Exploring neutrino mass and mass hierarchy in the scenario of vacuum energy interacting with cold dark matter

  • We investigate the constraints on total neutrino mass in the scenario of vacuum energy interacting with cold dark matter. We focus on two typical interaction forms, i.e., Q=βHρc and Q=βHρ. To avoid the occurrence of large-scale instability in interacting dark energy cosmology, we adopt the parameterized post-Friedmann approach to calculate the perturbation evolution of dark energy. We employ observational data, including the Planck cosmic microwave background temperature and polarization data, baryon acoustic oscillation data, a JLA sample of type Ia supernovae observation, direct measurement of the Hubble constant, and redshift space distortion data. We find that, compared with those in the ∧CDM model, much looser constraints on ∑mν are obtained in the Q=βHρc model, whereas slightly tighter constraints are obtained in the Q=βHρ model. Consideration of the possible mass hierarchies of neutrinos reveals that the smallest upper limit of ∑mν appears in the degenerate hierarchy case. By comparing the values of χmin2, we find that the normal hierarchy case is favored over the inverted one. In particular, we find that the difference △χmin2 ≡ χIH; min2NH; min2 > 2 in the Q=βHρc model. In addition, we find that β=0 is consistent with the current observations in the Q=βHρc model, and β < 0 is favored at more than the 1σ level in the Q=βHρ model.
      PCAS:
  • 加载中
  • [1] J. Lesgourgues and S. Pastor, Phys. Rept., 429:307 (2006)
    [2] K. A. Olive et al (Particle Data Group), Chin. Phys. C, 38:090001 (2014)
    [3] A. Osipowicz et al (KATRIN Collaboration), hep-ex/0109033
    [4] C. Kraus et al, Eur. Phys. J. C, 40:447 (2005)
    [5] E. W. Otten and C. Weinheimer, Rept. Prog. Phys., 71:086201 (2008)
    [6] J. Wolf (KATRIN Collaboration), Nucl. Instrum. Meth. A, 623:442 (2010)
    [7] H. V. Klapdor-Kleingrothaus and U. Sarkar, Mod. Phys. Lett. A, 16:2469 (2001)
    [8] H. V. Klapdor-Kleingrothaus, I. V. Krivosheina, A. Dietz, and O. Chkvorets, Phys. Lett. B, 586:198 (2004)
    [9] S. Betts et al, arXiv:1307.4738[astro-ph.IM]
    [10] J. Zhang and S. Zhou, Nucl. Phys. B, 903:211 (2016)
    [11] G. Y. Huang and S. Zhou, Phys. Rev. D, 94(11):116009 (2016)
    [12] J. Zhang and X. Zhang, Nature Commun., 9:1833 (2018)
    [13] M. M. Zhao, Y. H. Li, J. F. Zhang, and X. Zhang, Mon. Not. Roy. Astron. Soc., 469(2):1713 (2017)
    [14] X. Zhang, Phys. Rev. D, 93(8):083011 (2016)
    [15] W. Hu, D. J. Eisenstein, and M. Tegmark, Phys. Rev. Lett., 80:5255 (1998)
    [16] B. A. Reid, L. Verde, R. Jimenez, and O. Mena, JCAP, 1001:003 (2010)
    [17] S. A. Thomas, F. B. Abdalla, and O. Lahav, Phys. Rev. Lett., 105:031301 (2010)
    [18] C. Carbone, L. Verde, Y. Wang, and A. Cimatti, JCAP, 1103:030 (2011)
    [19] H. Li and X. Zhang, Phys. Lett. B, 713:160 (2012)
    [20] Y. H. Li, S. Wang, X. D. Li, and X. Zhang, JCAP, 1302:033 (2013)
    [21] B. Audren, J. Lesgourgues, S. Bird, M. G. Haehnelt, and M. Viel, JCAP, 1301:026 (2013)
    [22] S. Riemer-Srensen, D. Parkinson, and T. M. Davis, Phys. Rev. D, 89:103505 (2014)
    [23] A. Font-Ribera, P. McDonald, N. Mostek, B. A. Reid, H. J. Seo, and A. Slosar, JCAP, 1405:023 (2014)
    [24] J. F. Zhang, Y. H. Li, and X. Zhang, Phys. Lett. B, 740:359 (2015)
    [25] J. F. Zhang, Y. H. Li, and X. Zhang, Eur. Phys. J. C, 74:2954 (2014)
    [26] J. F. Zhang, J. J. Geng, and X. Zhang, JCAP, 1410:no. 10,044 (2014)
