Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js

Properties of the decay Hγγ using the approximate α4s corrections and the principle of maximum conformality

  • The decay channel Hγγ is an important channel for probing the properties of the Higgs boson. In this paper, we analyze its decay width by using the perturbative QCD corrections up to the α4s order with the help of the principle of maximum conformality (PMC). PMC has been suggested in literature for eliminating the conventional renormalization scheme-and-scale ambiguities. After applying PMC, we observe that an accurate renormalization scale independent decay width Γ(Hγγ) up to the N4LO level can be achieved. Taking the Higgs mass, MH=125.09±0.21±0.11 GeV, given by the ATLAS and CMS collaborations, we obtain Γ(Hγγ)|LHC=9.364+0.0760.075 KeV.
  • [1] G. Aad et al (ATLAS Collaboration), Phys. Lett. B, 716: 1 (2012)
    [2] S. Chatrchyan et al (CMS Collaboration), Phys. Lett. B, 716: 30 (2012)
    [3] ATLAS Collaboration, " Combined measurements of the mass and signal strength of the Higgs-like boson with the ATLAS detector using up to 25 fb−1 of proton-proton collision data,” ATLAS-CONF-2013-014
    [4] CMS Collaboration, " Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV,” CMS-PAS-HIG-13-005
    [5] J. R. Ellis, M. K. Gaillard, and D. V. Nanopoulos, Nucl. Phys. B, 106: 292 (1976) doi: 10.1016/0550-3213(76)90184-X
    [6] M. A. Shifman, A. I. Vainshtein, M. B. Voloshin et al, Sov. J. Nucl. Phys., 30: 711 (1979)
    [7] H. Q. Zheng and D. D. Wu, Phys. Rev. D, 42: 3760 (1990) doi: 10.1103/PhysRevD.42.3760
    [8] S. Dawson and R. P. Kauffman, Phys. Rev. D, 47: 1264 (1993) doi: 10.1103/PhysRevD.47.1264
    [9] A. Djouadi, M. Spira, J. J. van der Bij et al, Phys. Lett. B, 257: 187 (1991) doi: 10.1016/0370-2693(91)90879-U
    [10] A. Djouadi, M. Spira and P. M. Zerwas, Phys. Lett. B, 311: 255 (1993) doi: 10.1016/0370-2693(93)90564-X
    [11] K. Melnikov and O. I. Yakovlev, Phys. Lett. B, 312: 179 (1993) doi: 10.1016/0370-2693(93)90507-E
    [12] M. Inoue, R. Najima, T. Oka et al, Mod. Phys. Lett. A, 9: 1189 (1994) doi: 10.1142/S0217732394001003
    [13] M. Spira, A. Djouadi, D. Graudenz et al, Nucl. Phys. B, 453: 17 (1995) doi: 10.1016/0550-3213(95)00379-7
    [14] J. Fleischer, O. V. Tarasov, and V. O. Tarasov, Phys. Lett. B, 584: 294 (2004) doi: 10.1016/j.physletb.2004.01.063
    [15] R. Harlander and P. Kant, JHEP, 0512: 015 (2005)
    [16] U. Aglietti, R. Bonciani, G. Degrassi et al, JHEP, 0701: 021 (2007)
    [17] P. Maierhofer and P. Marquard, Phys. Lett. B, 721: 131 (2013) doi: 10.1016/j.physletb.2013.02.040
    [18] C. Sturm, Eur. Phys. J. C, 74: 2978 (2014) doi: 10.1140/epjc/s10052-014-2978-0
    [19] X. G. Wu, S. J. Brodsky, and M. Mojaza, Prog. Part. Nucl. Phys., 72: 44 (2013) doi: 10.1016/j.ppnp.2013.06.001
    [20] X. G. Wu, Y. Ma, S. Q. Wang et al, Rep. Prog. Phys., 78: 126201 (2015) doi: 10.1088/0034-4885/78/12/126201
    [21] S. J. Brodsky and X. G. Wu, Phys. Rev. D, 85: 034038 (2012) doi: 10.1103/PhysRevD.85.034038
    [22] S. J. Brodsky and X. G. Wu, Phys. Rev. Lett., 109: 042002 (2012) doi: 10.1103/PhysRevLett.109.042002
    [23] S. J. Brodsky and L. Di Giustino, Phys. Rev. D, 86: 085026 (2012) doi: 10.1103/PhysRevD.86.085026
    [24] M. Mojaza, S. J. Brodsky, and X. G. Wu, Phys. Rev. Lett., 110: 192001 (2013) doi: 10.1103/PhysRevLett.110.192001
    [25] S. J. Brodsky, M. Mojaza, and X. G. Wu, Phys. Rev. D, 89: 014027 (2014) doi: 10.1103/PhysRevD.89.014027
    [26] S. J. Brodsky and X. G. Wu, Phys. Rev. D, 86: 054018 (2012) doi: 10.1103/PhysRevD.86.054018
    [27] S. J. Brodsky and H. J. Lu, Phys. Rev. D, 51: 3652 (1995) doi: 10.1103/PhysRevD.51.3652
    [28] J. M. Shen, X. G. Wu, Y. Ma et al, Phys. Lett. B, 770: 494 (2017) doi: 10.1016/j.physletb.2017.05.022
    [29] J. M. Shen, X. G. Wu, B. L. Du et al, Phys. Rev. D, 95: 094006 (2017) doi: 10.1103/PhysRevD.95.094006
    [30] S. Q. Wang, X. G. Wu, X. C. Zheng et al, Eur. Phys. J. C, 74: 2825 (2014) doi: 10.1140/epjc/s10052-014-2825-3
    [31] P. Marquard, A. V. Smirnov, V. A. Smirnov et al, Phys. Rev. D, 94: 074025 (2016) doi: 10.1103/PhysRevD.94.074025
    [32] S. Actis, G. Passarino, C. Sturm et al, Nucl. Phys. B, 811: 182 (2009) doi: 10.1016/j.nuclphysb.2008.11.024
    [33] D. J. Gross and F. Wilczek, Phys. Rev. Lett., 30: 1343 (1973) doi: 10.1103/PhysRevLett.30.1343
    [34] H. D. Politzer, Phys. Rev. Lett., 30: 1346 (1973) doi: 10.1103/PhysRevLett.30.1346
    [35] W. E. Caswell, Phys. Rev. Lett., 33: 244 (1974) doi: 10.1103/PhysRevLett.33.244
    [36] O. V. Tarasov, A. A. Vladimirov, and A. Y. Zharkov, Phys. Lett. B, 93: 429 (1980) doi: 10.1016/0370-2693(80)90358-5
