-
Classically, the flat, homogenous, and isotropic universe that we focus on in this paper is described by the Friedman-Lemaitre-Robertson-Walker (FLRW) metric
$ {\rm d}s^2 = -{\rm d}t^2+a^2({\rm d}x^2+{\rm d}y^2+{\rm d}z^2), $
(1) with
$ a $ being the scale factor of the universe, which only depends on$ t $ , based on the homogeneity assumption of the universe. The dynamics of this system is governed by the Hamiltonian, given by [5-7]$ H_{\rm{cl}} = -\frac{3}{8\pi G\gamma^2}\sqrt{p}c^2+H_{\rm{matter}}(p_\phi,\phi), $
(2) where we use the conjugate variables
$ (c,p) $ defined by$ c: = \gamma\dot{a} $ ,$ p: = a^2 $ , where$ \gamma $ represents the Barbero-Immirzi parameter, and$ H_{\rm{matter}}(p_\phi,\phi) $ is the Hamiltonian of a matter field, with$ \phi $ and$ p_\phi $ representing the matter field and its conjugate momentum, respectively. The pair$ (c,p) $ is usually used to coordinatize the phase space of LQC with the Poisson bracket$ \{c,p\} = \dfrac{8\pi G\gamma}{3} $ . The dynamics equation of classical cosmology is described by the following Friedmann and Raychaudhuri equations as$ H^2 = \frac{8\pi G}{3}\rho, $
(3) $ \frac{\ddot{a}}{a} = \dot{H}+H^2 = -\frac{4\pi G}{3}(\rho_\phi+3P_\phi), $
(4) where
$ H: = \dfrac{\dot{a}}{a} $ is the Hubble parameter;$ \rho_\phi $ and$ P_\phi $ are the energy density and pressure of matter, defined as follows:$ \rho_\phi = a^{-3}H_{\rm{matter}}, $
(5) $ P_\phi = -\frac{1}{3} a^{-2}\frac{\partial H_{\rm{matter}}}{\partial a}, $
(6) with the stress-energy tensor of the matter field taking the form
$ \begin{aligned}[b] T_{\mu\nu} =& \rho_\phi U_\mu U_\nu+P_\phi(g_{\mu\nu}+U_\mu U_\nu){}\\ = &\rho_\phi({\rm d}t)_\mu({\rm d}t)_\nu +a^2P_\phi\left[({\rm d}x)_\mu({\rm d}x)_\nu\right.\\ &+\left.({\rm d}y)_\mu({\rm d}y)_\nu+({\rm d}z)_\mu({\rm d}z)_\nu\right], \end{aligned} $
(7) where
$ ({\rm d}t)_\mu, ({\rm d}x)_\mu, ({\rm d}y)_\mu, ({\rm d}z)_\mu $ are the dual coordinate basis vector fields of the FLRW coordinate with$ \mu, \nu = $ $ 0,1,2,3 $ , and$ U_\mu = ({\rm d}t)_\mu $ is the natural comoving observer of the matter field in the universe.The new LQC model involving the Lorentzian term with Thiemann regularization gives a different effective Hamiltonian constraint [10, 11]. To simplify the specific equations, we use the new canonical variables
$ (b,V) $ , which are given by$ b: = c\bar{\mu},\;\;\;\; V: = p^{3/2},\;\;\;\; \{b,V\} = \frac{2\alpha}{\hbar}, $
(8) with
$ \alpha = 2\pi G\hbar\gamma\sqrt{\Delta} $ and$ \bar{\mu} $ being the regularization that is used in the so-called$ \bar{\mu} $ -scheme and defined by$ \bar{\mu}: = \frac{\sqrt{\Delta}}{\sqrt{|p|}},\;\; \Delta: = 2\pi\sqrt{3}\gamma G\hbar\approx2.61\ell_{\rm{Pl}}, $
