-
As we are interested in near-threshold incident pion beam momenta below 2.0 GeV/c, we have accounted for the following direct elementary
$ K^*(892)^+ $ production process, which has the lowest free production threshold momentum (1.84 GeV/c):$ \pi^-+p \to K^*(892)^++\Sigma^-. $
(1) We can ignore in the momentum domain of interest the contribution to the
$ K^*(892)^+ $ yield from the processes$ \pi^-p \to {K^*(892)^+}\Lambda{\pi^-} $ and$\pi^-N \to {K^*(892)^+}\Sigma{\pi} $ due to larger their production thresholds ($ \approx 1.97 $ and 2.15 GeV/c, respectively) in${\pi^-}p $ and$ \pi^-N $ collisions. Moreover, taking into consideration the results of the study [9] of pion-induced$\phi $ meson production on 12C and 184W nuclei at beam momentum of 1.7 GeV/c, we neglect in this domain by analogy with [9] the secondary pion–nucleon${\pi}N \to {K^*(892)^+}\Lambda $ and$ {\pi}N \to {K^*(892)^+}\Sigma $ production processes. For numerical simplicity, in our calculations we will account for the medium modification of the final$ K^*(892)^+$ meson participating in production process (1) by adopting its average in-medium mass$<m_{K^*}^*> $ instead of its local effective mass$ m_{K^*}^*(|{{r}}|) $ in the in-medium cross section of this process, with$ <m_{K^*}^*> $ defined according to Refs. [9, 10] as$ <m^*_{K^*}> = m_{K^*}+V_0\frac{<{\rho_N}>}{{\rho_0}}. $
(2) Here,
$ m_{K^*} $ is the$ K^*(892)^+ $ free space mass,$ V_0 $ is the$ K^*(892)^+ $ effective scalar nuclear potential (or its in-medium mass shift) at normal nuclear matter density$ {\rho_0} $ , and$ <{\rho_N}> $ is the average nucleon density. For target nuclei$ ^{12} $ C and$ ^{184} $ W, the ratio$ <{\rho_N}>/{\rho_0} $ was chosen as 0.55 and 0.76, respectively, in the present work. With regard to the quantity$ V_0 $ , in line with the above-mentioned, we will adopt the five following options: i)$ V_0 = -40 $ MeV, ii)$ V_0 = -20 $ MeV, iii)$ V_0 = 0 $ MeV, iv)$ V_0 = +20 $ MeV, and v)$ V_0 = +40 $ MeV throughout the study. Following the predictions of the chiral effective field theory approach [18, 40] and the SU(6) quark model [41, 42] for the fate of hyperons in nuclear matter and phenomenological information deduced from hypernuclear data [6, 43], i.e., that the$ \Sigma $ hyperon experiences only a moderately repulsive nuclear potential of about 10–40 MeV at central nuclear densities and finite momenta as well as a weakly attractive potential at the surface of the nucleus, we will ignore the modification of the mass of the$ \Sigma^- $ hyperons, produced together with the$ K^*(892)^+ $ mesons in process (1), in the nuclear medium. The in-medium threshold energy①$ \sqrt{s^*_{\rm{th}}} = <m_{K^*}^*>+m_{\Sigma^-} $ of process (1) resembles that for the final charged particles, also influenced by the respective Coulomb potentials, due to the cancellation of these potentials, we will also neglect their impact on these particles here.The total energy