    [37] S. A. Larin and J. A. M. Vermaseren, Phys. Lett. B, 303: 334 (1993) doi: 10.1016/0370-2693(93)91441-O
    [38] T. van Ritbergen, J. A. M. Vermaseren, and S. A. Larin, Phys. Lett. B, 400: 379 (1997) doi: 10.1016/S0370-2693(97)00370-5
    [39] K. G. Chetyrkin, Nucl. Phys. B, 710: 499 (2005) doi: 10.1016/j.nuclphysb.2005.01.011
    [40] M. Czakon, Nucl. Phys. B, 710: 485 (2005) doi: 10.1016/j.nuclphysb.2005.01.012
    [41] P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, Phys. Rev. Lett., 118: 082002 (2017) doi: 10.1103/PhysRevLett.118.082002
    [42] M. Tanabashi et al (Particle Data Group), Phys. Rev. D, 98: 030001 (2018)
    [43] P. A. Baikov, K. G. Chetyrkin, J. H. Kuhn et al, JHEP, 1207: 017 (2012)
    [44] S. Q. Wang, X. G. Wu, X. C. Zheng et al, J. Phys. G, 41: 075010 (2014) doi: 10.1088/0954-3899/41/7/075010
    [45] J. L. Basdevant, Fortsch. Phys., 20: 283 (1972) doi: 10.1002/(ISSN)1521-3979
    [46] M. A. Samuel, G. Li, and E. Steinfelds, Phys. Lett. B, 323: 188 (1994) doi: 10.1016/0370-2693(94)90290-9
    [47] M. A. Samuel, J. R. Ellis, and M. Karliner, Phys. Rev. Lett., 74: 4380 (1995) doi: 10.1103/PhysRevLett.74.4380
    [48] B. L. Du, X. G. Wu, J. M. Shen et al, , arXiv:1807.11144[hep-ph
    [49] G. Aad et al, Phys. Rev. Lett., 114: 19 (2015)
    [50] H. Mei (CMS Collaboration), Precision Higgs boson mass measurement using the \begin{document}$H \rightarrow ZZ^{*} \rightarrow 4\ell$\end{document} decay mode, CMS-CR-2017-123
    [51] S. Heinemeyer et al (LHC Higgs Cross Section Working Group), Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, CERN-2013-004
    [52] G. Aad et al (ATLAS Collaboration), Measurement of the Higgs boson production cross section at 7, 8 and 13 TeV cebter-of-mass energies in the Hγγ channel with the ATLAS detector, ATLAS-CONF-2015-060
    [53] ATLAS Collaboration, Measurements of Higgs boson properties in the diphoton decay channel using 80 fb−1 of pp collision data at \begin{document}$\sqrt{s}=13$\end{document} TeV with the ATLAS detector, ATLASCONF-2018-028
    [54] CMS Collaboration, Measurement of differential fiducial cross sections for Higgs boson production in the diphoton decay channel in pp collisions at \begin{document}$\sqrt{s}=13$\end{document} TeV, CMS-PAS-HIG-17-015
    [55] S. Q. Wang, X. G. Wu, S. J. Brodsky et al, Phys. Rev. D, 94: 053003 (2016) doi: 10.1103/PhysRevD.94.053003
    [56] D. de Florian et al (LHC Higgs Cross Section Working Group), Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, CERN-2017-002-M
    [57] S. Q. Wang, X. G. Wu, W. L. Sang et al, Phys. Rev. D, 97: 094034 (2018) doi: 10.1103/PhysRevD.97.094034
    [58] S. Catani and L. Trentadue, Nucl. Phys. B, 327: 323 (1989) doi: 10.1016/0550-3213(89)90273-3
  • [1] G. Aad et al (ATLAS Collaboration), Phys. Lett. B, 716: 1 (2012)
    [2] S. Chatrchyan et al (CMS Collaboration), Phys. Lett. B, 716: 30 (2012)
    [3] ATLAS Collaboration, " Combined measurements of the mass and signal strength of the Higgs-like boson with the ATLAS detector using up to 25 fb−1 of proton-proton collision data,” ATLAS-CONF-2013-014
    [4] CMS Collaboration, " Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV,” CMS-PAS-HIG-13-005
    [5] J. R. Ellis, M. K. Gaillard, and D. V. Nanopoulos, Nucl. Phys. B, 106: 292 (1976) doi: 10.1016/0550-3213(76)90184-X
    [6] M. A. Shifman, A. I. Vainshtein, M. B. Voloshin et al, Sov. J. Nucl. Phys., 30: 711 (1979)
    [7] H. Q. Zheng and D. D. Wu, Phys. Rev. D, 42: 3760 (1990) doi: 10.1103/PhysRevD.42.3760
    [8] S. Dawson and R. P. Kauffman, Phys. Rev. D, 47: 1264 (1993) doi: 10.1103/PhysRevD.47.1264
    [9] A. Djouadi, M. Spira, J. J. van der Bij et al, Phys. Lett. B, 257: 187 (1991) doi: 10.1016/0370-2693(91)90879-U
    [10] A. Djouadi, M. Spira and P. M. Zerwas, Phys. Lett. B, 311: 255 (1993) doi: 10.1016/0370-2693(93)90564-X
    [11] K. Melnikov and O. I. Yakovlev, Phys. Lett. B, 312: 179 (1993) doi: 10.1016/0370-2693(93)90507-E
    [12] M. Inoue, R. Najima, T. Oka et al, Mod. Phys. Lett. A, 9: 1189 (1994) doi: 10.1142/S0217732394001003
    [13] M. Spira, A. Djouadi, D. Graudenz et al, Nucl. Phys. B, 453: 17 (1995) doi: 10.1016/0550-3213(95)00379-7
    [14] J. Fleischer, O. V. Tarasov, and V. O. Tarasov, Phys. Lett. B, 584: 294 (2004) doi: 10.1016/j.physletb.2004.01.063
    [15] R. Harlander and P. Kant, JHEP, 0512: 015 (2005)
    [16] U. Aglietti, R. Bonciani, G. Degrassi et al, JHEP, 0701: 021 (2007)
    [17] P. Maierhofer and P. Marquard, Phys. Lett. B, 721: 131 (2013) doi: 10.1016/j.physletb.2013.02.040
    [18] C. Sturm, Eur. Phys. J. C, 74: 2978 (2014) doi: 10.1140/epjc/s10052-014-2978-0
