×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Testing the variation of the fine structure constant with strongly lensed gravitational waves

  • The possible variation of the electromagnetic fine structure constant, αe, at cosmological scales has aroused great interest in recent years. Strongly lensed gravitational waves (GWs) and their electromagnetic counterparts could be used to test this variation. Under the assumption that the speed of a photon can be modified, whereas the speed of a GW is the same as predicted by general relativity, and they both propagate in a flat Friedman-Robertson-Walker universe, we investigated the difference in time delays of the images and derived the upper bound of the variation of αe. For a typical lensing system in the standard cosmological models, we obtained Bcosθ ≤ 1.85×10-5, where B is the dipolar amplitude and θ is the angle between observation and the preferred direction. Our result is consistent with the most up-to-date observations on αe. In addition, the observations of strongly lensed GWs and their electromagnetic counterparts could be used to test which types of alternative theories of gravity can account for the variation of αe.
      PCAS:
  • 加载中
  • [1] B. P. Abbott et al (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett., 116:061102 (2016)
    [2] B. P. Abbott et al (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett., 116:241103 (2016)
    [3] B. P. Abbott et al (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett., 118:221101 (2017)
    [4] B. P. Abbott et al (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett., 119:141101 (2017)
    [5] B. P. Abbott et al (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett.,119:161101 (2017)
    [6] A. G. A. von Kienlin, C. Meegan, and the Fermi GBM Team, GCN, 21520:1 (2017)
    [7] V. Connaughton et al, GCN, 21506:1 (2017)
    [8] A. Goldstein et al, GCN, 21528:1 (2017)
    [9] A. Goldstein et al, Astrophys. J. Lett., 848:L14 (2017)
    [10] V. Savchenko et al, GCN, 21507:1 (2017)
    [11] V. Savchenko et al, Astrophys. J. Lett., 848:L15 (2017)
    [12] B. P. Abbott et al (LIGO Scientific Collaboration and Virgo Collaboration), Astrophys. J. Lett., 848:L13 (2017)
    [13] B. F. Schutz, Nature, 323:310 (1986)
    [14] D. Markovic, Phys. Rev. D, 48:4738 (1993)
    [15] N. Dalal, D. E. Holz, S. A. Hughes, and B. Jain, Phys. Rev. D, 74:063006 (2006)
    [16] S. R. Taylor, J. R. Gair, and I. Mandel, Phys. Rev. D, 85:023535 (2012)
    [17] C. Guidorzi et al, arXiv:1710.06426
    [18] C. M.Will, Living Rev. Relativ. 17:4 (2014)
    [19] Abbott B. P. et al (LIGO Scientific Collaboration and Virgo Collaboration), arXiv:1602.03841
    [20] M. Liu, Z. Zhao, X. You, J. Lu and L. Xu, Phys. Lett. B, 770:8 (2017)
    [21] X.-F. Wu, H. Gao, J.-J. Wei et al, Phys. Rev. D, 94:024061 (2016)
    [22] E. O. Kahya and S. Desai, Phys. Lett. B, 756:265 (2016)
    [23] M. Biesiada and A. Pirkowska, Mon. Not. R. Astron. Soc., 396:946 (2009)
    [24] X.-L. Fan, K. Liao, M. Biesiada et al, Phys. Rev. Lett., 118:091102 (2017)
    [25] T. E. Collett and D. Bacon, Phys. Rev. Lett., 118:091101 (2017)
    [26] J. Abadie, B. P. Abbott, R. Abbott et al, AA, 541:A155 (2012)
    [27] P. A. Evans, J. K. Fridriksson, N. Gehrels, et al, ApJS, 203:28 (2012)
    [28] J. Aasi, J. Abadie, B. P. Abbott et al, ApJS, 211:7 (2014)
    [29] B. Sathyaprakash, et al, Classical Quantum Gravity, 29:124013 (2012)
    [30] M. Biesiada, X. Ding, A. Pirkowska, and Z.-H. Zhu, J. Cosmol. Astropart. Phys., 10:080 (2014)
    [31] X. Ding, M. Biesiada, and Z.-H. Zhu, J. Cosmol. Astropart. Physics, 12:006 (2015)
    [32] J. P. Uzan, Living Rev. Rel. 14:2 (2011)
    [33] J. K. Webb et al, Phys. Rev. Lett., 107:191101 (2011)
    [34] J. A. King, J. K. Webb, M. T. Murphy et al, Mon. Not. Roy. Astron. Soc., 422:3370 (2012)
    [35] S. A. Levshakov, F. Combes, F. Boone et al, AA, 540:L9 (2012)
    [36] J.B. Whitmore, M.T. Murphy, Mon.Not.Roy.Astron.Soc., 447:446 (2015)
    [37] E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D, 15:1753 (2006)
    [38] C. J. A. P. Martins, A. M. M. Pinho, P. Carreira, A. Gusart, J. Lopez, and C. I. S. A. Rocha, Phys. Rev. D., 93:023506 (2016)
    [39] de Rham, Claudia (2014), Living Reviews in Relativity, 17:7 (2014), arXiv:1401.4173
    [40] Hinterbichler, Kurt, Reviews of Modern Physics, 84:671-710 (2012), arXiv:1105.3735
    [41] X. Li, H.-N. Lin, S. Wang, and Z. Chang, Eur. Phys. J. C, 75:181 (2015)
    [42] X. Li and H.-N. Lin, Chin. Phys. C, 41:065102 (2017)
    [43] A. M. M. Pinho, and C. J. A. P. Martins, Phys. Lett. B, 756:121 (2016)
    [44] Planck Collaboration, Astron. Astrophys., 594:A13 (2016)
    [45] S. Cao, M. Biesiada, R. Gavazzi, A. Pirkowska, and Z.-H. Zhu, ApJ, 806:185 (2015)
    [46] A. Pirkowska, M. Biesiada, and Z.-H. Zhu, JCAP, 10:022 (2013)
    [47] D. B. Fox et al, Nature (London), 437:845 (2005)
    [48] D. J. Champion et al, Mon. Not. R. Astron. Soc., 460:L30 (2016)
    [49] S. A. Levshakov, I. I. Agafonova, P. Molaro et al, Mem. Soc. Astron. Ital., 80:850 (2009)
  • 加载中

