm i} k_t J_n(k_t r) J_{n+1}(0) \\ 0 & \left(k_0+M+\left(n+\frac{1}{2}\right) \omega \right) {\rm e}^{{\rm i} \phi } J_{n+1}(k_{t} r) J_{n+1}(0) & -{\rm i} {\rm e}^{{\rm i} \phi } k_{t} J_{n+1}(k_{t} r) J_n(0) & k_{z} {\rm e}^{{\rm i} \phi } J_{n+1}(k_{t} r) J_{n+1}(0) \\ k_{z} J_n(k_{t} r) J_n(0) & -{\rm i} k_{t} J_n(k_{t} r) J_{n+1}(0) & -\left(k_{0}-M+\left(n+\frac{1}{2}\right) \omega \right) J_n(k_{t} r) J_n(0) & 0 \\ {\rm i} {\rm e}^{{\rm i} \phi } k_{t} J_{n+1}(k_{t} r) J_n(0) & -k_{z} {\rm e}^{{\rm i} \phi } J_{n+1}(k_{t} r) J_{n+1}(0) & 0 & -\left(k_{0}-M+\left(n+\frac{1}{2}\right) \omega \right) {\rm e}^{{\rm i} \phi } J_{n+1}(k_{t} r) J_{n+1}(0)\\ \end{smallmatrix} \end{pmatrix}, \end{array}\\ B_{l}& = \begin{array} {l} \begin{pmatrix} \begin{smallmatrix} \left(M+p_{0}+\left(l+\frac{1}{2}\right) \omega \right) J_l(p_{t} r) J_l(0) & 0 & -p_{z} J_l(p_{t} r) J_l(0) & {\rm i} p_{t} {\rm e}^{-{\rm i} \phi } J_{l+1}(p_{t} r) J_l(0) \\ 0 & \left(M+p_{0}+\left(l+\frac{1}{2}\right) \omega \right) {\rm e}^{-{\rm i} \phi } J_{l+1}(p_{t} r) J_{l+1}(0) & -{\rm i} p_{t} J_l(p_{t} r) J_{l+1}(0) & p_{z} {\rm e}^{-{\rm i} \phi } J_{l+1}(p_{t} r) J_{l+1}(0)\\ p_{z} J_l(p_{t} r) J_l(0) & -{\rm i} p_{t} {\rm e}^{-{\rm i} \phi } J_{l+1}(p_{t} r) J_l(0) & -\left(-M+p_{0}+\left(l+\frac{1}{2}\right) \omega \right) J_l(p_{t} r) J_l(0) & 0\\ {\rm i} p_{t} J_l(p_{t} r) J_{l+1}(0) & -p_{z} {\rm e}^{-{\rm i} \phi } J_{l+1}(p_{t} r) J_{l+1}(0) & 0 & -\left(-M+p_{0}+\left(l+\frac{1}{2}\right) \omega \right) {\rm e}^{-{\rm i} \phi } J_{l+1}(p_{t} r) J_{l+1}(0)\\ \end{smallmatrix} \end{pmatrix}. \end{array} \end{aligned} \tag{A3}$
Here, we provide a matrix form instead of the summation of the projection operators in Eq. (4). The term "
${\rm Tr}_{sfc}$ " represents the evaluation of the trace on the spinor, flavor, and color space. After simplification calculations, we get$ \begin{aligned}[b] {\rm Tr}(A_{n}B_{l}) =& \left[\frac{1}{2} (2 k_{0}+2 n \omega +\omega ) (2 l \omega +2 p_{0}+\omega )+2 M^2 -2 k_{z} p_{z}\right] J_l(0) J_n(0) J_n(k_{t} r) J_l(p_{t} r)\\ &+\left[\frac{1}{2} (2 k_{0}+2 n \omega +\omega ) (2 l \omega +2 p_{0}+\omega )+2 M^2 -2 k_{z} p_{z}\right]J_{l+1}(0) J_{n+1}(0) J_{n+1}(k_{t} r) J_{l+1}(p_{t} r)\\ &-2 k_{t} p_{t} J_{l+1}(0) J_{n+1}(0) J_n(k_{t} r) J_l(p_{t} r)-2 k_{t} p_{t} J_l(0) J_n(0) J_{n+1}(k_{t} r) J_{l+1}(p_{t} r). \end{aligned} \tag{A4}$
When