    [19] X. G. Wu, S. J. Brodsky, and M. Mojaza, Prog. Part. Nucl. Phys., 72: 44 (2013) doi: 10.1016/j.ppnp.2013.06.001
    [20] X. G. Wu, Y. Ma, S. Q. Wang et al, Rep. Prog. Phys., 78: 126201 (2015) doi: 10.1088/0034-4885/78/12/126201
    [21] S. J. Brodsky and X. G. Wu, Phys. Rev. D, 85: 034038 (2012) doi: 10.1103/PhysRevD.85.034038
    [22] S. J. Brodsky and X. G. Wu, Phys. Rev. Lett., 109: 042002 (2012) doi: 10.1103/PhysRevLett.109.042002
    [23] S. J. Brodsky and L. Di Giustino, Phys. Rev. D, 86: 085026 (2012) doi: 10.1103/PhysRevD.86.085026
    [24] M. Mojaza, S. J. Brodsky, and X. G. Wu, Phys. Rev. Lett., 110: 192001 (2013) doi: 10.1103/PhysRevLett.110.192001
    [25] S. J. Brodsky, M. Mojaza, and X. G. Wu, Phys. Rev. D, 89: 014027 (2014) doi: 10.1103/PhysRevD.89.014027
    [26] S. J. Brodsky and X. G. Wu, Phys. Rev. D, 86: 054018 (2012) doi: 10.1103/PhysRevD.86.054018
    [27] S. J. Brodsky and H. J. Lu, Phys. Rev. D, 51: 3652 (1995) doi: 10.1103/PhysRevD.51.3652
    [28] J. M. Shen, X. G. Wu, Y. Ma et al, Phys. Lett. B, 770: 494 (2017) doi: 10.1016/j.physletb.2017.05.022
    [29] J. M. Shen, X. G. Wu, B. L. Du et al, Phys. Rev. D, 95: 094006 (2017) doi: 10.1103/PhysRevD.95.094006
    [30] S. Q. Wang, X. G. Wu, X. C. Zheng et al, Eur. Phys. J. C, 74: 2825 (2014) doi: 10.1140/epjc/s10052-014-2825-3
    [31] P. Marquard, A. V. Smirnov, V. A. Smirnov et al, Phys. Rev. D, 94: 074025 (2016) doi: 10.1103/PhysRevD.94.074025
    [32] S. Actis, G. Passarino, C. Sturm et al, Nucl. Phys. B, 811: 182 (2009) doi: 10.1016/j.nuclphysb.2008.11.024
    [33] D. J. Gross and F. Wilczek, Phys. Rev. Lett., 30: 1343 (1973) doi: 10.1103/PhysRevLett.30.1343
    [34] H. D. Politzer, Phys. Rev. Lett., 30: 1346 (1973) doi: 10.1103/PhysRevLett.30.1346
    [35] W. E. Caswell, Phys. Rev. Lett., 33: 244 (1974) doi: 10.1103/PhysRevLett.33.244
    [36] O. V. Tarasov, A. A. Vladimirov, and A. Y. Zharkov, Phys. Lett. B, 93: 429 (1980) doi: 10.1016/0370-2693(80)90358-5
    [37] S. A. Larin and J. A. M. Vermaseren, Phys. Lett. B, 303: 334 (1993) doi: 10.1016/0370-2693(93)91441-O
    [38] T. van Ritbergen, J. A. M. Vermaseren, and S. A. Larin, Phys. Lett. B, 400: 379 (1997) doi: 10.1016/S0370-2693(97)00370-5
    [39] K. G. Chetyrkin, Nucl. Phys. B, 710: 499 (2005) doi: 10.1016/j.nuclphysb.2005.01.011
    [40] M. Czakon, Nucl. Phys. B, 710: 485 (2005) doi: 10.1016/j.nuclphysb.2005.01.012
    [41] P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, Phys. Rev. Lett., 118: 082002 (2017) doi: 10.1103/PhysRevLett.118.082002
    [42] M. Tanabashi et al (Particle Data Group), Phys. Rev. D, 98: 030001 (2018)
    [43] P. A. Baikov, K. G. Chetyrkin, J. H. Kuhn et al, JHEP, 1207: 017 (2012)
    [44] S. Q. Wang, X. G. Wu, X. C. Zheng et al, J. Phys. G, 41: 075010 (2014) doi: 10.1088/0954-3899/41/7/075010
    [45] J. L. Basdevant, Fortsch. Phys., 20: 283 (1972) doi: 10.1002/(ISSN)1521-3979
    [46] M. A. Samuel, G. Li, and E. Steinfelds, Phys. Lett. B, 323: 188 (1994) doi: 10.1016/0370-2693(94)90290-9
    [47] M. A. Samuel, J. R. Ellis, and M. Karliner, Phys. Rev. Lett., 74: 4380 (1995) doi: 10.1103/PhysRevLett.74.4380
    [48] B. L. Du, X. G. Wu, J. M. Shen et al, , arXiv:1807.11144[hep-ph
    [49] G. Aad et al, Phys. Rev. Lett., 114: 19 (2015)
    [50] H. Mei (CMS Collaboration), Precision Higgs boson mass measurement using the \begin{document}$H \rightarrow ZZ^{*} \rightarrow 4\ell$\end{document} decay mode, CMS-CR-2017-123
    [51] S. Heinemeyer et al (LHC Higgs Cross Section Working Group), Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, CERN-2013-004
    [52] G. Aad et al (ATLAS Collaboration), Measurement of the Higgs boson production cross section at 7, 8 and 13 TeV cebter-of-mass energies in the Hγγ channel with the ATLAS detector, ATLAS-CONF-2015-060
    [53] ATLAS Collaboration, Measurements of Higgs boson properties in the diphoton decay channel using 80 fb−1 of pp collision data at \begin{document}$\sqrt{s}=13$\end{document} TeV with the ATLAS detector, ATLASCONF-2018-028
    [54] CMS Collaboration, Measurement of differential fiducial cross sections for Higgs boson production in the diphoton decay channel in pp collisions at \begin{document}$\sqrt{s}=13$\end{document} TeV, CMS-PAS-HIG-17-015
    [55] S. Q. Wang, X. G. Wu, S. J. Brodsky et al, Phys. Rev. D, 94: 053003 (2016) doi: 10.1103/PhysRevD.94.053003
    [56] D. de Florian et al (LHC Higgs Cross Section Working Group), Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, CERN-2017-002-M
    [57] S. Q. Wang, X. G. Wu, W. L. Sang et al, Phys. Rev. D, 97: 094034 (2018) doi: 10.1103/PhysRevD.97.094034
    [58] S. Catani and L. Trentadue, Nucl. Phys. B, 327: 323 (1989) doi: 10.1016/0550-3213(89)90273-3
  • 加载中