$ E^{\prime}_{K^*} $ of the$ K^*(892)^+ $ meson in nuclear matter is expressed via its average effective mass$ <m^*_{K^*}> $ and its in-medium momentum$ {{p}}^{\prime}_{K^*} $ by the expression [9, 10]:$ E^{\prime}_{K^*} = \sqrt{\left({{p}}^{\prime}_{K^*}\right)^2+\left(< m^*_{K^*}>\right)^2}. $
(3) The momentum
$ {{p}}^{\prime}_{K^*} $ is related to the vacuum$ K^*(892)^+ $ momentum$ {{p}}_{K^*} $ as follows [9, 10]:$ E^{\prime}_{K^*} = \sqrt{\left({{p}}^{\prime}_{K^*}\right)^2+\left(<m^*_{K^*}>\right)^2} = \sqrt{{{p}}^2_{K^*}+m^2_{K^*}} = E_{K^*}, $
(4) where
$ E_{K^*} $ is the$ K^*(892)^+ $ total energy in a vacuum.As the
$ K^*(892)^+ $ –nucleon total cross section is expected to be small [44], we will neglect both inelastic and quasielastic$ {K^*(892)^+}N $ interactions in the present study. Then, accounting for the distortion of the incident pion in nuclear matter and the attenuation of the flux of the$ K^*(892)^+ $ mesons in the nucleus due to their decays here② as well as using the results given in [9, 10, 21], we represent the inclusive differential cross section for the production of$ K^*(892)^+ $ mesons with vacuum momentum$ {{p}}_{K^*} $ in nuclei in the direct process (1) as follows:$\begin{split} \frac{{\rm d}\sigma_{{\pi^-}A \to {K^*(892)^+}X}^{({\rm{prim}})} ({{p}}_{\pi^-},{{p}}_{K^*})} {{\rm d}{{p}}_{K^*}} = I_{V}[A,\theta_{K^*}] \left(\frac{Z}{A}\right) \left<\frac{{\rm d}\sigma_{{\pi^-}p\to K^*(892)^+{{\Sigma^-}}}\left({{p}}_{\pi^-}, {{p}}^{\prime}_{{K^*}}\right)}{{\rm d}{{p}}^{\prime}_{{K^*}}}\right>_A\frac{{\rm d}{{p}}^{\prime}_{{K^*}}} {{\rm d}{{p}}_{{K^*}}}, \end{split}$
(5) where
$ \begin{split} I_{V}[A,\theta_{{K^*}}] =& A\int\limits_{0}^{R}r_{\bot}{\rm d}r_{\bot} \int\limits_{-\sqrt{R^2-r_{\bot}^2}}^{\sqrt{R^2-r_{\bot}^2}}{\rm d}z \rho\left(\sqrt{r_{\bot}^2+z^2}\right)\exp {\left[-\sigma_{{\pi^-}N}^{\rm{tot}}A\int\limits_{-\sqrt{R^2-r_{\bot}^2}}^{z} \rho\left(\sqrt{r_{\bot}^2+x^2}\right){\rm d}x\right]}\\& \times \int\limits_{0}^{2\pi}{\rm d}{\varphi}\exp {\left[- \int\limits_{0}^{l(\theta_{{K^*}},\varphi)}\frac{{\rm d}x} {\lambda_{K^*}\left(\sqrt{x^2+2a(\theta_{{K^*}},\varphi)x+b+R^2}\right)}\right]}, \end{split}$
(6) $ a(\theta_{K^*},\varphi) = z\cos{\theta_{K^*}}+ r_{\bot}\sin{\theta_{K^*}}\cos{\varphi},\ b = r_{\bot}^2+z^2-R^2, $
(7) $ l(\theta_{K^*},\varphi) = \sqrt{a^2(\theta_{K^*},\varphi)-b}- a(\theta_{K^*},\varphi), $
(8) $ \lambda_{K^*}(|{{r}}|) = \dfrac{p^{\prime}_{K^*}}{m^*_{K^*}(|{{r}}|)\Gamma_{K^*}},\,\,\,\;\; m^*_{K^*}(|{{r}}|) = m_{K^*}+V_0\dfrac{{\rho_N}(|{{r}}|)}{{\rho_0}} $
(9) and
$ \begin{array}{l} \left<\dfrac{{\rm d}\sigma_{{\pi^-}p\to K^*(892)^+{\Sigma^-}}\left({{p}}_{\pi^-},{{p}}^{\prime}_{K^*}\right)} {{\rm d}{{p}}^{\prime}_{K^*}}\right>_A = \int\int P_A\left({{p}}_t,E\right){\rm d}{{p}}_t{\rm d}E \times \left\{\dfrac{{\rm d}\sigma_{{\pi^-}p\to K^*(892)^+{\Sigma^-}}[\sqrt{s},<m_{K^*}^*>, m_{\Sigma^-},{{p}}^{\prime}_{K^*}]} {{\rm d}{{p}}^{\prime}_{K^*}}\right\}, \end{array}$
(10) $ s = (E_{\pi^-}+E_t)^2-({{p}}_{\pi^-}+{{p}}_t)^2, $
(11) $ E_t = M_A-\sqrt{(-{{p}}_t)^2+(M_{A}-m_{N}+E)^{2}}. $