$ n\neq 0 $ , it is clear that$ J_{n}(0) = 0 $ and$ J_{0}(0) = 1 $ . As a consequence, the result of the summation will have finite terms.$ \begin{aligned}[b] \Pi_{s}(q) =& -{\rm i} \int {\rm d}^{4}\tilde{r} {\rm Tr}_{sfc}\left[S(0;\tilde{r})S(\tilde{r};0)\right]{\rm e}^{{\rm i} q\cdot \tilde{r}} = -{\rm i} N_{f}N_{c}\int {\rm d}^{4}\tilde{r} \int \frac{{\rm d} k_{0}{\rm d} k_{z}}{(2\pi)^{2}}\int_{0}^{+\infty}\frac{k_{t}{\rm d} k_{t}}{2\pi} \int \frac{{\rm d} p_{0}{\rm d} p_{z}}{(2\pi)^{2}} \int_{0}^{+\infty}\frac{p_{t}{\rm d} p_{t}}{2\pi} \\ &\times \left\{ \left[\frac{1}{2} (2 k_{0}+\omega ) ( 2 p_{0}+\omega )+2 M^{2}-2 k_{z} p_{z}\right] \times \frac{J_{0}(k_{t} r)J_{0}(p_{t}r){\rm e}^{-{\rm i} k_{0}t+{\rm i} k_{z}z}{\rm e}^{{\rm i} p_{0}t-{\rm i} p_{z}z}}{\left[\left(k_{0}+\dfrac{1}{2}\omega\right)^{2}-k_{t}^{2}-k_{z}^{2}-M^{2}+{\rm i}\epsilon\right] \left[\left(p_{0}+\dfrac{1}{2}\omega\right)^{2}-p_{t}^{2}-p_{z}^{2}-M^{2}+{\rm i}\epsilon\right]}\right.\\ &+\left[\frac{1}{2} (2 k_{0}-\omega ) ( 2 p_{0}-\omega )+2 M^{2}-2 k_{z} p_{z}\right]\times\frac{J_{0}(k_{t} r)J_{0}(p_{t}r){\rm e}^{-{\rm i} k_{0}t+{\rm i} k_{z}z}{\rm e}^{{\rm i} p_{0}t-{\rm i} p_{z}z}}{\left[\left(k_{0}-\dfrac{1}{2}\omega\right)^{2}-k_{t}^{2}-k_{z}^{2}-M^{2}+{\rm i}\epsilon\right] \left[\left(p_{0}-\dfrac{1}{2}\omega\right)^{2}-p_{t}^{2}-p_{z}^{2}-M^{2}+i\epsilon\right]}\\ &-2k_{t}p_{t}\times\frac{J_{1}(k_{t} r)J_{1}(p_{t}r){\rm e}^{-{\rm i} k_{0}t+{\rm i} k_{z}z}{\rm e}^{{\rm i} p_{0}t-{\rm i} p_{z}z}}{\left[\left(k_{0}+\dfrac{1}{2}\omega\right)^{2}-k_{t}^{2}-k_{z}^{2}-M^{2}+{\rm i}\epsilon\right] \left[\left(p_{0}+\dfrac{1}{2}\omega\right)^{2}-p_{t}^{2}-p_{z}^{2}-M^{2}+{\rm i}\epsilon\right]}\\ &-2k_{t}p_{t}\times\left.\frac{J_{-1}(k_{t} r)J_{-1}(p_{t}r){\rm e}^{-{\rm i} k_{0}t+{\rm i} k_{z}z}{\rm e}^{{\rm i} p_{0}t-{\rm i} p_{z}z}}{\left[\left(k_{0}-\dfrac{1}{2}\omega\right)^{2}-k_{t}^{2}-k_{z}^{2}-M^{2}+{\rm i}\epsilon\right] \left[\left(p_{0}-\dfrac{1}{2}\omega\right)^{2}-p_{t}^{2}-p_{z}^{2}-M^{2}+{\rm i}\epsilon\right]} \right\}\times {\rm e}^{{\rm i} q\cdot \tilde{r}}. \end{aligned}\tag{A5} $
Applying the integral representation of the Bessel functions, the polarization function can be simplified. In integral representation, Bessel functions are expressed as
$ \begin{aligned}[b] J_{n}(r)& = \frac{1}{2\pi}\int_{-\pi}^{+\pi}{\rm e}^{{\rm {\rm i}}(r\sin\theta-n\theta)}{\rm d}\theta,\\ J_{0}(r)& = \frac{1}{2\pi}\int_{0}^{2\pi}{\rm e}^{\pm {\rm i} r\cos\theta}{\rm d}\theta,\\ J_{1}(r)& = \frac{1}{2\pi {\rm i}}\int_{0}^{2\pi}{\rm e}^{{\rm i} r\cos\theta\pm {\rm i}\theta}{\rm d}\theta,\\ J_{1}(r)& = -\frac{1}{2\pi {\rm i}}\int_{0}^{2\pi}{\rm e}^{-{\rm i} r\cos\theta\pm {\rm i}\theta}{\rm d}\theta. \end{aligned}\tag{A6} $
Let
$ \vec{k_{t}} = (k_{t},\phi+\theta) = (k_{x},k_{y}),\vec{r} = (r,\phi) = (x,y) $ , and then we have the transformation formulae$ \int_{0}^{\infty}\frac{k_{t}{\rm d} k_{t}}{2\pi}\int_{0}^{2\pi}\frac{{\rm d}\theta}{2\pi {\rm i}}{\rm i} k_{t}{\rm e}^{{\rm i} \phi}{\rm e}^{{\rm i} k_{t}r \cos \theta+{\rm i} \theta} = \int \frac{{\rm d} k_{x}{\rm d} k_{y}}{(2\pi)^2}(k_{x}+{\rm i} k_{y}){\rm e}^{{\rm i}\vec{k_{t}}\cdot \vec{r}}, \tag{A7}$