Cited by

1. Huang, X.-D., Wu, X.-G., Zheng, X.-C. et al. Precise determination of the top-quark on-shell mass via its scale- invariant perturbative relation to the top-quark mass[J]. Chinese Physics C, 2024, 48(5): 053113. doi: 10.1088/1674-1137/ad2dbf
2. Luo, Y.-F., Yan, J., Wu, Z.-F. et al. Approximate N5LO Higgs Boson Decay Width Γ(H→γγ)[J]. Symmetry, 2024, 16(2): 173. doi: 10.3390/sym16020173
3. Di Giustino, L., Brodsky, S.J., Ratcliffe, P.G. et al. High precision tests of QCD without scale or scheme ambiguities: The 40th anniversary of the Brodsky–Lepage–Mackenzie method[J]. Progress in Particle and Nuclear Physics, 2024. doi: 10.1016/j.ppnp.2023.104092
4. Huang, X.-D., Yan, J., Ma, H.-H. et al. Detailed comparison of renormalization scale-setting procedures based on the principle of maximum conformality[J]. Nuclear Physics B, 2023. doi: 10.1016/j.nuclphysb.2023.116150
5. Huang, X.-D., Wu, X.-G., Yu, Q. et al. Generalized Crewther relation and a novel demonstration of the scheme independence of commensurate scale relations up to all orders[J]. Chinese Physics C, 2021, 45(10): 103104. doi: 10.1088/1674-1137/ac1934
6. Yu, Q., Zhou, H., Yan, J. et al. A new analysis of the pQCD contributions to the electroweak parameter ρ using the single-scale approach of principle of maximum conformality[J]. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021. doi: 10.1016/j.physletb.2021.136574
7. Yu, Q., Wu, X.-G., Zhou, H. et al. A novel determination of non-perturbative contributions to Bjorken sum rule[J]. European Physical Journal C, 2021, 81(8): 690. doi: 10.1140/epjc/s10052-021-09495-w
8. Huang, X.-D., Wu, X.-G., Zheng, X.-C. et al. Z-boson hadronic decay width up to O(αs4) -order QCD corrections using the single-scale approach of the principle of maximum conformality[J]. European Physical Journal C, 2021, 81(4): 291. doi: 10.1140/epjc/s10052-021-09092-x
9. Huang, X.-D., Wu, X.-G., Zeng, J. et al. Determination of the top-quark MS running mass via its perturbative relation to the on-shell mass with the help of the principle of maximum conformality DETERMINATION of the TOP-QUARK MS RUNNING ... XU-DONG HUANG et al.[J]. Physical Review D, 2020, 101(11): 114024. doi: 10.1103/PhysRevD.101.114024

Figures(6) / Tables(1)

Get Citation
Qing Yu, Xing-Gang Wu, Sheng-Quan Wang, Xu-Dong Huang, Jian-Ming Shen and Jun Zeng. Properties of the decay Hγγ using the approximate α4s corrections and the principle of maximum conformality[J]. Chinese Physics C, 2019, 43(9): 093102. doi: 10.1088/1674-1137/43/9/093102
Qing Yu, Xing-Gang Wu, Sheng-Quan Wang, Xu-Dong Huang, Jian-Ming Shen and Jun Zeng. Properties of the decay Hγγ using the approximate α4s corrections and the principle of maximum conformality[J]. Chinese Physics C, 2019, 43(9): 093102.  doi: 10.1088/1674-1137/43/9/093102 shu
Milestone
Received: 2019-04-03
Revised: 2019-06-05
Article Metric

Article Views(2988)
PDF Downloads(28)
Cited by(9)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Properties of the decay Hγγ using the approximate α4s corrections and the principle of maximum conformality

  • 1. Department of Physics, Chongqing University, Chongqing 401331, China
  • 2. SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA
  • 3. Department of Physics, Guizhou Minzu University, Guiyang 550025, China
  • 4. School of Physics and Electronics, Hunan University, Changsha 410082, China

Abstract: The decay channel Hγγ is an important channel for probing the properties of the Higgs boson. In this paper, we analyze its decay width by using the perturbative QCD corrections up to the α4s order with the help of the principle of maximum conformality (PMC). PMC has been suggested in literature for eliminating the conventional renormalization scheme-and-scale ambiguities. After applying PMC, we observe that an accurate renormalization scale independent decay width Γ(Hγγ) up to the N4LO level can be achieved. Taking the Higgs mass, MH=125.09±0.21±0.11 GeV, given by the ATLAS and CMS collaborations, we obtain Γ(Hγγ)|LHC=9.364+0.0760.075 KeV.