(9) where
$ \ell_{\rm{Pl}} $ is the Planck length and$ \Delta $ is the smallest non-vanishing area eigenvalue from the full theory. In terms of phase space conjugated variables$ (b,V) $ and$ (\phi,p_\phi) $ with$ \{\phi,p_\phi\} = 1 $ , the equations of motion of the new model with the Lorentzian term given by Thiemann's regularization (TR) can be derived by Hamilton's equation of the effective constraint [10, 11, 13], which reads$ C^{\rm{TR}}_{\rm{eff}} = \frac{p_\phi^2}{2V}-\frac{3}{8\pi G\Delta\gamma^2}V\sin^2(b)\left[1-(1+\gamma^2)\sin^2(b) \right], $
(10) with
$ H_{\rm{matter}}: = \dfrac{p_\phi^2}{2V} $ . Then, we have the equations of motion$ \dot{V} = \left\{V,C^{\rm{TR}}_{\rm{eff}}\right\} = \frac{3}{\gamma\sqrt{\Delta}}V\sin(b)\cos(b)\left[1-2\left(1+\gamma^2\right)\sin^2(b)\right], $
(11) $ \begin{aligned}[b]\dot{b} = &\left\{b,C^{\rm{TR}}_{\rm{eff}}\right\} = -2\pi G\gamma\sqrt{\Delta}\frac{p_\phi^2}{V^2}\\ &-\frac{3}{2\gamma\sqrt{\Delta}}\sin^2(b)\left[1-\left(1+\gamma^2\right)\sin^2(b)\right], \end{aligned}$
(12) and
$ \dot{\phi} = \left\{\phi,C^{\rm{TR}}_{\rm{eff}}\right\} = \frac{p_\phi}{V},\;\;\;\; \dot{p_\phi} = \left\{p_\phi,C^{\rm{TR}}_{\rm{eff}}\right\} = 0. $
(13) Using the constraint equation
$ C^{\rm{TR}}_{\rm{eff}}\approx0 $ , we have$ \sin^2b = \frac{1\pm\sqrt{1-\rho_\phi/\rho_{\rm{c}}^{\rm{TR}}}}{2(1+\gamma^2)}, $
(14) where
$ \rho_\phi = \dfrac{p_\phi^2}{2V^2} $ , and$ \rho_{\rm{c}}^{\rm{TR}} = \dfrac{3}{32\pi G\Delta\gamma^2(1+\gamma^2)} $ is the critical energy density of the new model. Now, we can give the modified Friedmann equation and Raychaudhuri equation as$ H^2 = \left(\frac{\dot{V}}{3V}\right)^2 = \frac{1}{\gamma^2\Delta}f(\rho_\phi) (1-f(\rho_\phi)) \left[1-\rho_\phi/\rho_{\rm{c}}^{\rm{TR}}\right], $
(15) and
$ \begin{aligned}[b] \frac{\ddot{a}}{a} =& \dot{H}+H^2 = \frac{3}{8\gamma^2\Delta\rho_{\rm{c}}^{\rm{TR}}(1+\gamma^2)}(\rho_\phi+P_\phi) \\ &\times(2f(\rho_\phi)-1) (1-2(1+\gamma^2)f(\rho_\phi))\\ &+\frac{1}{\gamma^2\Delta}f(\rho_\phi) (1-f(\rho_\phi)) \left[1+\frac{3}{2}P_\phi/\rho_{\rm{c}}^{\rm{TR}}+\frac{1}{2}\rho_\phi/\rho_{\rm{c}}^{\rm{TR}}\right], \end{aligned} $
(16) where