    [27] N. Palanque-Delabrouille et al, JCAP, 1502(2):045 (2015)
    [28] C. Q. Geng, C. C. Lee, and J. L. Shen, Phys. Lett. B, 740:285 (2015)
    [29] Y. H. Li, J. F. Zhang, and X. Zhang, Phys. Lett. B, 744:213 (2015)
    [30] P. A. R. Ade et al (Planck Collaboration), Astron. Astrophys., 594:A13 (2016)
    [31] J. F. Zhang, M. M. Zhao, Y. H. Li, and X. Zhang, JCAP, 1504:038 (2015)
    [32] C. Q. Geng, C. C. Lee, R. Myrzakulov, M. Sami, and E. N. Saridakis, JCAP, 1601(01):049 (2016)
    [33] Y. Chen and L. Xu, Phys. Lett. B, 752:66 (2016)
    [34] R. Allison, P. Caucal, E. Calabrese, J. Dunkley, and T. Louis, Phys. Rev. D, 92:no. 12, 123535 (2015)
    [35] A. J. Cuesta, V. Niro, and L. Verde, Phys. Dark Univ., 13:77 (2016)
    [36] Y. Chen, B. Ratra, M. Biesiada, S. Li, and Z. H. Zhu, Astrophys. J., 829(2):61 (2016)
    [37] M. Moresco, R. Jimenez, L. Verde, A. Cimatti, L. Pozzetti, C. Maraston, and D. Thomas, JCAP, 1612(12):039 (2016)
    [38] J. Lu, M. Liu, Y. Wu, Y. Wang, and W. Yang, Eur. Phys. J. C, 76(12):679 (2016)
    [39] S. Kumar and R. C. Nunes, Phys. Rev. D, 94(12):123511 (2016)
    [40] L. Xu and Q. G. Huang, Sci. China Phys. Mech. Astron., 61(3):039521 (2018)
    [41] S. Vagnozzi, E. Giusarma, O. Mena, K. Freese, M. Gerbino, S. Ho, and M. Lattanzi, Phys. Rev. D, 96(12):123503 (2017)
    [42] X. Zhang, Sci. China Phys. Mech. Astron., 60(6):060431 (2017)
    [43] C. S. Lorenz, E. Calabrese, and D. Alonso, Phys. Rev. D, 96(4):043510 (2017)
    [44] M. M. Zhao, J. F. Zhang, and X. Zhang, Phys. Lett. B, 779:473 (2018)
    [45] S. Vagnozzi, S. Dhawan, M. Gerbino, K. Freese, A. Goobar, and O. Mena, arXiv:1801.08553[astro-ph.CO]
    [46] L. F. Wang, X. N. Zhang, J. F. Zhang, and X. Zhang, Phys. Lett. B, 782:87 (2018)
    [47] Q. G. Huang, K. Wang, and S. Wang, Eur. Phys. J. C, 76(9):489 (2016)
    [48] S. Wang, Y. F. Wang, D. M. Xia, and X. Zhang, Phys. Rev. D, 94(8):083519 (2016)
    [49] W. Yang, R. C. Nunes, S. Pan, and D. F. Mota, Phys. Rev. D, 95(10):103522 (2017)
    [50] R. Y. Guo, Y. H. Li, J. F. Zhang, and X. Zhang, JCAP, 1705(05):040 (2017)
    [51] L. Amendola, Phys. Rev. D, 62:043511 (2000)
    [52] L. Amendola and D. Tocchini-Valentini, Phys. Rev. D, 66:043528 (2002)
    [53] D. Comelli, M. Pietroni, and A. Riotto, Phys. Lett. B, 571:115 (2003)
    [54] R. G. Cai and A. Wang, JCAP, 0503:002 (2005)
    [55] X. Zhang, Mod. Phys. Lett. A, 20:2575 (2005)
    [56] W. Zimdahl, Int. J. Mod. Phys. D, 14:2319 (2005)
    [57] X. Zhang, F. Q. Wu, and J. Zhang, JCAP, 0601:003 (2006)
    [58] B. Wang, J. Zang, C. Y. Lin, E. Abdalla, and S. Micheletti, Nucl. Phys. B, 778:69 (2007)
    [59] Z. K. Guo, N. Ohta, and S. Tsujikawa, Phys. Rev. D, 76:023508 (2007)
    [60] O. Bertolami, F. Gil Pedro, and M. Le Delliou, Phys. Lett. B, 654:165 (2007)
    [61] J. Zhang, H. Liu, and X. Zhang, Phys. Lett. B, 659:26 (2008)
    [62] C. G. Boehmer, G. Caldera-Cabral, R. Lazkoz, and R. Maartens, Phys. Rev. D, 78:023505 (2008)
    [63] J. Valiviita, E. Majerotto, and R. Maartens, JCAP, 0807:020 (2008)
    [64] J. H. He and B. Wang, JCAP, 0806:010 (2008)
    [65] J. H. He, B. Wang, and Y. P. Jing, JCAP, 0907:030 (2009)
    [66] J. H. He, B. Wang, and P. Zhang, Phys. Rev. D, 80:063530 (2009)
    [67] K. Koyama, R. Maartens, and Y. S. Song, JCAP, 0910:017 (2009)
    [68] J. Q. Xia, Phys. Rev. D, 80:103514 (2009)
    [69] M. Li, X. D. Li, S. Wang, Y. Wang, and X. Zhang, JCAP,0912:014 (2009)