    HTML

    1.   Introduction

  • After the discovery of the Higgs boson at the Large Hadron Collider (LHC) [14], the outstanding task is to learn about its properties and confirm them either experimentally or theoretically. Among its various decay modes, the Higgs decay into two photons, Hγγ, which can be observed at the LHC or a high luminosity e+e linear collider, provides a clean platform for studying the Higgs properties and for testing the Standard Model.

    The Higgs boson couples dominantly to the massive particles and the leading order (LO) term of the total decay width Γ(Hγγ) is already at the one-loop level, which conversely makes the high-order pQCD corrections very complicated. The LO, the next-to-leading order (NLO), the N2LO, the approximate N3LO and the N4LO terms for the total decay width Γ(Hγγ) were calculated in Refs. [518]. In particular, the fermionic contributions, which form a gauge invariant subset, were given in the N3LO and N4LO terms [18]. As shall be shown below, these state-of-art terms give the opportunity to achieve a more precise prediction of Γ(Hγγ). Due to the complexity of high-order pQCD calculations, it is important to use the known fixed-order terms to obtain the perturbative properties as accurately as possible.

    Following the standard renormalization group invariance, a pQCD calculable physical observable, corresponding to an infinite order prediction, should be independent of the choice of renormalization scheme and renormalization scale. However, for a fixed-order approximant, one needs to set an optimal scale for comparison with the data. Conventionally, the renormalization scale is chosen as the typical momentum flow of the process, or such to eliminate the large log terms. In this simple treatment, the running coupling and its coefficients of the same order cannot be exactly matched, leading to the well-known renormalization scheme-and-scale ambiguities. Due to these ambiguities, the renormalization scale uncertainty is always treated as the key error of a theoretical prediction, which is assumed to decrease when more loop terms are included. As an example, Ref. [18] showed that when going from LO to the approximate N4LO, the scale dependence of the total decay width Γ(Hγγ) decreases continuously with increasing number of loop terms. However, such a decreasing scale dependence is caused by compensation of scale dependence among different orders, and the exact value for each loop term cannot be obtained by using the “guessing” scale. There are many other problems for such conventional scale-setting treatment [19, 20]. It is thus important to find a proper scale-setting approach to set the renormalization scale so as to achieve a more accurate fixed-order prediction.

    The principle of maximum conformality (PMC) [2125] has been suggested for eliminating the renormalization scheme-and-scale ambiguities. The key idea is to set the correct momentum flow of the process, whose value is independent of the choice of the renormalization scale, based on the renormalization group equation (RGE). Its prediction thus avoids the conventional renormalization scale ambiguities. When one applies PMC, all non-conformal terms that govern the αsrunning behavior of the pQCD approximant, should be systematically resummed. The PMC prediction satisfies the renormalization group invariance and all self-consistency conditions of the renormalization group [26]. PMC resums all{βi} terms, the divergent renormalon terms which are proportional to n!βn0αns generally disappear, and a more convergent pQCD series can be naturally achieved. Due to the scheme independent nature of the conformal series and the commensurate scale relations among different observables [27, 28], the PMC predictions are scheme independent. In this paper we adopt PMC to set the renormalization scale for the decay width Γ(Hγγ) up to N4LO, and show that an accurate scale independent prediction can indeed be achieved. For clarity, we adopt the PMC single-scale approach (PMC-s) [29] for scale-setting.

  • 2.   Calculation technology
  • The total decay width of the Higgs decay into two photons at the one-loop level takes the form

    Γ(Hγγ)=M3H64π|AW+fAf|2,

    (1)

    where MH is the Higgs mass, AW denotes the contribution from the purely bosonic diagrams, and Af stands for the contribution from the amplitudes with f=(t,b,c,τ), which correspond to top quark, bottom quark, charm quark and τ lepton, respectively.

    The higher-order N2LO, N3LO and N4LO expressions were given in Refs. [17, 18] for the top quark running mass (mt). To set the correct momentum flow of the process, only those {βi} terms that pertain to RGE should be resummed into αs. Thus, as was argued in Ref. [30], we transform these terms into the top quark pole mass (Mt) so as to avoid entanglement of the {βi} terms from either the top quark anomalous dimension or RGE, and thus avoid the ambiguity in applying PMC. Such a mass transformation can be done by using the relation between mt and Mt, whose explicit expression up to the α4s order can be found in Ref. [31].

    For convenience, we rewrite the total decay width in two parts,

    Γ(Hγγ)=M3H64π(A2LO+AEWαπ)+R(μr),

    (2)

    where α is the fine-structure constant.

    The LO contribution ALO and the electroweak (EW) correction AEW are [17]

    ALO=A(0)W+A(0)f+ˆAtA(0)t,

    (3)

    AEW=2ALOA(1)EW,

    (4)

    where A(0)W is the purely bosonic contribution to the amplitude, A(0)f is the contribution to the amplitude with f=(b,c,τ), ˆAt=2Q2tα2GF/π, GF is the Fermi constant, and Qt is the top quark electric charge. All were calculated in Refs. [5, 6], i.e.

    A(0)W=α2GF2π[2+3τW+3τW(21τW)f(τW)],A(0)f=f=c,b,τ3α2GFπτfQ2f[1+(11τf)f(τf)],A(0)t=1+730τt+221τ2t+26525τ3t+51217325τ4t+121663063τ5t+1289555τ6t,

    where

    f(τ)={Arcsin2(τ)forτ

    Q_f denotes the electric charge of f = (c,b,\tau) , \tau_W = M^2_{\rm H}/(4M_W^2) , \tau_t = M_{\rm H}^2/(4 M_t^2) and \tau_{f} = M^2_{\rm H}/(4 M_f^2) , and the expression for the NLO electroweak term A^{(1)}_{\rm EW} can be found in Refs. [31, 32].