$ f(\rho_\phi): = \sin^2b = \dfrac{1\pm\sqrt{1-\rho_\phi/\rho_{\rm{c}}^{\rm{TR}}}}{2(1+\gamma^2)} $ , and the continuity equation$ \dot{\rho}_\phi +3H(\rho_\phi+ P_\phi) = 0 $ has been used in the above derivation. These equations are regarded as the effective dynamic equations of the new model of LQC [10, 11], where the quantum geometry correction and the true matter field (the massless scalar field$ \phi $ ) can be combined as effective matter fields in the GR background. Comparing with the standard Friedmann equation and Raychaudhuri equation, we can give the effective energy density and pressure as$ \rho_{\rm{eff}} = \frac{3}{8\pi G\gamma^2\Delta}f(\rho_\phi) (1-f(\rho_\phi)) \left[1-\rho_\phi/\rho_{\rm{c}}^{\rm{TR}} \right], $
(17) $ \begin{aligned}[b]P_{\rm{eff}} = &-\frac{3}{8\pi G\gamma^2\Delta}\Biggr(\frac{(\rho_\phi+P_\phi) (2f(\rho_\phi)-1) (1-2(1+\gamma^2)f(\rho_\phi))}{4\rho_{\rm{c}}^{\rm{TR}}(1+\gamma^2)}\\ &+f(\rho_\phi) (1-f(\rho_\phi)) \left[1+P_\phi/\rho_{\rm{c}}^{\rm{TR}}\right]\Biggr), \end{aligned}$
(18) where the stress-energy tensor of the effective matter field takes the form
$ \begin{aligned}[b]T^{\rm{eff}}_{\mu\nu} = &\rho_{\rm{eff}}({\rm d}t)_\mu({\rm d}t)_\nu +a^2P_{\rm{eff}}[({\rm d}x)_\mu({\rm d}x)_\nu\\ &+({\rm d}y)_\mu({\rm d}y)_\nu+({\rm d}z)_\mu({\rm d}z)_\nu]. \end{aligned} $
(19) Moreover, let us combine the equations of motion, i.e., (12), (13), and (14), and noting that
$ \rho_\phi = \dfrac{p_\phi^2}{2V^2} $ , we can write$ \sin^2b $ as a function of$ \phi $ as$ \sin^2(b(\phi)) = \frac{1}{1+\gamma^2\cosh^2(\sqrt{12\pi G}(\phi-\phi_0))}. $
(20) Then, the evolution of the variables with respect to the physical time
$ \phi $ reads$ \rho_\phi = \rho_\phi(\phi) = \frac{3}{8\pi G\Delta}\left[\frac{\sinh\left(\sqrt{12\pi G}(\phi-\phi_0)\right)}{1+\gamma^2\cosh^2\left(\sqrt{12\pi G}(\phi-\phi_0)\right)}\right]^2, $
(21) $ V = V(\phi) = \sqrt{\frac{4\pi G\Delta p_\phi^2}{3}}\frac{1+\gamma^2\cosh^2\left(\sqrt{12\pi G}(\phi-\phi_0)\right)}{\left|\sinh\left(\sqrt{12\pi G}(\phi-\phi_0)\right)\right|}, $
(22) where the coordinate time
$ t $ and physical time$ \phi $ are related by$ \dfrac{{\rm d}t}{{\rm d}\phi} = V/p_\phi $ , and hence given by$ \frac{{\rm d}t}{{\rm d}\phi} = {\rm{sgn}}(p_\phi)\sqrt{\frac{4\pi G\Delta}{3}}\frac{1+\gamma^2\cosh^2\left(\sqrt{12\pi G}(\phi-\phi_0)\right)}{\left|\sinh\left(\sqrt{12\pi G}(\phi-\phi_0)\right)\right|}. $
(23) The integration of this equation is performed independently in two domains, i.e.,
$ \phi>\phi_0 $ or$ \phi<\phi_0 $ , with the result being given by$ \begin{aligned}[b] t(\phi) =& t_0+\sqrt{\frac{\Delta}{9}}\gamma^2{\rm{sgn}}(p_\phi(\phi-\phi_0))\Biggr[\cosh\left(\sqrt{12\pi G}(\phi-\phi_0)\right)\\ &-\frac{\left(1+\gamma^2\right)}{\gamma^2}\ln\left|\coth\left(\sqrt{3\pi G}(\phi-\phi_0)\right)\right|\Biggr].\end{aligned} $
(24) From this equation, it is clear that the physical time in the two domains, i.e.,