$ \int_{0}^{\infty}\frac{k_{t}{\rm d} k_{t}}{2\pi}\int_{0}^{2\pi}\frac{{\rm d}\theta}{2\pi {\rm i}}{\rm i} k_{t}{\rm e}^{-{\rm i} \phi}{\rm e}^{-{\rm i} k_{t}r \cos \theta-{\rm i} \theta} = \int \frac{{\rm d} k_{x}{\rm d} k_{y}}{(2\pi)^2}(k_{x}-{\rm i} k_{y}){\rm e}^{-{\rm i}\vec{k_{t}}\cdot \vec{r}}. \tag{A8}$
After the transformation formulae are applied, the polarization function for scalar mesons can be expressed without the Bessel function. This will be more efficient for numerical calculations.
$ \begin{aligned}[b] \Pi_{s}(q) =& -{\rm i} N_{f}N_{c}\int {\rm d}^{4}\tilde{r} \int \frac{{\rm d}^{4} k}{(2\pi)^{4}} \int \frac{{\rm d}^{4} p}{(2\pi)^{4}} \\ &\times \left\{ \left[\frac{1}{2} (2 k_{0}+\omega ) ( 2 p_{0}+\omega )+2 M^{2}-2 k_{z} p_{z}\right] \times \frac{{\rm e}^{-{\rm i} k\cdot\tilde{r}}{\rm e}^{{\rm i} p\cdot\tilde{r}}}{\left[\left(k_{0}+\dfrac{1}{2}\omega\right)^{2}-\vec{k}^{2}-M^{2}+{\rm i}\epsilon\right] \left[\left(p_{0}+\dfrac{1}{2}\omega\right)^{2}-\vec{p}^{2}-M^{2}+{\rm i}\epsilon\right]}\right.\\ &+ \left[\frac{1}{2} (2 k_{0}-\omega )( 2 p_{0}-\omega )+2 M^{2}-2 k_{z} p_{z}\right]\times\frac{{\rm e}^{-{\rm i} k\cdot\tilde{r}}{\rm e}^{{\rm i} p\cdot\tilde{r}}}{\left[\left(k_{0}-\dfrac{1}{2}\omega\right)^{2}-\vec{k}^{2}-M^{2}+{\rm i}\epsilon\right] \left[\left(p_{0}-\dfrac{1}{2}\omega\right)^{2}-\vec{p}^{2}-M^{2}+{\rm i}\epsilon\right]}\\ &-2(k_{x}+{\rm i} k_{y})(p_{x}-{\rm i} p_{y})\times \frac{{\rm e}^{-{\rm i} k\cdot\tilde{r}}{\rm e}^{{\rm i} p\cdot\tilde{r}}}{\left[\left(k_{0}+\dfrac{1}{2}\omega\right)^{2}-\vec{k}^{2}-M^{2}+{\rm i}\epsilon\right] \left[\left(p_{0}+\dfrac{1}{2}\omega\right)^{2}-\vec{p}^{2}-M^{2}+{\rm i}\epsilon\right]}\\ &-2(k_{x}+{\rm i} k_{y})(p_{x}-{\rm i} p_{y})\times \frac{{\rm e}^{-{\rm i} k\cdot\tilde{r}}{\rm e}^{{\rm i} p\cdot\tilde{r}}}{\left[\left(k_{0}-\dfrac{1}{2}\omega\right)^{2}-\vec{k}^{2}-M^{2}+{\rm i}\epsilon\right] \left[\left(p_{0}-\dfrac{1}{2}\omega\right)^{2}-\vec{p}^{2}-M^{2}+{\rm i}\epsilon\right]} \}\times {\rm e}^{{\rm i} q\cdot \tilde{r}}.\\ \end{aligned} \tag{A9}$
Furthermore, by integrating
$ \tilde{r} $ and k analytically, we can obtain the polarization function, as follows:$ \begin{aligned}[b] \Pi_{s}(q) =& -{\rm i} N_{f}N_{c}\int \frac{{\rm d}^{4} p}{(2\pi)^{4}} \left\{ \frac{\left[2 \left(p_{0}+q_{0}+\dfrac{1}{2}\omega \right) \left( p_{0}+\dfrac{1}{2}\omega \right)+2 M^{2}-2 (p_{z}+q_{z}) p_{z}\right]-2\left[(p_{x}+q_{x})+{\rm i} (p_{y}+q_{y})\right](p_{x}-{\rm i} p_{y})} {\left[\left(p_{0}+q_{0}+\dfrac{1}{2}\omega\right)^{2}-(\vec{p}+\vec{q})^{2}-M^{2}+{\rm i}\epsilon\right] \left[\left(p_{0}+\dfrac{1}{2}\omega\right)^{2}-\vec{p}^{2}-M^{2}+{\rm i}\epsilon\right]}\right.\\ &+ \left.\frac{\left[2 \left(p_{0}+q_{0}-\dfrac{1}{2}\omega \right) \left( p_{0}-\dfrac{1}{2}\omega \right)+2 M^{2}-2 (p_{z}+q_{z}) p_{z}\right]-2\left[(p_{x}+q_{x})+{\rm i} (p_{y}+q_{y})\right](p_{x}-{\rm i} p_{y})} {\left[\left(p_{0}+q_{0}-\dfrac{1}{2}\omega\right)^{2}-(\vec{p}+\vec{q})^{2}-M^{2}+{\rm i}\epsilon\right] \left[\left(p_{0}-\dfrac{1}{2}\omega\right)^{2}-\vec{p}^{2}-M^{2}+{\rm i}\epsilon\right]} \right\}. \end{aligned}\tag{A10} $