    The QCD corrections of the decay width \Gamma(H \to \gamma\gamma) are separately represented by R(\mu_r) , whose perturbative series up to the (n+1) loop level can be written as

    R_n(\mu_r) = \sum\limits_{i = 1}^{n} r_{i}(\mu) a_s^{i}(\mu_r),

    (5)

    where a_s = {\alpha_s}/\pi , \mu_r is the renormalization scale. The perturbative coefficients r_i in the \overline{\rm MS} scheme up to the \alpha_s^4 order can be derived from Refs. [17, 18]. To apply PMC, the n_f power series ( n_f being the active flavor number) of the coefficients r_i should be rewritten into conformal terms and non-conformal \beta_i terms [24, 25],

    r_1 = r_{1,0},

    (6)

    r_2 = r_{2,0} + r_{2,1} \beta_0,

    (7)

    r_3 = r_{3,0} + r_{2,1} \beta_1 + 2r_{3,1} \beta_0 + r_{3,2} \beta_0^2,

    (8)

    \begin{split} r_4 =& r_{4,0} + r_{2,1} \beta_2 + 2r_{3,1} \beta_1 + \frac{5}{2} r_{3,2} \beta_0 \beta_1 \\ & + 3r_{4,1} \beta_0 + 3r_{4,2} \beta_0^2 + r_{4,3} \beta_0^3, \\ &\cdots,\end{split}

    (9)

    where the \beta pattern at each order is a superposition of RGE, and all coefficients r_{i,j} can be fixed from the n_f power series at the same order by using the degeneracy relations among different orders. r_{i,0} are conformal coefficients which are exactly free of \mu_r for the present channel, and r_{i,j(j\neq 0)} are non-conformal coefficients which are functions of \mu_r , i.e.,

    r_{i,j} = \sum\limits_{k = 0}^{j} C_j^k \ln^k(\mu_r^2/M_{\rm H}^2) \hat{r}_{i-k,j-k},

    (10)

    where \hat{r}_{i,j} = r_{i,j}|_{\mu_r = M_H} . The needed \{\beta_i\} functions in the \overline{\rm MS} scheme are given in Refs. [3341].

    Following the standard procedures of the PMC single-scale approach [29], the pQCD corrections of the decay width \Gamma(H \to \gamma\gamma) can be simplified as the following conformal series,

    R_n(\mu_r)|_{\rm PMC} = \sum\limits_{i = 1}^{n} \hat{r}_{i,0} a_s^i(Q_\star),

    (11)

    where Q_{\star} is the PMC scale. Using the known pQCD corrections up to N4LO, Q_{\star} can be fixed up to next-to-next-to-leading-log ({ \rm N^2LL} ) accuracy, i.e.,

    \ln\frac{Q_\star^2}{M_{\rm H}^2} = \sum\limits_{i} T_{i} a^{i}_s(M_{\rm H}),

    (12)

    whose first three coefficients with i = (0,1,2) can be determined from the known five-loop QCD corrections of the decay width \Gamma(H \to \gamma\gamma) , which are

    T_0 = -{\hat{r}_{2,1}\over \hat{r}_{1,0}},

    (13)

    T_1 = {2(\hat{r}_{2,0}\hat{r}_{2,1}-\hat{r}_{1,0}\hat{r}_{3,1})\over \hat{r}_{1,0}^2} +{(\hat{r}_{2,1}^2-\hat{r}_{1,0}\hat{r}_{3,2})\over \hat{r}_{1,0}^2}\beta_0,

    (14)

    \begin{split} T_2 = &{4(\hat{r}_{1,0}\hat{r}_{2,0}\hat{r}_{3,1}-\hat{r}_{2,0}^2\hat{r}_{2,1}) +3(\hat{r}_{1,0}\hat{r}_{2,1}\hat{r}_{3,0}-\hat{r}_{1,0}^2\hat{r}_{4,1})\over \hat{r}_{1,0}^3 }\\ &-{\hat{r}_{2,0}\hat{r}_{2,1}^2 +2(\hat{r}_{2,0}\hat{r}_{2,1}^2-2\hat{r}_{1,0}\hat{r}_{2,1}\hat{r}_{3,1} -\hat{r}_{1,0}\hat{r}_{2,0}\hat{r}_{3,2})\over \hat{r}_{1,0}^3}\beta_0\\ &-{3\hat{r}_{1,0}^2\hat{r}_{4,2}\over \hat{r}_{1,0}^3}\beta_0 +{3(\hat{r}_{2,1}^2-\hat{r}_{1,0}\hat{r}_{3,2})\over 2\hat{r}_{1,0}^2}\beta_1 \\ &+{(\hat{r}_{1,0}\hat{r}_{2,1}\hat{r}_{3,2}-\hat{r}_{1,0}^2\hat{r}_{4,3})+(\hat{r}_{1,0}\hat{r}_{2,1}\hat{r}_{3,2}-\hat{r}_{2,1}^3)\over \hat{r}_{1,0}^3}\beta_0^2. \end{split}

    (15)

    It should be noted that all perturbative coefficients T_i are free of \mu_r , and Eq. (12) then indicates that the PMC scale Q_\star is free of \mu_r . Together with the fact that the conformal coefficients \hat{r}_{i,0} are also free of \mu_r , the PMC approximant R_n(\mu_r)|_{\rm PMC} is exactly scale independent. Thus the conventional scale ambiguity is eliminated.

    As a subtle point, due to the perturbative nature of the PMC scale Q_\star , there is a residual scale dependence of the pQCD approximant for the unknown higher-order terms in Q_\star perturbative series. However, this residual scale dependence is different from conventional renormalization scale ambiguity. In fact this residual scale dependence is usually negligible due to both the \alpha_s suppression and exponential suppression. This property has been confirmed in many PMC applications in literature.