(12) Here,
$ {\rm d}\sigma_{{\pi^-}p\to {K^*(892)^+}{\Sigma^-}}[\sqrt{s},<m_{K^*}^*>,m_{\Sigma^-},{{p}}^{\prime}_{K^*}] /{\rm d}{{p}}^{\prime}_{K^*} $ is the off-shell inclusive differential cross section for the production of the$ {K^*(892)^+} $ meson and$ \Sigma^- $ hyperon with modified mass$ <m_{K^*}^*> $ and free mass$ m_{\Sigma^-} $ , respectively. The$ K^*(892)^+ $ meson is produced with in-medium momentum$ {{p}}^{\prime}_{{K^*}} $ in process (1) at the$ {\pi^-}p $ center-of-mass energy$ \sqrt{s} $ .$ E_{\pi^-} $ and$ {{p}}_{\pi^-} $ are the total energy and momentum of the incident pion ($ E_{\pi^-} = \sqrt{m^2_{\pi}+{{p}}^2_{\pi^-}} $ ;$ m_{\pi} $ is the free-space pion mass);$ \rho({{r}}) $ and$ P_A({{p}}_t,E) $ are the local nucleon density and the spectral function of the target nucleus A normalized to unity (the concrete information about these quantities, used in the subsequent calculations, is given in Refs. [9, 45-47]);$ {{p}}_t $ and E are the internal momentum and removal energy of the struck target proton involved in the collision process (1);$ \sigma_{{\pi^-}N}^{\rm{tot}} $ is the total cross section of the free$ {\pi^-}N $ interaction (we use in our calculations the value of$ \sigma_{{\pi^-}N}^{\rm{tot}} = 35 $ mb for initial pion momenta of interest); Z and A are the numbers of protons and nucleons in the target nucleus, and$ M_{A} $ and R are its mass and radius;$ m_N $ is the free-space nucleon mass; and$ \theta_{K^*} $ is the polar angle of vacuum momentum$ {{p}}_{{K^*}} $ in the laboratory system with the z-axis directed along the momentum$ {{p}}_{{\pi^-}} $ of the incident pion beam.In line with [9], we assume that the off-shell differential cross section
$ {\rm d}\sigma_{{\pi^-}p \to {K^*(892)^+}{\Sigma^-}}[\sqrt{s},<m_{K^*}^*>,m_{\Sigma^-}, {{p}}^{\prime}_{K^*}] /$ $ {\rm d}{{p}}^{\prime}_{K^*} $ for$ K^*(892)^+ $ production in channel (1) is equivalent to the respective on-shell cross section calculated for the off-shell kinematics of this channel as well as for the final$ K^*(892)^+ $ and hyperon in-medium mass$ <m_{K^*}^*> $ and free mass$ m_{\Sigma^-} $ , respectively. Accounting for the two-body kinematics of process (1), we obtain the following expression for the differential cross section$ {\rm d}\sigma_{{\pi^-}p \to {K^*(892)^+}{\Sigma^-}} $ $[\sqrt{s},<m_{K^*}^*>,m_{\Sigma^-},{{p}}^{\prime}_{K^*}] /{\rm d}{{p}}^{\prime}_{K^*} $ :$ \begin{split} \dfrac{{\rm d}\sigma_{\pi^{-}p \to {K^*(892)^+}{\Sigma^-}}[\sqrt{s},<m_{K^*}^*>,m_{\Sigma^-},{{p}}^{\prime}_{K^*}]} {{\rm d}{{p}}^{\prime}_{K^*}} = & \dfrac{\pi}{I_2[s,<m_{K^*}^*>,m_{\Sigma^-}]E^{\prime}_{K^*}} \dfrac{{\rm d}\sigma_{{\pi^{-}}p \to {K^*(892)^+}{\Sigma^-}}\left(\sqrt{s},<m_{K^*}^*>,m_{\Sigma^-},\theta^*_{K^*}\right)} {{\rm d}{{\Omega}}^*_{K^*}} \\& \times \dfrac{1}{\left(\omega+E_t\right)}\delta\left[\omega+E_t-\sqrt{m_{\Sigma^-}^2+\left({{Q}}+{{p}}_t\right)^2}\right], \begin{array}{l} \end{array} \end{split} $
(13) where