Due to the symmetric integration analysis, the expression can be simplified, as follows:
$ \begin{aligned}[b] \Pi_{s}(q^2) =& -2 {\rm i} N_{f}N_{c}\int \frac{{\rm d}^{4} p}{(2\pi)^{4}} \left\{ \frac{\left (p_{0}+q_{0}+\dfrac{1}{2}\omega \right) \left(p_{0}+\dfrac{1}{2}\omega \right)+M^2-(\vec{p}+\vec{q}) \vec{p}} {\left[\left(p_{0}+q_{0}+\dfrac{1}{2}\omega\right)^{2}-(\vec{p}+\vec{q})^{2}-M^{2}\right] \left[\left(p_{0}+\dfrac{1}{2}\omega\right)^{2}-\vec{p}^{2}-M^{2}\right]}\right.\\ &+ \left.\frac{\left(p_{0}+q_{0}-\dfrac{1}{2}\omega \right) \left(p_{0}-\dfrac{1}{2}\omega \right)+M^2-(\vec{p}+\vec{q}) \vec{p}} {\left[\left(p_{0}+q_{0}-\dfrac{1}{2}\omega\right)^{2}-(\vec{p}+\vec{q})^{2}-M^{2}\right] \left[\left(p_{0}-\dfrac{1}{2}\omega\right)^{2}-\vec{p}^{2}-M^{2}\right]} \right\}. \end{aligned} \tag{A11}$
For the finite temperature formalism,
$ p_{0}\rightarrow {\rm i} \tilde{\omega}_{N}, \quad q_{0}\rightarrow {\rm i} \nu_{n}, \quad \int \frac{p_{0}}{2\pi}\rightarrow {\rm i} T\sum\limits_{N}, \quad \tilde{\omega}_{N} = (2N+1)\pi T. \tag{A12}$
The polarization function at a finite temperature and chemical potential under rotation can be rewritten as
$ \Pi_{s}(\vec{q},{\rm i}\nu_{n}) = 2N_{f} N_{c}T \sum\limits_{s = \pm}\sum\limits_N\int \frac{{\rm d}^{3}\vec{p}}{(2\pi)^{3}} \frac{\left[({\rm i} \tilde{\omega}_{N}+{\rm i} \nu_{n})+\dfrac{1}{2}s\omega+\mu\right]\left({\rm i} \tilde{\omega}_{N}+\dfrac{1}{2}s\omega+\mu\right)+M^{2}-(\vec{p}+\vec{q})\cdot\vec{p}}{\left[\left({\rm i} \tilde{\omega}_{N}+{\rm i} \nu_{n}+\dfrac{1}{2}s\omega+\mu\right)^{2}-(\vec{p}+\vec{q})^{2}-M^{2}\right]\left[\left({\rm i} \tilde{\omega}_{N}+\dfrac{1}{2}s\omega+\mu\right)^{2}-\vec{p}^{2}-M^{2}\right]}. \tag{A13} $
Setting
$ \vec{q} = 0 $ , the Matsubara summation will give us a result in terms of the residue theorem.$ \begin{aligned}[b] \Pi_{s}(0,{\rm i} \nu_{n}) = &N_{f}N_{c}\sum\limits_{s = \pm}\int\frac{{\rm d}^{3}\vec{p}}{(2\pi)^{3}}\left[ {\rm Res}1(\vec{p},\nu_{n}) \theta \left(-\mu -\frac{s\omega }{2}+E_{p}\right) n_{f}\left(E_{p}-\mu -\frac{s\omega }{2},T\right)\right.