$ \phi>\phi_0 $ and$ \phi<\phi_0 $ , gives a double cover of the cosmic time$ t $ , and these two covers are linked by time reflection symmetry. Hence, we can focus on the domain$ \phi>\phi_0 $ without loss of generality. In this chart, from the point of view of a comoving observer (whose proper time is cosmic time$ t $ ), the infinite past and infinite future correspond to$ \phi\to\phi_0^+ $ and$ \phi\to+\infty $ , respectively. A more explicit discussion shows that for such an observer, the far past consists of a quantum region in which the Universe is undergoing a de Sitter contracting phase dominated by an emergent cosmological constant, while the far future is given by a classically expanding phase dominated by the matter (scalar field).The de Sitter epoch and the bounce in the new LQC model strongly suggest violation of the energy conditions, i.e., the effective stress-energy tensor
$ T_{\rm{eff}} $ given by the effective dynamic equation of the new model of LQC must violate some energy conditions. It is then natural to ask the following. Which specific energy condition is violated in the new model of LQC? Where does it occur? We now discuss these issues in detail. To simplify specific expressions, let us first provide some new notations, as follows:$ \begin{aligned}[b] &\Omega_1(\phi): = \sinh\left(\sqrt{12\pi G}(\phi-\phi_0)\right),\;\; \\ &\Omega_2(\phi): = \cosh\left(\sqrt{12\pi G}(\phi-\phi_0)\right), \end{aligned} $
(25) where we then have
$ \rho_\phi = \rho_\phi(\phi) = \frac{3}{8\pi G\Delta}\left[\frac{\Omega_1(\phi)}{1+\gamma^2\Omega_2^2(\phi)}\right]^2, $
(26) $ V = V(\phi) = \sqrt{\frac{4\pi G\Delta p_\phi^2}{3}}\frac{1+\gamma^2\Omega_2^2(\phi)}{|\Omega_1(\phi)|}, $
(27) $ \frac{{\rm d}t}{{\rm d}\phi} = {\rm{sgn}}(p_\phi)\sqrt{\frac{4\pi G\Delta}{3}}\frac{1+\gamma^2\Omega_2^2(\phi)}{|\Omega_1(\phi)|}, $
(28) $ f(\rho_\phi) = \frac{1}{1+\gamma^2\Omega_2^2(\phi)}. $
(29) Here, we note that the energy density
$ \rho_\phi $ takes the value$ \rho_\phi = \rho_{\rm{c}}^{\rm{TR}} $ when$ \Omega_2^2(\phi) = \dfrac{1+2\gamma^2}{\gamma^2} $ . Based on these conventions and noting that$ \rho_\phi = P_\phi $ , which can be verified by definition (5) with$ H_{\rm{matter}}: = \dfrac{p_\phi^2}{2V} $ , we can reformulate the effective energy density and pressure as$ \rho_{\rm{eff}} = \frac{3}{8\pi G\gamma^2\Delta}\left(\frac{\gamma^2\Omega_2^2(\phi)}{ (1+\gamma^2\Omega_2^2(\phi))^2}\Bigg(1-\frac{\rho_\phi}{\rho_{\rm{c}}^{\rm{TR}}}\Bigg)\right), $
(30) and