$ I_2[s,<m_{K^*}^*>,m_{\Sigma^-}] = \frac{\pi}{2} \frac{\lambda[s,\left(<m_{K^*}^*>\right)^{2},m_{\Sigma^-}^{2}]}{s}, $
(14) $ \lambda\left(x,y,z\right) = \sqrt{{\left[x-\left({\sqrt{y}}+{\sqrt{z}}\right)^2\right]}{\left[x- \left({\sqrt{y}}-{\sqrt{z}}\right)^2\right]}}, $
(15) $ \omega = E_{\pi^-}-E^{\prime}_{K^*}, \,\,\,\,\;\;{{Q}} = {{p}}_{\pi^-}-{{p}}^{\prime}_{K^*}. $
(16) Here,
$ {\rm d}\sigma_{{\pi^{-}}p \to {K^*(892)^+}{\Sigma^-}}(\sqrt{s},<m_{K^*}^*>,m_{\Sigma^-},\theta^*_{K^*}) /{\rm d}{{\Omega}}^*_{K^*} $ is the off-shell differential cross section for the production of$ K^*(892)^+ $ mesons in process (1) under the polar angle$ \theta^*_{K^*} $ in the$ {\pi^-}p $ c.m.s. It is assumed to be isotropic in our calculations of$ K^*(892)^+ $ meson production in$ {\pi^-}A $ reactions:$ \frac{{\rm d}\sigma_{{\pi^{-}}p \to {K^*(892)^+}{\Sigma^-}}(\sqrt{s},<m_{K^*}^*>,m_{\Sigma^-},\theta^*_{K^*})} {{\rm d}{\bf{\Omega}}^*_{K^*}} = \frac{\sigma_{{\pi^{-}}p \to {K^*(892)^+}{\Sigma^-}}(\sqrt{s},\sqrt{s^*_{\rm{th}}})}{4\pi}. $
(17) Here,
$ \sigma_{{\pi^{-}}p \to {K^*(892)^+}{\Sigma^-}}(\sqrt{s},\sqrt{s^*_{\rm{th}}}) $ is the "in-medium" total cross section of channel (1) with the threshold energy$ \sqrt{s^*_{\rm{th}}} $ defined above. According to the above-mentioned, it is equivalent to the vacuum cross section$ \sigma_{{\pi^{-}}p \to {K^*(892)^+}{\Sigma^-}}(\sqrt{s},\sqrt{s_{\rm{th}}}) $ , in which the vacuum threshold energy$ \sqrt{s_{\rm{th}}} = m_{K^*}+m_{\Sigma^-} = 2.089 $ GeV is replaced by the in-medium one,$ \sqrt{s^*_{\rm{th}}} $ , and the free collision energy$ s = (E_{\pi^-}+m_N)^2-{{p}}_{\pi^-}^2 $ by the in-medium expression (11). For the free total cross section$ \sigma_{{\pi^{-}}p \to {K^*(892)^+}{\Sigma^-}}(\sqrt{s},\sqrt{s_{\rm{th}}}) $ we have adopted the following parametrization of the available scarce experimental data [48]:$ \begin{split}\sigma_{{\pi}^-p \to {K^*(892)^+}{\Sigma^-}}(\sqrt{s},\sqrt{s_{\rm{th}}}) = \left\{ \begin{array}{l} 67.30\left(\sqrt{s}-\sqrt{s_{\rm{th}}}\right)^{0.287}\; [{\text µ}{\rm{b}}] \rm{for $0 < \sqrt{s}-\sqrt{s_{\rm{th}}} \leqslant 0.355\; {\rm{GeV}}$}, \\ 5.66/\left(\sqrt{s}-\sqrt{s_{\rm{th}}}\right)^{2.103}\; [{\text µ}{\rm{b}}] \rm{for $\sqrt{s}-\sqrt{s_{\rm{th}}} > 0.355\; {\rm{GeV}}$}. \end{array} \right. \end{split}$
(18) As can be seen from Fig. 1, the parametrization (18) (solid line) fits the data [48] (full circles)③ for the
$ {\pi^-}p \to {K^*(892)^+}{\Sigma^-} $ reaction reasonably well. One can also see that the on-shell cross section$\sigma_{{\pi}^-p \to {K^*(892)^+}{\Sigma^-}} $ amounts to approximately 31 μb for the initial pion momentum of 2.0 GeV/c and a free target proton at rest. The off-shell cross sections$ \sigma_{{\pi}^-p \to {K^*(892)^+}{\Sigma^-}}$ , calculated in line with Eqs. (11), (12), and (18) for pion momenta of 1.4 and 1.7 GeV/c, a target proton bound in$ ^{12} $ C by 16 MeV, and with relevant internal momenta of 500 and 250 MeV/c, are about 28 and 35 μb, respectively④. This opens up the possibility of measuring