\\ &+{\rm Res}3(\vec{p},\nu_{n}) \theta \left(-\mu -\frac{s\omega }{2}+E_{p}\right) n_{f}\left(E_{p}-\mu -\frac{s\omega }{2},T\right)\\ &-{\rm Res}1(\vec{p},\nu_{n}) \theta \left(\mu +\frac{s\omega }{2}-E_{p}\right) n_{f}\left(-E_{p}+\mu +\frac{s\omega }{2},T\right) -{\rm Res}2(\vec{p},\nu_{n}) n_{f}\left(E_{p}+\mu +\frac{s\omega }{2},T\right)\\ &-{\rm Res}3(\vec{p},\nu_{n}) \theta \left(\mu +\frac{s\omega }{2}-E_{p}\right) n_{f}\left(-E_{p}+\mu +\frac{s\omega }{2},T\right) -{\rm Res}4(\vec{p},\nu_{n}) n_{f}\left(E_{p}+\mu +\frac{s\omega }{2},T\right)\\ &+{\rm Res}1(\vec{p},\nu_{n}) \theta \left(\mu +\frac{s\omega }{2}-E_{p}\right) +{\rm Res}3(\vec{p},\nu_{n}) \theta \left(\mu +\frac{s\omega }{2}-E_{p}\right)\\ &-{\rm Res}1\left(\vec{p},\nu_{n}\right)-{\rm Res}3\left(\vec{p},\nu_{n}\right) \Big], \end{aligned} \tag{A14}$
where
$n_{f}(x,T) = \dfrac{1}{{\rm e}^{x/T}+1}$ is the distribution function, and four residues are given, as follows:$ \begin{aligned}[b] {\rm Res}1(\vec{p},\nu_{n}) = &\frac{-{\rm i} \nu_{n} E_{p}+E_{p}^{2}+M^{2}-\vec{p}^{2}}{E_{p} \left(-\nu_{n}^2-2 {\rm i} \nu_{n} E_{p}\right)},\qquad {\rm Res}2(\vec{p},\nu_{n}) = \frac{-{\rm i} \nu_{n} E_{p}-E_{p}^{2}-M^{2}+\vec{p}^{2}}{E_{p} \left(-\nu_{n}^2+2 {\rm i} \nu_{n} E_{p}\right)},\\ {\rm Res}3(\vec{p},\nu_{n}) = &\frac{+{\rm i} \nu_{n} E_{p}+E_{p}^{2}+M^{2}-\vec{p}^{2}}{E_{p} \left(-\nu_{n}^2+2 {\rm i} \nu_{n} E_{p}\right)},\qquad {\rm Res}4(\vec{p},\nu_{n}) = \frac{{\rm i} \nu_{n} E_{p}-E_{p}^{2}-M^{2}+\vec{p}^{2}}{E_{p} \left(-\nu_{n}^2-2 {\rm i} \nu_{n} E_{p}\right)}. \end{aligned}\tag{A15} $
We should note that
$ E_{\mathit{\boldsymbol{p}}} = \sqrt{\mathit{\boldsymbol{p}}^{2}+M^{2}} $ , and the quark mass M is a function of angular velocity ω. For a psuadoscalar meson, the finite temperature version of the polarization function is$ \Pi_{ps}(\vec{q},{\rm i}\nu_{n}) = -4N_{f} N_{c}T \sum\limits_{s = \pm}\sum\limits_N\int \frac{{\rm d}^{3}\vec{p}}{(2\pi)^{3}} \frac{\left[({\rm i} \tilde{\omega}_{N}+{\rm i} \nu_{n})+\dfrac{1}{2}s\omega+\mu\right]\left[{\rm i} \tilde{\omega}_{N}+\dfrac{1}{2}s\omega+\mu\right]-M^{2}-(\vec{p}+\vec{q})\cdot\vec{p}}{\left[\left({\rm i} \tilde{\omega}_{N}+{\rm i} \nu_{n}+\dfrac{1}{2}s\omega+\mu\right)^{2}-(\vec{p}+\vec{q})^{2}-M^{2}\right]\left[\left({\rm i} \tilde{\omega}_{N}+\dfrac{1}{2}s\omega+\mu\right)^{2}-\vec{p}^{2}-M^{2}\right]}.\tag{A16} $
Seting
$ \vec{q} = 0 $ , the Matsubara summation gives$ \begin{aligned}[b] \Pi_{ps}(0,{\rm i} \nu_{n}) = &N_{f}N_{c}\sum\limits_{s = \pm}\int\frac{{\rm d}^{3}\vec{p}}{(2\pi)^{3}}\left[ {\rm Res}1'(\vec{p},\nu_{n}) \theta \left(-\mu -\frac{s\omega }{2}+E_{p}\right) n_{f}\left(E_{p}-\mu -\frac{s\omega }{2},T\right)\right.