$ \begin{aligned}P_{\rm{eff}} = &-\frac{3}{8\pi G\gamma^2\Delta}\left(\frac{\rho_\phi(1-\gamma^2\Omega_2^2(\phi))} {2\rho_{\rm{c}}^{\rm{TR}}(1+\gamma^2)(1+\gamma^2\Omega_2^2(\phi))}\right.\\ &-\left.\frac{\rho_\phi(1-2\gamma^2\Omega_2^2(\phi))}{\rho_{\rm{c}}^{\rm{TR}} (1+\gamma^2\Omega_2^2(\phi))^2}+\frac{\gamma^2\Omega_2^2(\phi)}{ (1+\gamma^2\Omega_2^2(\phi))^2}\right). \end{aligned} $
(31) -
Before turning to a specific calculation, we note that the value of
$ \gamma $ used in numerical calculations is determined by the consistency of the black hole entropy calculation, resulting in a value of$ \gamma\approx0.2375 $ in the Ashtekar-Baez-Corichi-Krasnov (ABCK) and Domagala-Lewandowski (DL) approaches [20-22], or$ \gamma\approx0.2740 $ in the Ghosh and Mitra (GM) as well as Engle, Noui, and Perez (ENP) approaches [23-25]. Then, at the critical point where$ \rho_\phi = \rho_{\rm{c}}^{\rm{TR}} $ , we have$ \Omega_2^2(\phi) = \dfrac{1+2\gamma^2}{\gamma^2} = 6.210 $ for$ \gamma = 0.2375 $ and$ \Omega_2^2(\phi) = \dfrac{1+2\gamma^2}{\gamma^2} = 5.650 $ for$ \gamma = 0.2740 $ . -
The average null energy condition for the effective model is given by
$ \int_{\sigma}T^{\rm{eff}}_{\mu\nu}k^\mu k^\nu {\rm d}l\geqslant 0, $
(32) where the integral is along the arbitrary complete and achronal null geodesic
$ \sigma $ ,$ k^\mu $ denotes the geodesic tangent vector, and$ l $ is an affine parameter. Following the analysis in [15], for the homogeneous and isotropic universe considered here, we choose the tangent vector$ k^\mu $ of$ \sigma $ with affine parameter$ l $ as$ k^\mu = \left(\frac{\partial}{\partial l}\right)^\mu = \frac{1}{a}\left(\frac{\partial}{\partial t}\right)^\mu+\frac{1}{a^2}\left(\frac{\partial}{\partial x}\right)^\mu, $
(33) where
$\left(\dfrac{\partial}{\partial t}\right)^\mu, \left(\dfrac{\partial}{\partial x}\right)^\mu,\left(\dfrac{\partial}{\partial y}\right)^\mu,\left(\dfrac{\partial}{\partial z}\right)^\mu$ is again the coordinate basis vector fields of the FLRW coordinate. Then, we can immediately give the average null energy condition as$ \int_{\sigma}T^{\rm{eff}}_{\mu\nu}k^\mu k^\nu {\rm d}l = \int_{-\infty}^{+\infty}\frac{1}{a}(\rho_{\rm{eff}}+P_{\rm{eff}}){\rm d}t $ (34) $ =\int_{\phi_0}^{+\infty}\dfrac{-\dfrac{3\rho_\phi}{8\pi G\gamma^2\Delta \rho_{\rm{c}}^{\rm{TR}}} \left(\dfrac{(1-\gamma^2\Omega_2^2(\phi))} {2(1+\gamma^2)(1+\gamma^2\Omega_2^2(\phi))}-\dfrac{(1-3\gamma^2\Omega_2^2(\phi))}{ (1+\gamma^2\Omega_2^2(\phi))^2}\right) }{\sqrt[3]{V}}\frac{{\rm d}t}{{\rm d}\phi}{\rm d}\phi \geqslant 0, $
(35) where