the$ K^*(892)^+ $ yield in$ \pi^-A $ reactions both at the near-threshold and far-below-threshold beam momenta at the GSI pion beam facility with a sizable strength. It should be pointed out that the use in the calculations for the in-medium$K^*(892)^+ $ angular distribution of the same anisotropic form as was adopted in Ref. [45] for the$ {\pi^-}p \to K^+\Sigma^- $ reaction, namely:${\rm d}\sigma_{{\pi^{-}}p \to {K^*(892)^+}{\Sigma^-}}$ $(\sqrt{s}, <m_{K^*}^*>, m_{\Sigma^-}, \theta^*_{K^*})/ {\rm d}{\bf{\Omega}}^*_{K^*} = \left[1+|\cos{\theta^*_{K^*}}|\right] $ $ \sigma_{{\pi^{-}}p \to {K^*(892)^+}{\Sigma^-}}(\sqrt{s}, \sqrt{s^*_{\rm{th}}})/6\pi $ instead of isotropic one (17) leads to only insignificant corrections to the absolute$ K^*(892)^+ $ momentum differential cross sections presented in Figs. 2, 3 and 4. They are about 5%–10% for subthreshold pion momenta of 1.4 and 1.7 GeV/c (at which these cross sections possess a high sensitivity to changes in the in-medium shift$V_0 $ of the$ K^*(892)^+ $ mass) as well as ~15%–20% for incident pion momentum of 2.0 GeV/c, as our calculations showed. The corrections to the predicted in the paper on the basis of Eq. (17) enhancement factors (see below) are even smaller. They are about 3%–5% at beam momenta of interest. In view of numerical results given below, this means that employing of the isotropic distribution (17) in calculations of the near-threshold$ K^*(892)^+ $ production in${\pi^-}A $ reactions with the aim of studying of a possibility of distinguishing between considered options for the$ K^*(892)^+$ in-medium mass shift is very well justified. In Eqs. (6)–(8) we assume that the direction of the$K^*(892)^+ $ three-momentum is not changed during the propagation from its production point inside the nucleus in the relatively weak nuclear field, considered in the work, to the vacuum far away from the nucleus. As a consequence, the quantities$ \left<{\rm d}\sigma_{{\pi^-}p\to K^*(892)^+{{\Sigma^-}}} ({{p}}_{\pi^-}, {{p}}^{\prime}_{{K^*}})/{\rm d}{{p}}^{\prime}_{{K^*}}\right>_A $ and$ {\rm d}{{p}}^{\prime}_{{K^*}}/{\rm d}{{p}}_{{K^*}} $ , entered into Eq. (5), can be put in the simple forms$ \left<{\rm d}\sigma_{{\pi^-}p\to K^*(892)^+{{\Sigma^-}}}(p_{\pi^-}, p^{\prime}_{{K^*}}, \theta_{K^*})/ p^{\prime2}_{K^*}{\rm d}p^{\prime}_{{K^*}}{\rm d}{{\Omega}}_{K^*}\right>_A $ and$ p^{\prime}_{{K^*}}/p_{{K^*}} $ , where$ {\bf{\Omega}}_{K^*}(\theta_{K^*},\varphi_{K^*}) = {{p}}_{{K^*}}/p_{{K^*}} $ . Here,$ \varphi_{K^*} $ is the azimuthal angle of the$ K^*(892)^+ $ momentum$ {{p}}_{K^*} $ in the laboratory system. Accounting for the HADES spectrometer acceptance as well as the fact that in the considered energy region$ K^*(892)^+ $ mesons are mainly emitted, due to the kinematics in the forward directions⑤, we will calculate the$ K^*(892)^+ $ momentum differential and total production cross sections on$ ^{12} $ C and$ ^{184} $ W target nuclei for laboratory solid angle$ {\Delta}{\bf{\Omega}}_{K^*} $ =$ 0^{\circ} \leqslant \theta_{K^*} \leqslant 45^{\circ} $ and$ 0 \leqslant \varphi_{K^*} \leqslant 2{\pi} $ . Upon integrating the full inclusive differential cross section (5) over this angular domain, we can represent the differential cross section for$ K^*(892)^+ $ meson production in$ {\pi^-}A $ collisions from the direct process (1), corresponding to the HADES acceptance window, in the following form:Figure 1. (color online) Total cross section for the reaction