\\ &+{\rm Res}3'(\vec{p},\nu_{n}) \theta \left(-\mu -\frac{s\omega }{2}+E_{p}\right) n_{f}\left(E_{p}-\mu -\frac{s\omega }{2},T\right)\\ &-{\rm Res}1'(\vec{p},\nu_{n}) \theta \left(\mu +\frac{s\omega }{2}-E_{p}\right) n_{f}\left(-E_{p}+\mu +\frac{s\omega }{2},T\right) -{\rm Res}2'(\vec{p},\nu_{n}) n_{f}\left(E_{p}+\mu +\frac{s\omega }{2},T\right)\\ &-{\rm Res}3'(\vec{p},\nu_{n}) \theta \left(\mu +\frac{s\omega }{2}-E_{p}\right) n_{f}\left(-E_{p}+\mu +\frac{s\omega }{2},T\right) -{\rm Res}4'(\vec{p},\nu_{n}) n_{f}\left(E_{p}+\mu +\frac{s\omega }{2},T\right)\\ &+{\rm Res}1'(\vec{p},\nu_{n}) \theta \left(\mu +\frac{s\omega }{2}-E_{p}\right) +{\rm Res}3'(\vec{p},\nu_{n}) \theta \left(\mu +\frac{s\omega }{2}-E_{p}\right)\\ &-{\rm Res}1'(\vec{p},\nu_{n})-{\rm Res}3'(\vec{p},\nu_{n})\Big], \end{aligned}\tag{A17} $
where
$ \begin{aligned}[b] {\rm Res}1'(\vec{p},\nu_{n}) = &\frac{{\rm i} \nu_{n} E_{p}+E_{p}^{2}+M^{2}+\vec{p}^{2}}{E_{p} \left(-\nu_{n}^2-2 {\rm i} \nu_{n} E_{p}\right)},\qquad {\rm Res}2'(\vec{p},\nu_{n}) = \frac{{\rm i} \nu_{n} E_{p}+E_{p}^{2}-M^{2}-\vec{p}^{2}}{E_{p} \left(-\nu_{n}^2+2 {\rm i} \nu_{n} E_{p}\right)},\\ {\rm Res}3'(\vec{p},\nu_{n}) = &\frac{-{\rm i} \nu_{n} E_{p}-E_{p}^{2}+M^{2}+\vec{p}^{2}}{E_{p} \left(-\nu_{n}^2+2 {\rm i} \nu_{n} E_{p}\right)},\qquad {\rm Res}4'(\vec{p},\nu_{n}) = \frac{-{\rm i} \nu_{n} E_{p}+E_{p}^{2}-M^{2}-\vec{p}^{2}}{E_{p} \left(-\nu_{n}^2-2 {\rm i} \nu_{n} E_{p}\right)}. \end{aligned} \tag{A18}$
-
For a ρ meson, the polarization function with a one loop contribution can be expressed as
$ \Pi^{\mu\nu,ab} = -{\rm i} \int {\rm d}^{4}\tilde{r}{\rm Tr}_{sfc}\left[{\rm i} \gamma^{\mu}\tau^{a}S(0;\tilde{r}){\rm i} \gamma^{\nu}\tau^{b}S(\tilde{r};0)\right]{\rm e}^{{\rm i} q\cdot \tilde{r}}. \tag{B1}$
Using the approach introduced in Appendix A, it is clear that the charge of the ρ meson will make no difference with the polarization function under rotation. We can obtain the nonzero elements of the matrix
$ \Pi^{\mu\nu}_{\rho} = \left( \begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & \Pi^{11} & \Pi^{12} & 0 \\ 0 & \Pi^{21} & \Pi^{22} & 0 \\ 0 & 0 & 0 & \Pi^{33} \\ \end{array} \right).\tag{B2} $
Using the same method in Appendix A and by setting
$ \vec{q} = 0 $ , we can obtain the nonzero elements$ \begin{aligned}[b] \Pi^{11}(q_{0})x =& N_{f}N_{c}\int \frac{{\rm d}^{4} p}{(2\pi)^{4}} \\ &\times \left\{-\frac{2 M^2-2 \left(p_{0}+\dfrac{\omega}{2}\right) \left(p_{0}+q_{0}-\dfrac{\omega}{2}\right)-2 p_{x}^2+2 p_{y}^2+2 p_{z}^2} {\left[\left(p_{0}+\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right] \left[\left(p_{0}+q_{0}-\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right]} -\frac{2 M^2-2 \left(p_{0}-\dfrac{\omega }{2}\right) \left(p_{0}+q_{0}+\dfrac{\omega }{2}\right)-2 p_{x}^2+2 p_{y}^2+2 p_{z}^2} {\left[\left(p_{0}-\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right] \left[\left(p_{0}+q_{0}+\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right]}\right\}, \end{aligned} \tag{B3}$ $ \begin{aligned}[b] \Pi^{12}(q_{0})=& -{\rm i} N_{f}N_{c}\int \frac{{\rm d}^{4} p}{(2\pi)^{4}} \\ &\times \left\{\frac{2 M^2-2 \left(p_{0}+\dfrac{\omega}{2}\right) \left(p_{0}+q_{0}-\dfrac{\omega}{2}\right)-2 p_{x}^2+2 p_{y}^2+2 p_{z}^2} {\left[\left(p_{0}+\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right] \left[\left(p_{0}+q_{0}-\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right]} -\frac{2 M^2-2 \left(p_{0}-\dfrac{\omega }{2}\right) \left(p_{0}+q_{0}+\dfrac{\omega }{2}\right)-2 p_{x}^2+2 p_{y}^2+2 p_{z}^2} {\left[\left(p_{0}-\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right] \left[\left(p_{0}+q_{0}+\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right]}\right\}, \end{aligned}\tag{B4} $
$ \begin{aligned}[b] \Pi^{21}(q_{0}) =& {\rm i} N_{f}N_{c}\int \frac{{\rm d}^{4} p}{(2\pi)^{4}} \\ &\times \left\{\frac{2 M^2-2 \left(p_{0}+\dfrac{\omega}{2}\right) \left(p_{0}+q_{0}-\dfrac{\omega}{2}\right)+2 p_{x}^2-2 p_{y}^2+2 p_{z}^2} {\left[\left(p_{0}+\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right] \left[\left(p_{0}+q_{0}-\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right]} -\frac{2 M^2-2 \left(p_{0}-\dfrac{\omega }{2}\right) \left(p_{0}+q_{0}+\dfrac{\omega }{2}\right)+2 p_{x}^2-2 p_{y}^2+2 p_{z}^2} {\left[\left(p_{0}-\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right] \left[\left(p_{0}+q_{0}+\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right]}\right\}, \end{aligned}\tag{B5} $
$ \begin{aligned}[b] \Pi^{22}(q_{0}) =& -N_{f}N_{c}\int \frac{{\rm d}^{4} p}{(2\pi)^{4}} \\ &\times \left\{\frac{2 M^2-2 \left(p_{0}+\dfrac{\omega}{2}\right) \left(p_{0}+q_{0}-\dfrac{\omega}{2}\right)-2 p_{x}^2+2 p_{y}^2+2 p_{z}^2} {\left[\left(p_{0}+\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right] \left[\left(p_{0}+q_{0}-\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right]} +\frac{2 M^2-2 \left(p_{0}-\dfrac{\omega }{2}\right) \left(p_{0}+q_{0}+\dfrac{\omega }{2}\right)-2 p_{x}^2+2 p_{y}^2+2 p_{z}^2} {\left[\left(p_{0}-\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right] \left[\left(p_{0}+q_{0}+\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right]}\right\}, \end{aligned} \tag{B6}$
$ \begin{aligned}[b] \Pi^{33}(q_{0}) =& -N_{f}N_{c}\int \frac{{\rm d}^{4} p}{(2\pi)^{4}} \\ &\times \left\{\frac{2 M^2-2 \left(p_{0}-\dfrac{\omega}{2}\right) \left(p_{0}+q_{0}-\dfrac{\omega}{2}\right)+2 p_{x}^2+2 p_{y}^2-2 p_{z}^2} {\left[\left(p_{0}-\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right] \left[\left(p_{0}+q_{0}-\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right]} +\frac{2 M^2-2 \left(p_{0}+\dfrac{\omega }{2}\right) \left(p_{0}+q_{0}+\dfrac{\omega }{2}\right)+2 p_{x}^2+2 p_{y}^2-2 p_{z}^2} {\left[\left(p_{0}+\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right] \left[\left(p_{0}+q_{0}+\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right]}\right\}. \end{aligned}\tag{B7} $
We rewrite the relation in Eq. (20).