$ V = a^3 $ and Eqs. (30) and (31) have been used. Let us further substitute Eqs. (26), (27), and (28) into (35). Then, the integrand of Eq. (35) can be simplified as$ \begin{aligned} \frac{-\dfrac{3\rho_\phi}{8\pi G\gamma^2\Delta \rho_{\rm{c}}^{\rm{TR}}} \left(\dfrac{(1-\gamma^2\Omega_2^2(\phi))} {2(1+\gamma^2)(1+\gamma^2\Omega_2^2(\phi))}-\dfrac{(1-3\gamma^2\Omega_2^2(\phi))}{ (1+\gamma^2\Omega_2^2(\phi))^2}\right) }{\sqrt[3]{V}}\dfrac{{\rm d}t}{{\rm d}\phi} =& -\dfrac{9{\rm{sgn}}(p_\phi)}{32\pi^2G^2\gamma^2\rho_{\rm{c}}^{\rm{TR}}\Delta^2 \sqrt[3]{|p_\phi|}}\left(\sqrt{\frac{4\pi G\Delta}{3}}\right)^{\textstyle\frac{2}{3}}\\ &\times\left(\frac{1-\gamma^2\Omega_2^2(\phi)} {4(1+\gamma^2)(1+\gamma^2\Omega_2^2(\phi))}-\frac{1-3\gamma^2\Omega_2^2(\phi)}{2 (1+\gamma^2\Omega_2^2(\phi))^2}\right)\left(\frac{|\Omega_1(\phi)|}{1+\gamma^2\Omega_2^2(\phi)}\right)^{\textstyle\frac{4}{3}}. \end{aligned} $
(36) Hence, we can focus on the integral
$ \int_{\sigma}T^{\rm{eff}}_{\mu\nu}k^\mu k^\nu {\rm d}l = {\rm{C}}\int^{+\infty}_{\phi_0}\left(\frac{1-\gamma^2\Omega_2^2(\phi)} {4(1+\gamma^2)(1+\gamma^2\Omega_2^2(\phi))}-\frac{1-3\gamma^2\Omega_2^2(\phi)}{2 (1+\gamma^2\Omega_2^2(\phi))^2}\right)\left(\frac{|\Omega_1(\phi)|}{1+\gamma^2\Omega_2^2(\phi)} \right)^{4/3}{\rm d}\phi, $
(37) with
${\rm{C}}: = -\dfrac{9{\rm{sgn}}(p_\phi)}{32\pi^2G^2\gamma^2\rho_{\rm{c}}^{\rm{TR}}\Delta^2 \sqrt[3]{|p_\phi|}}\left(\sqrt{\dfrac{4\pi G\Delta}{3}}\right)^{2/3}$ being a constant. Let us take$ \phi_0 = 0 $ without loss of generality; the result of the above integral is then$ \int_{\sigma}T^{\rm{eff}}_{\mu\nu}k^\mu k^\nu {\rm d}l = 0.05843{\rm{C}}<0, $
(38) for
$ \gamma = 0.2740 $ , or$ \int_{\sigma}T^{\rm{eff}}_{\mu\nu}k^\mu k^\nu {\rm d}l = 0.06749{\rm{C}}<0, $
(39) for
$ \gamma = 0.2375 $ . -
Recalling the FLRW metric
$ {\rm d}s^2 = -{\rm d}t^2+a^2({\rm d}x^2+{\rm d}y^2+ $ $ {\rm d}z^2) $ , we can choose an orthogonal and normalized basis, which is given by$ {\rm d}t' = {\rm d}t,\;\;\;\; {\rm d}x' = a{\rm d}x,\;\;\;\; {\rm d}y' = a{\rm d}y,\;\;\;\; {\rm d}z' = a{\rm d}z. $
(40) Then, the effective energy and momentum tensor takes the formulation
$ T^{\rm{eff}}_{\mu\nu} = \rho_{\rm{eff}}({\rm d}t')_\mu({\rm d}t')_\nu+ P_{\rm{eff}}\left(({\rm d}x')_\mu({\rm d}x')_\nu+ $ $ ({\rm d}y')_\mu({\rm d}y')_\nu+({\rm d}z')_\mu({\rm d}z')_\nu\right) $ . The dominant and strong energy conditions require$ \rho_{\rm{eff}}\geqslant |P_{\rm{eff}}|\;\; ({\rm dominant \;\; energy \;\; condition}), $
(41) and
$ \rho_{\rm{eff}}+P_{\rm{eff}}\geqslant 0\ {\rm{and}}\ \ \rho_{\rm{eff}}+3P_{\rm{eff}}\geqslant 0, \;\;({\rm strong\;\; energy \;\; condition}), $
(42) respectively.