Get Citation
Xin Li, Li Tang, Hai-Nan Lin and Li-Li Wang. Testing the variation of the fine structure constant with strongly lensed gravitational waves[J]. Chinese Physics C, 2018, 42(9): 095104. doi: 10.1088/1674-1137/42/9/095104
Xin Li, Li Tang, Hai-Nan Lin and Li-Li Wang. Testing the variation of the fine structure constant with strongly lensed gravitational waves[J]. Chinese Physics C, 2018, 42(9): 095104.  doi: 10.1088/1674-1137/42/9/095104 shu
Milestone
Received: 2018-03-06
Revised: 2018-06-04
Fund

    Supported by the National Natural Science Fund of China (11775038, 11603005, 11647307)

Article Metric

Article Views(1757)
PDF Downloads(18)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Testing the variation of the fine structure constant with strongly lensed gravitational waves

    Corresponding author: Xin Li,
    Corresponding author: Li Tang,
    Corresponding author: Hai-Nan Lin,
    Corresponding author: Li-Li Wang,
  • 1. Department of Physics, Chongqing University, Chongqing 401331, China
Fund Project:  Supported by the National Natural Science Fund of China (11775038, 11603005, 11647307)

Abstract: The possible variation of the electromagnetic fine structure constant, αe, at cosmological scales has aroused great interest in recent years. Strongly lensed gravitational waves (GWs) and their electromagnetic counterparts could be used to test this variation. Under the assumption that the speed of a photon can be modified, whereas the speed of a GW is the same as predicted by general relativity, and they both propagate in a flat Friedman-Robertson-Walker universe, we investigated the difference in time delays of the images and derived the upper bound of the variation of αe. For a typical lensing system in the standard cosmological models, we obtained Bcosθ ≤ 1.85×10-5, where B is the dipolar amplitude and θ is the angle between observation and the preferred direction. Our result is consistent with the most up-to-date observations on αe. In addition, the observations of strongly lensed GWs and their electromagnetic counterparts could be used to test which types of alternative theories of gravity can account for the variation of αe.

    HTML

Reference (49)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return