$ \begin{aligned}[b] A_{1}^{2} = -(\Pi_{11} - {\rm i} \Pi_{12}),(s_{z} = -1 \text{ for } \rho \text{ meson }),\quad A_{2}^{2}= -\Pi_{11} - {\rm i} \Pi_{12},(s_{z} = +1\text{ for } \rho \text{ meson }),\quad A_{3}^{2} = -\Pi_{33},(s_{z} = 0 \text{ for } \rho \text{ meson }). \end{aligned} \tag{B8}$
The explicit form of the coefficients can be given by
$ A^{2}_{1}(q_{0}) = 2N_{f}N_{c}\int \frac{{\rm d}^{4} p}{(2\pi)^{4}} \frac{2 M^2-2 \left(p_{0}+\dfrac{\omega}{2}\right) \left(p_{0}+q_{0}-\dfrac{\omega}{2}\right)-2 p_{x}^2+2 p_{y}^2+2 p_{z}^2} {\left[\left(p_{0}+\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right] \left[\left(p_{0}+q_{0}-\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right]}, \tag{B9}$
$ A^{2}_{2}(q_{0}) = 2N_{f}N_{c}\int \frac{{\rm d}^{4} p}{(2\pi)^{4}} \frac{2 M^2-2 \left(p_{0}-\dfrac{\omega }{2}\right) \left(p_{0}+q_{0}+\dfrac{\omega }{2}\right)-2 p_{x}^2+2 p_{y}^2+2 p_{z}^2} {\left[\left(p_{0}-\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right] \left[\left(p_{0}+q_{0}+\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right]}, \tag{B10}$
$\begin{aligned}[b] A^{2}_{3}(q_{0}) =& N_{f}N_{c}\int \frac{{\rm d}^{4} p}{(2\pi)^{4}} \left\{\frac{2 M^2-2 \left(p_{0}-\dfrac{\omega}{2}\right) \left(p_{0}+q_{0}-\dfrac{\omega}{2}\right)+2 p_{x}^2+2 p_{y}^2-2 p_{z}^2} {\left[\left(p_{0}-\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right] \left[\left(p_{0}+q_{0}-\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right]}\right.\\ &+\left.\frac{2 M^2-2 \left(p_{0}+\dfrac{\omega }{2}\right) \left(p_{0}+q_{0}+\dfrac{\omega }{2}\right)+2 p_{x}^2+2 p_{y}^2-2 p_{z}^2} {\left[\left(p_{0}+\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right] \left[\left(p_{0}+q_{0}+\dfrac{\omega }{2}\right)^2-\vec{p}^2-M^2\right]}\right\}. \end{aligned}\tag{B11}$
Now, it is clear that
$ \frac{1}{2}A_{1}^{2}(m_{\rho}+\omega)+\frac{1}{2}A_{2}^{2}(m_{\rho}-\omega) = A_{3}^{2}(m_{\rho}). \tag{B12}$
Mass splitting of vector mesons and spontaneous spin polarization under rotation
- Received Date: 2021-09-01
- Available Online: 2022-02-15
Abstract: In this study, we investigate the effect of rotation on the masses of scalar and vector mesons in the framework of the 2-flavor Nambu-Jona-Lasinio model. The existence of rotation produces a tedious quark propagator and a corresponding polarization function. By applying the random phase approximation, the meson mass is numerically calculated. It is found that the behavior of scalar and pseudoscalar meson masses under angular velocity ω is similar to that at a finite chemical potential; both rely on the behavior of the constituent quark mass and reflect the property related to chiral symmetry. However, vector meson ρ masses have a more profound relation to rotation. After analytical and numerical calculations, it turns out that at low temperature and small chemical potential, the mass for spin component