Now, let us discuss the dominant and strong energy conditions. First, note that the dominant energy condition
$ \rho_{\rm{eff}}\geqslant|P_{\rm{eff}}| $ is equivalent to$ \rho_{\rm{eff}}\geqslant P_{\rm{eff}}\geqslant $ $ -\rho_{\rm{eff}} $ , which can be expressed explicitly as$ P_{\rm{eff}}\geqslant -\rho_{\rm{eff}}\ \mapsto \;\; -\gamma^4\Omega_2^4(\phi)+6(1+\gamma^2)\gamma^2\Omega_2^2(\phi)-2\gamma^2-1\leqslant 0, $
(43) and
$ \begin{aligned}[b] \rho_{\rm{eff}}\geqslant &P_{\rm{eff}}\ \mapsto\;\; \frac{\rho_\phi(-\gamma^4\Omega_2^4(\phi)+2(1+\gamma^2)\gamma^2\Omega_2^2(\phi)-2\gamma^2-1)} {2\rho_{\rm{c}}^{\rm{TR}}(1+\gamma^2)}\\ &+2\gamma^2\Omega_2^2(\phi)\geqslant 0, \end{aligned} $
(44) where Eqs. (30) and (31) have been used. These two equations can be discussed separately. First, Eq. (44) requires that
$ 3(1+\gamma^2)-\sqrt{9(1+\gamma^2)^2-(2\gamma^2+1)}\geqslant\gamma^2\Omega_2^2(\phi) $ or$ \gamma^2\Omega_2^2(\phi)\geqslant 3(1+\gamma^2)+\sqrt{9(1+\gamma^2)^2-(2\gamma^2+1)} $ . For$ \gamma = $ $ 0.2375 $ , we have$ \Omega_2^2(\phi)\leqslant 3.203 $ or$ \Omega_2^2(\phi)\geqslant 109.1 $ . For$ \gamma = 0.2740 $ , we have$ \Omega_2^2(\phi)\leqslant 2.445 $ or$ \Omega_2^2(\phi)\geqslant 83.48 $ . Also, it can be verified that Eq. (44) always holds when (43) is satisfied (see Figs. 1 and 2). Now, we conclude that the dominant energy condition is satisfied if$ \Omega_2^2(\phi)\leqslant 3.203 $ or$ \Omega_2^2(\phi)\geqslant 109.1 $ for$ \gamma = 0.2375 $ , while it is satisfied if$ \Omega_2^2(\phi)\leqslant 2.445 $ or$ \Omega_2^2(\phi)\geqslant 83.48 $ for$ \gamma = 0.2740 $ .Figure 1. (color online) Behavior of
$ \rho_{\rm{eff}} $ ,$ P_{\rm{eff}} $ , and energy conditions for$ \gamma = 0.2375 $ and$1.000\leqslant \Omega_2^2(\phi)\leqslant 250.0.$ Figure 2. (color online) Behavior of
$ \rho_{\rm{eff}} $ ,$ P_{\rm{eff}} $ , and energy conditions for$ \gamma = 0.2375 $ and$1.000\leqslant \Omega_2^2(\phi)\leqslant 500.0.$ A similar calculation can be given for the strong energy condition (42). The first equation in Eqs. (42) requires
$ \begin{aligned}\rho_{\rm{eff}}+P_{\rm{eff}} =& \frac{3\rho_\phi}{8\pi G\gamma^2\Delta\rho_{\rm{c}}^{\rm{TR}}}\frac{\gamma^4\Omega_2^4(\phi) -6(1+\gamma^2)\gamma^2\Omega_2^2(\phi)+(1+2\gamma^2)} {2(1+\gamma^2)(1+\gamma^2\Omega_2^2(\phi))^2} \\ \geqslant & 0,\end{aligned} $
(45) which holds if
$ 3(1+\gamma^2)-\sqrt{9(1+\gamma^2)^2-(2\gamma^2+1)}\geqslant \gamma^2\Omega_2^2(\phi), $
(46) or
$ \gamma^2\Omega_2^2(\phi)\geqslant 3(1+\gamma^2)+\sqrt{9(1+\gamma^2)^2-(2\gamma^2+1)}. $
(47) For
$ \gamma = 0.2375 $ , we have the corresponding numerical solution$ \Omega_2^2(\phi)\leqslant 3.203 $ or$ \Omega_2^2(\phi)\geqslant 109.1 $ , while for$ \gamma = $ $ 0.2740 $ , we have$ \Omega_2^2(\phi)\leqslant 2.445 $ or$ \Omega_2^2(\phi)\geqslant 83.48 $ . The second equation in Eqs. (42) requires$ \begin{aligned}[b] \rho_{\rm{eff}}+3P_{\rm{eff}} =& -\frac{3}{8\pi G\gamma^2\Delta}\left(\frac{3\rho_\phi(1-\gamma^2\Omega_2^2(\phi))} {2\rho_{\rm{c}}^{\rm{TR}}(1+\gamma^2)(1+\gamma^2\Omega_2^2(\phi))}\right.\\ &\left.-\frac{\rho_\phi(3-7\gamma^2\Omega_2^2(\phi))}{\rho_{\rm{c}}^{\rm{TR}} (1+\gamma^2\Omega_2^2(\phi))^2}+\frac{2\gamma^2\Omega_2^2(\phi)}{ (1+\gamma^2\Omega_2^2(\phi))^2}\right)\geqslant 0, \end{aligned} $