$ \pi^-p \to {K^*(892)^+}{\Sigma^-} $ as a function of the excess energy$ \sqrt{s}-\sqrt{s_{\rm{th}}} $ . The left and right arrows indicate the excess energies$ \sqrt{s}-\sqrt{s_{\rm{th}}} $ = 46 MeV and$ \sqrt{s}-\sqrt{s_{\rm{th}}} $ = 99 MeV corresponding to the incident pion momenta of 1.4 and 1.7 GeV/c and a target proton bound in$ ^{12} $ C by 16 MeV and with momenta of 500 and 250 MeV/c, respectively. The latter ones are directed opposite to the incoming pion beam. The middle arrow indicates the excess energy$ \sqrt{s}-\sqrt{s_{\rm{th}}} $ = 70 MeV corresponding to the initial pion momentum of 2.0 GeV/c and a free target proton at rest. For the rest of the notation see the text.Figure 2. (color online) Momentum differential cross sections for the production of
$ K^*(892)^+ $ mesons from the primary$ {\pi^-}p \to {K^*(892)^+}{\Sigma^-} $ channel in the laboratory polar angular range of 0°–45° in the interaction of$ \pi^- $ mesons of momentum 2.0 GeV/c with$ ^{12} $ C (left) and$ ^{184} $ W (right) nuclei, calculated for different values of the$ K^*(892^+) $ meson effective scalar potential$ V_0 $ at density$ \rho_0 $ indicated in the inset. The arrows indicate the boundary between the low-momentum and high-momentum regions of the$ K^*(892)^+ $ spectra.Figure 3. (color online) As in Fig. 2, but for the incident pion beam momentum of 1.7 GeV/c.
Figure 4. (color online) As in Fig. 2, but for the incident pion beam momentum of 1.4 GeV/c.
$ \begin{split} \frac{{\rm d}\sigma_{{\pi^-}A\to {K^*(892)^+}X}^{({\rm{prim}})} (p_{\pi^-},p_{K^*})}{{\rm d}p_{K^*}} =& \int\limits_{{\Delta}{\bf{\Omega}}_{K^*}}^{}{\rm d}{\bf{\Omega}}_{K^*} \frac{{\rm d}\sigma_{{\pi^-}A\to {K^*(892)^+}X}^{({\rm{prim}})} ({{p}}_{\pi^-},{{p}}_{K^*})}{d{{p}}_{K^*}}p_{K^*}^2 \\ =& 2{\pi}\left(\frac{Z}{A}\right)\left(\frac{p_{K^*}}{p^{\prime}_{K^*}}\right) \int\limits_{\cos45^{\circ}}^{1}{\rm d}\cos{{\theta_{K^*}}}I_{V}[A,\theta_{K^*}] \left<\frac{{\rm d}\sigma_{{\pi^-}p\to {K^*(892)^+}{\Sigma^-}}(p_{\pi^-}, p^{\prime}_{K^*},\theta_{K^*})}{{\rm d}p^{\prime}_{K^*}{\rm d}{\bf{\Omega}}_{K^*}}\right>_A. \end{split} $
(19) At HADES the
$ K^*(892)^+$ mesons could be identified via the hadronic decays$ K^*(892)^+ \to K^0{\pi^+} $ with a branching ratio of 2/3 or via their radiative decays$ K^*(892)^+ \to$ $ K^+{\gamma} $ with sizable branching ratio of 10−3 [49].
Near-threshold K*(892)+ meson production in the interaction of π− mesons with nuclei
- Received Date: 2020-06-16
- Available Online: 2020-11-01
Abstract: We study the inclusive production of strange vector