  • 3.   Numerical results and discussion
  • For numerical calculations, we take the following central values [42]: the W boson mass M_{W} = 80.379 GeV, the \tau lepton mass M_{\tau} = 1.77686 GeV, the b quark pole mass M_{b} = 4.78 GeV, the c quark pole mass M_{c} = 1.67 GeV, the t quark pole mass M_{t} = 173.07 GeV, and the Higgs mass M_{H} = 125.9 GeV. The Fermi constant is G_{\rm F} = 1.1663787\times10^{-5} \rm GeV^{-2} and the fine-structure constant \alpha = 1/137.035999139 . The magnitude of the EW corrections at the NLO level is about 0.15 KeV [43], which shall be altered to ~0.18 KeV by setting the scale for the fine structure constant to be M_{\rm H}/2 , leading to about 20% scale uncertainty for the EW corrections. In the present paper, we shall concentrate on eliminating the scale uncertainty for QCD corrections. The PMC is applicable to QED corrections [19], and if the NNLO and higher order EW corrections are known, one can determine the correct \alpha value by using the PMC via a similar way. To be self-consistent with the N4LO pQCD correction of the total decay width \Gamma(H\to\gamma\gamma) , we adopt the four-loop \alpha_s running and \alpha_s(M_{Z} = 91.1876{\rm GeV}) = 0.1181 to fix the \alpha_{s} running behavior.

    As a comparison, we present the total decay width \Gamma(H\to\gamma\gamma) up to N4LO with the conventional and PMC scale-settings in Figs. 1 and 2. In agreement with previous observations, Fig. 1 shows that with the conventional scale-setting the scale dependence becomes smaller and smaller when more loop terms are included. The N4LO total decay width in the conventional scale-setting gives

    Figure 1.  (color online) Total decay width \Gamma(H\to\gamma\gamma) versus the initial scale \mu_r up to N4LO with the conventional scale-setting.

    Figure 2.  (color online) Total decay width \Gamma(H\to\gamma\gamma) versus the initial scale \mu_r up to N4LO with the PMC scale-setting.

    \Gamma(H\to\gamma\gamma)|_{\rm Conv.} = 9.626^{+0.002}_{+0.002}\; {\rm KeV},

    (16)

    where the central value is for \mu_r = M_{\rm H} , and the renormalization scale error is for \mu_r\in[M_{\rm H}/2, 2M_{\rm H}] .

    It should be pointed out that the above approximate scale independence of the N4LO total decay width \Gamma(H\to\gamma\gamma) with the conventional scale-setting is caused by large cancellations of the scale dependence among different orders. This can be explicitly seen in Table 1, in which the individual decay widths for LO+EW, NLO, N2LO, N3LO and N4LO are presented separately. More explicitly, we define a parameter \kappa_i to measure the scale dependence of the separate decay widths at different orders, i.e.

    i={\rm LO+EW} i={\rm NLO} i={\rm N^2LO} {\rm N^3LO} i={\rm N^4LO} total
    {\Gamma_i \rm{(KeV)}}|_{\rm Conv.} \mu_r=M_{\rm H}/2 9.46477 0.17927 −0.01573 −0.00085 0.00083 9.62830
    \mu_r=M_{\rm H} 9.46477 0.16133 0.00263 −0.00242 −0.00007 9.62624
    \mu_r=2M_{\rm H} 9.46477 0.14731 0.01649 −0.00038 −0.00028 9.62791
    {\Gamma_i\rm{(KeV)}}|_{\rm PMC} \mu_r\in[M_{\rm H}/2,2M_{\rm H}] 9.46477 0.14979 0.01489 −0.00423 0.00056 9.62578

    Table 1.  Total decay width \Gamma(H\to\gamma\gamma) with the conventional (Conv.) and PMC scale-settings. \Gamma_{\rm LO+EW} , \Gamma_{\rm NLO} , \Gamma_{\rm N^{2}LO} , \Gamma_{\rm N^{3}LO} and \Gamma_{\rm N^{4}LO} are individual decay widths for LO+EW, NLO, {\rm N}^{2} LO, {\rm N}^{3} LO and {\rm N}^{4} LO, respectively. The final row is the total decay width up to {\rm N}^{4} LO. Three typical scales \mu_{r} = M_{\rm H}/2 , M_{\rm H} , 2 M_{\rm H} are adopted.

    \kappa_i = \frac{\left. \Gamma_{i}\right|_{\mu_{r} = M_{\rm H}/2} -\left. \Gamma_{i}\right|_{\mu_{r} = 2M_{\rm H}}}{\left. \Gamma_{i} \right|_{\mu_{r} = M_{\rm H}}},

    (17)

    where the subscript i stands for the individual NLO, N2LO, N3LO and N4LO decay widths. In the conventional scale-setting, we have

    \kappa_{\rm NLO} = +20\text{%},

    (18)

    \kappa_{\rm {N^2LO}} = -1.2\times10^3\text{%},

    (19)

    \kappa_{\rm {N^3LO}} = +19\text{%},

    (20)

    \kappa_{\rm {N^4LO}} = -1.6\times10^3\text{%}.

    (21)

    Large magnitude of \kappa_i indicates that in the conventional scale-setting, there are large scale errors for each order. Due to the cancellation among different orders, the net scale error for the N4LO total decay width is small and is about 0.2%.

    On the other hand, as shown in Fig. 2, the PMC prediction is almost scale independent for each order, and the PMC prediction of \Gamma(H\to\gamma\gamma) quickly approaches the scale independent “physical” value due to a faster convergence than the conventional pQCD series. As the magnitudes of the newly added N3LO and N4LO terms are only about 28% and 4% of the N2LO term, whose magnitude is small, our previous N2LO PMC prediction agrees with the present one [44] to a high precision. Table 1 shows that after applying PMC, both the separate decay widths and the total decay width are unchanged for \mu_r\in[M_{\rm H}/2, 2M_{\rm H}] . The N4LO total decay width with the PMC scale-setting is

    \Gamma(H\to\gamma\gamma)|_{\rm PMC} \equiv 9.626\; {\rm KeV}.

    (22)

    The four-loop and five-loop fermionic contributions are helpful to set an accurate PMC scale. The effective scale Q_\star can be fixed up to the {\rm N^{2}LL} accuracy by using the known five-loop pQCD corrections, i.e.

    \ln\frac{Q_\star^2}{M_{\rm H}^2} = 1.321-4.271\alpha_s(M_{\rm H})+21.029\alpha^2_s(M_{\rm H}) .