(48) which can be solved for
$ \Omega_2^2(\phi) $ by a numerical method. For$ \gamma = 0.2375 $ , the above equation holds if$ \Omega_2^2(\phi)\geqslant 146.9 $ . For$ \gamma = 0.2740 $ , the above equation holds if$ \Omega_2^2(\phi)\geqslant 112.3 $ . Then, noting the solution of Eq. (45), we can conclude that the strong energy condition holds if$ \Omega_2^2(\phi)\geqslant 146.9 $ for$ \gamma = 0.2375 $ , or if$ \Omega_2^2(\phi)\geqslant 112.3 $ for$ \gamma = $ $ 0.2740 $ .Now, we are ready to have an overall look at the violation of dominant and strong energy conditions. Recall that the bounce occurs at the point
$ \Omega_2^2(\phi) = \dfrac{1+2\gamma^2}{\gamma^2} $ . It is easy to see that the dominant energy condition with respect to the effective stress-energy tensor in the new model of LQC is violated at the period$ 3.203\leqslant $ $ \Omega_2^2(\phi)\leqslant 109.1 $ (for$ \gamma = 0.2375 $ ) or$ 2.445\leqslant \Omega_2^2(\phi)\leqslant 83.48 $ (for$ \gamma = 0.2740 $ ) around the bounce point, while the strong energy condition is violated at the period$ \Omega_2^2(\phi)\leqslant 146.9 $ (for$ \gamma = 0.2375 $ ) or$ \Omega_2^2(\phi)\leqslant 112.3 $ (for$ \gamma = 0.2740 $ ). Hence, we can conclude that the strong energy condition is violated not only at a period around the bounce point, but also the whole period from the bounce point to the classical phase corresponding to the de Sitter epoch. All of these results for$ \gamma = 0.2375 $ are illustrated in Fig. 1 and Fig. 2. There are two branches of the evolution of the universe divided by the bounce point at$ \Omega_2^2(\phi) = \dfrac{1+2\gamma^2}{\gamma^2} = 6.210 $ for$ \gamma = 0.2375 $ . The effective pressure$ P_{\rm{eff}} $ is always negative in the branch that contains the de Sitter epoch, while it is negative only in a period near the bounce point in the other branch.
Energy conditions in the new model of loop quantum cosmology
- Received Date: 2021-06-28
- Available Online: 2021-11-15
Abstract: Recently, a de-Sitter epoch has been found in the new model of loop quantum cosmology, which is governed by the scalar constraint with both Euclidean and Lorentz terms. The singularity free bounce in the new LQC model and the emergent cosmology constant strongly suggest that the effective stress-energy tensor induced by quantum corrections must violate the standard energy conditions. In this study, we perform an explicit calculation to analyze the behaviors of specific representative energy conditions, i.e., average null, strong, and dominant energy conditions. We reveal that the average null energy condition is violated at all times, while the dominant energy condition is violated only at a period around the bounce point. The strong energy condition is violated not only at a period around the bounce point but also in the whole period from the bounce point to the classical phase corresponding to the de Sitter period. Our results will shed some light on the construction of a wormhole and time machine, which usually require exotic matter to violate energy conditions.