    [70] L. Zhang, J. Cui, J. Zhang, and X. Zhang, Int. J. Mod. Phys. D, 19:21 (2010)
    [71] H. Wei, Commun. Theor. Phys., 56:972 (2011)
    [72] Y. Li, J. Ma, J. Cui, Z. Wang, and X. Zhang, Sci. China Phys. Mech. Astron., 54:1367 (2011)
    [73] J. H. He, B. Wang, and E. Abdalla, Phys. Rev. D, 83:063515 (2011)
    [74] Y. H. Li and X. Zhang, Eur. Phys. J. C, 71:1700 (2011)
    [75] T. F. Fu, J. F. Zhang, J. Q. Chen, and X. Zhang, Eur. Phys. J. C, 72:1932 (2012)
    [76] Z. Zhang, S. Li, X. D. Li, X. Zhang, and M. Li, JCAP, 1206:009 (2012)
    [77] J. Zhang, L. Zhao, and X. Zhang, Sci. China Phys. Mech. Astron., 57:387 (2014)
    [78] Y. H. Li and X. Zhang, Phys. Rev. D, 89(8):083009 (2014)
    [79] J. J. Geng, Y. H. Li, J. F. Zhang, and X. Zhang, Eur. Phys. J. C, 75(8):356 (2015)
    [80] J. L. Cui, L. Yin, L. F. Wang, Y. H. Li, and X. Zhang, JCAP, 1509(09):024 (2015)
    [81] R. Murgia, S. Gariazzo, and N. Fornengo, JCAP, 1604:no. 04, 014 (2016)
    [82] J. Sol U, A. Gmez-Valent, and J. de Cruz Prez, Astrophys. J., 836(1):43 (2017)
    [83] B. Wang, E. Abdalla, F. Atrio-Barandela, and D. Pavon, Rept. Prog. Phys., 79(9):096901 (2016)
    [84] A. Pourtsidou and T. Tram, Phys. Rev. D, 94(4):043518 (2016)
    [85] A. A. Costa, X. D. Xu, B. Wang, and E. Abdalla, JCAP, 1701(01):028 (2017)
    [86] J. Sola, J. de Cruz PWrez, A. Gomez-Valent, and R. C. Nunes, arXiv:1606.00450[gr-qc]
    [87] L. Feng and X. Zhang, JCAP, 1608(08):072 (2016)
    [88] D. M. Xia and S. Wang, Mon. Not. Roy. Astron. Soc., 463:952 (2016)
    [89] C. van de Bruck, J. Mifsud, and J. Morrice, Phys. Rev. D, 95(4):043513 (2017)
    [90] J. Sola, Int. J. Mod. Phys. A, 31(23):1630035 (2016)
    [91] S. Kumar and R. C. Nunes, Phys. Rev. D, 96(10):103511 (2017)
    [92] J. Sola, J. d. C. Perez, and A. Gomez-Valent, arXiv:1703.08218[astro-ph.CO]
    [93] V. Salvatelli, N. Said, M. Bruni, A. Melchiorri, and D. Wands, Phys. Rev. Lett., 113(18):181301 (2014)
    [94] L. Feng, J. F. Zhang, and X. Zhang, arXiv:1712.03148[astroph.CO]
    [95] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden and M. Manera, Mon. Not. Roy. Astron. Soc., 449(1):835 (2015)
    [96] F. Beutler et al, Mon. Not. Roy. Astron. Soc., 416:3017 (2011)
    [97] L. Anderson et al (BOSS Collaboration), Mon. Not. Roy. Astron. Soc., 441(1):24 (2014)
    [98] M. Betoule et al (SDSS Collaboration), Astron. Astrophys., 568:A22 (2014)
    [99] A. G. Riess et al, Astrophys. J., 826(1):56 (2016)
    [100] H. Gil-Mar[n, W. J. Percival, L. Verde, J. R. Brownstein, C. H. Chuang, F. S. Kitaura, S. A. Rodr[guez-Torres, and M. D. Olmstead, Mon. Not. Roy. Astron. Soc., 465(2):1757 (2017)
    [101] E. Di Valentino and F. R. Bouchet, JCAP, 1610(10):011 (2016)
    [102] X. Zhang, Sci. China Phys. Mech. Astron., 60(6):060421 (2017)
    [103] M. Benetti, L. L. Graef, and J. S. Alcaniz, JCAP, 1704(04):003 (2017)
    [104] R. Y. Guo and X. Zhang, Eur. Phys. J. C, 77(12):882 (2017)
    [105] R. Y. Guo, L. Zhang, J. F. Zhang, and X. Zhang, arXiv:1801.02187[astro-ph.CO]
    [106] P. A. R. Ade et al (Planck Collaboration), Astron. Astrophys., 594:A14 (2016)
    [107] Y. H. Li, J. F. Zhang, and X. Zhang, Phys. Rev. D, 90(6):063005 (2014)
    [108] Y. H. Li, J. F. Zhang, and X. Zhang, Phys. Rev. D, 90(12):123007 (2014)
    [109] Y. H. Li, J. F. Zhang, and X. Zhang, Phys. Rev. D, 93(2):023002 (2016)
    [110] X. Zhang, Sci. China Phys. Mech. Astron., 60(5):050431 (2017)
    [111] A. Lewis and S. Bridle, Phys. Rev. D, 66:103511 (2002)
  • 加载中