    (23)

    Figure 3 shows the perturbative nature of Q_\star , e.g. |Q^{(3)}_\star-Q^{(2)}_\star|<|Q^{(2)}_\star-Q^{(1)}_\star| , in which Q^{(1)}_\star is at the LL accuracy, Q^{(2)}_\star at the NLL accuracy and Q^{(3)}_\star at the {\rm N^{2}LL} accuracy. To be self-consistent and to ensure the scheme independence of the PMC prediction, we show in Fig. 3, the {\rm N^2LO} prediction for Q^{(1)}_\star , the {\rm N^3LO} for Q^{(2)}_\star , and the {\rm N^4LO} for Q^{(3)}_\star . The approximate scale independence of each order in the PMC scale-setting is caused by the nearly conformal nature of the pQCD series.

    Figure 3.  (color online) The determined effective scale Q_\star . Q^{(1)}_\star is at the LL accuracy, Q^{(2)}_\star at the NLL accuracy and Q^{(3)}_\star at the {\rm N^{2}LL} accuracy.

    It is helpful to be able to estimate the “unknown” higher-order pQCD corrections. The conventional error estimate obtained by varying the scale over a certain range is not reliable, since it only partly estimates the non-conformal contribution but not the conformal one. The Pad \acute{\rm{e}} approximation approach (PAA) provides a practical way of promoting a finite series of an analytic function [4547], which was recently suggested to give a reliable prediction of uncalculated high-order terms by using the PMC conformal series [48].

    As an attempt, following the approach described in detail in Ref. [48], we give a PAA+PMC prediction for R_{n}(M_{\rm H}) by using the preferable [0/(n-1)] -type Padé series. The results are presented in Fig. 4, where “PAA” is the predicted R_{n}(M_{\rm H}) by using the known R_{n-1}(M_{\rm H}) series, and “EC” is the prediction by directly using the known PMC R_{n}(M_{\rm H}) series. Figure 4 shows that the difference between “EC” and the predicted R_{n}(M_{\rm H}) tends to decrease as more higher-order loops are included. The difference between R_{3,4}(M_{\rm H})|_{\rm PAA} and R_{3,4}(M_{\rm H})|_{\rm EC} is already less than 1%, thus the “exact” value of R(M_{\rm H})|_{\rm EC} could be directly taken as R_{5}(M_{\rm H})|_{\rm PAA} , i.e.

    Figure 4.  (color online) Comparison of the exact (“EC”) and the predicted [ 0/(n-1) ]-type “PAA” pQCD approximant R_{n}(M_{\rm H}) with the PMC scale-setting, showing how the PAA prediction changes when more loop terms are included.

    R_5(M_{\rm H})|_{\rm PAA} \cong 1.614\times10^{-1}\; {\rm KeV}.

    (24)

    The total decay width is then

    \Gamma_5(H\to\gamma\gamma)|_{\rm PMC} = \left[9.626\pm5.354\times10^{-5}\right]\; {\rm KeV},

    (25)

    where the error is the PAA+PMC prediction of uncalculated high-order pQCD contributions, which is negligible.

    The total decay width \Gamma(H\to\gamma\gamma) versus the Higgs mass M_{\rm H} is presented in Fig. 5. If we take the Higgs mass given by the ATLAS and CMS collaborations [49, 50], i.e. M_{\rm H} = 125.09\pm0.21\pm0.11 GeV, we obtain

    Figure 5.  The PMC prediction of the decay width \Gamma(H\to\gamma\gamma) versus the Higgs mass M_{\rm H} .

    \Gamma(H\to \gamma\gamma)|_{\rm LHC} = 9.364^{+0.076}_{-0.075} \; {\rm KeV},

    (26)

    As an application, we predict the “fiducial cross-section” of the process pp\to H\to\gamma\gamma , which was predicted by the LHC-XS group with the conventional scale-setting [51] and was measured by the ATLAS and CMS collaborations with increasing integrated luminosity [5254]. A PMC prediction was previously given in Ref. [55] by using \Gamma(H\to\gamma\gamma) up to N2LO. Taking the same parameters as in Refs. [51, 55, 56], e.g. M_{\rm H} = 125 GeV and M_t = 173.3 GeV, and by using the present \Gamma(H\to\gamma\gamma) up to N4LO, we obtain \sigma_{\rm fid}(pp\to H\to \gamma\gamma) = 30.1^{+2.3}_{-2.2} fb, 38.3^{+2.9}_{-2.8} fb, and 85.8^{+5.7}_{-5.3} fb for the proton-proton center-of-mass collision energy \sqrt{S} = 7 , 8 and 13 TeV, respectively. Here, the errors are dominated by the error of the Higgs inclusive cross-section. A comparison with the recent experimental data is shown in Fig. 6. A better agreement with the data at \sqrt{S} = 7 and 8 TeV can be achieved by applying PMC. The ATLAS and CMS measurements at \sqrt{S} = 13 TeV still have large errors and are in disagreement, and the PMC prediction is closer to the CMS result.

    Figure 6.  (color online) The fiducial cross-section \sigma_{\rm fid}(pp\!\!\to\!\! H\!\!\to\!\! \gamma\gamma) using \Gamma(H\to\gamma\gamma) up to N4LO. The LHC-XS prediction [51], the ATLAS measurements [52, 53] and the CMS measurements [54] are presented for comparison.

  • 4.   Summary
  • In summary, PMC uses the basic RGE to set the correct \alpha_s running behavior. The resultant conformal series is independent of the initial choice of renormalization scale and renormalization scheme, and thus eliminates conventional scheme-and-scale ambiguities.

    Using the pQCD corrections up to the N4LO level, we can fix the effective PMC scale up to the N2LL level, and an accurate scheme-and-scale independent prediction for the decay width \Gamma(H\to\gamma\gamma) can be achieved. Due to the elimination of divergent renormalon terms, the pQCD convergence can be naturally improved by applying PMC. This improvement of pQCD convergence has been found in most PMC applications. However, as shown in the case of the \gamma\gamma^*\to\eta_c form factor [57], where the magnitude of the NNLO term is still larger than the NLO term even after applying PMC, there may remain large logarithmic terms in the resultant PMC conformal series, diluting the pQCD convergence. In these special cases, the conventional resummation approach [58] may help to further improve the pQCD convergence. A detailed discussion on this point is in progress.

Reference (58)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return