Get Citation
Rui-Yun Guo, Jing-Fei Zhang and Xin Zhang. Exploring neutrino mass and mass hierarchy in the scenario of vacuum energy interacting with cold dark matter[J]. Chinese Physics C, 2018, 42(9): 095103. doi: 10.1088/1674-1137/42/9/095103
Rui-Yun Guo, Jing-Fei Zhang and Xin Zhang. Exploring neutrino mass and mass hierarchy in the scenario of vacuum energy interacting with cold dark matter[J]. Chinese Physics C, 2018, 42(9): 095103.  doi: 10.1088/1674-1137/42/9/095103 shu
Milestone
Received: 2018-03-30
Revised: 2018-06-15
Fund

    Supported by National Natural Science Foundation of China (11522540, 11690021), the Top-Notch Young Talents Program of China and the Provincial Department of Education of Liaoning (L2012087)

Article Metric

Article Views(1843)
PDF Downloads(44)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Exploring neutrino mass and mass hierarchy in the scenario of vacuum energy interacting with cold dark matter

    Corresponding author: Xin Zhang,
  • 1.  Department of Physics, College of Sciences, Northeastern University, Shenyang 110819, China
  • 2. Department of Physics, College of Sciences, Northeastern University, Shenyang 110819, China
  • 3. Center for High Energy Physics, Peking University, Beijing 100080, China
Fund Project:  Supported by National Natural Science Foundation of China (11522540, 11690021), the Top-Notch Young Talents Program of China and the Provincial Department of Education of Liaoning (L2012087)

Abstract: We investigate the constraints on total neutrino mass in the scenario of vacuum energy interacting with cold dark matter. We focus on two typical interaction forms, i.e., Q=βHρc and Q=βHρ. To avoid the occurrence of large-scale instability in interacting dark energy cosmology, we adopt the parameterized post-Friedmann approach to calculate the perturbation evolution of dark energy. We employ observational data, including the Planck cosmic microwave background temperature and polarization data, baryon acoustic oscillation data, a JLA sample of type Ia supernovae observation, direct measurement of the Hubble constant, and redshift space distortion data. We find that, compared with those in the ∧CDM model, much looser constraints on ∑mν are obtained in the Q=βHρc model, whereas slightly tighter constraints are obtained in the Q=βHρ model. Consideration of the possible mass hierarchies of neutrinos reveals that the smallest upper limit of ∑mν appears in the degenerate hierarchy case. By comparing the values of χmin2, we find that the normal hierarchy case is favored over the inverted one. In particular, we find that the difference △χmin2 ≡ χIH; min2NH; min2 > 2 in the Q=βHρc model. In addition, we find that β=0 is consistent with the current observations in the Q=βHρc model, and β < 0 is favored at more than the 1σ level in the Q=βHρ model.

    HTML

Reference (111)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return