×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Nuclear axial currents from scale-chiral effective field theory

  • By incorporating hidden scale symmetry and hidden local symmetry in the nuclear effective field theory, combined with the double soft-pion theorem, we predict that the Gamow-Teller operator coming from the space component of the axial current should remain unaffected by the QCD vacuum change caused by the baryonic density, whereas the first forbidden beta transition operator coming from the time component should be strongly enhanced. While the latter has been confirmed for some time, the former was given support by a powerful recent ab initio quantum Monte Carlo calculation for light nuclei, which also confirmed the old "chiral filter hypothesis." Formulated in terms of the Fermi-liquid fixed point structure of strong-coupled nuclear interactions, we offer an extremely simple resolution to the long-standing puzzle of the "quenched gA," gAeff≈ 1[1], found in nuclear Gamow-Teller beta transitions, giant Gamow-Teller resonances, and double beta decays.
      PCAS:
  • 加载中
  • [1] D. H. Wilkinson, Phys. Rev. C, 7:930 (1973); Nucl. Phys. A, 209:470 (1973); Nucl. Phys. A, 225:365 (1974); B. Buck and S. M. Perez, Phys. Rev. Lett., 50:1975 (1983); G. Martez-Pinedo, A. Poves, E. Caurier, and A. P. Zuker, Phys. Rev. C, 53:no. 6, R2602 (1996); P. B. Radha, D. J. Dean, S. E. Koonin, K. Langanke, and P. Vogel, Phys. Rev. C, 56:3079 (1997)
    [2] J. Engel and J. Menndez, Rept. Prog. Phys., 80(4):046301 (2017); J. T. Suhonen, Front. in Phys., 5:55 2017)
    [3] S. Pastore, A. Baroni, J. Carlson, S. Gandolfi, S. C. Pieper, R. Schiavilla, and R. B. Wiringa, arXiv:1709.03592[nucl-th]
    [4] S. Weinberg, Phys. Lett. B, 251:288 (1990); Nucl. Phys. B, 363:3 (1991)
    [5] P. G.O. Freund and Y. Nambu, Phys. Rev., 174:1741 (1968; S. Fubini, Nuovo Cim. A, 34:521 (1976)
    [6] H. K. Lee, W. G. Paeng, and M. Rho, Phys. Rev. D, 92(12):125033 (2015)
    [7] R. J. Crewther and L. C. Tunstall, (2015) Phys. Rev. D, 91(3):034016 (2015)
    [8] G. Golterman and Y. Shamir, Phys. Rev. D, 94(5):054502 (2016)
    [9] W.-G. Paeng, T. T. S. Kuo, H. K. Lee, Y. L. Ma, and M. Rho, Phys. Rev. D, 96(1):014031 (2017)
    [10] K. Yamawaki, Int. J. Mod. Phys. E, 26(01n02):1740032 (2017)
    [11] M. Harada and K. Yamawaki, Phys. Rept., 381:1 (2003)
    [12] Y. L. Li, Y. L. Ma, and M. Rho, Phys. Rev. D, 95(11):114011 (2017)
    [13] Y. L. Li and Y. L. Ma, arXiv:1710.02839[hep-ph]
    [14] G. E. Brown and M. Rho, Phys. Rev. Lett., 66:2720 (1991)
    [15] T. S. Park, D. P. Min, and M. Rho, Phys. Rept., 233:341 (1993); T. S. Park et al, Phys. Rev. C, 67:055206 (2003)
    [16] K. Kubodera, J. Delorme, and M. Rho, Phys. Rev. Lett., 40:755 (1978)
    [17] M. Rho, Phys. Rev. Lett., 66:1275 (1991)
    [18] J. Delorme, Nucl. Phys. A, 374:541C (1982)
    [19] A. Hosaka and H. Toki, Nucl. Phys. A, 529:429 (1991)
    [20] K. Kubodera and M. Rho, Phys. Rev. Lett., 67:3479 (1991)
    [21] P. Kienle and T. Yamazaki, Prog. Part. Nucl. Phys., 52:85 (2004)
    [22] E. K. Warburton, Phys. Rev. Lett., 66:1823 (1991); Phys. Rev. C, 44:233 (1991)
    [23] C. A. Gagliardi, G. T. Garvey, and J. R. Wrobel, Phys. Rev. Lett., 48:914 (1982); T. Minamisono et al, Phys. Rev. Lett., 82:1644 (1999).
    [24] J. W. Holt, G. E. Brown, T. T. S. Kuo, J. D. Holt, and R. Machleidt, Phys. Rev. Lett., 100:062501 (2008)
    [25] B. Friman and M. Rho, Nucl. Phys. A, 606:303 (1996).
    [26] R. Shankar, Rev. Mod. Phys., 66:129 (1994)
    [27] M. Sasano et al, Phys. Rev. Lett., 107:202501 (2011)
    [28] A. Strominger, arXiv:1703.05448[hep-th]
  • 加载中

Get Citation
Yan-Ling Li, Yong-Liang Ma and Mannque Rho. Nuclear axial currents from scale-chiral effective field theory[J]. Chinese Physics C, 2018, 42(9): 094102. doi: 10.1088/1674-1137/42/9/094102
Yan-Ling Li, Yong-Liang Ma and Mannque Rho. Nuclear axial currents from scale-chiral effective field theory[J]. Chinese Physics C, 2018, 42(9): 094102.  doi: 10.1088/1674-1137/42/9/094102 shu
Milestone
Received: 2018-03-21
Revised: 2018-06-17
Fund

    Supported by National Science Foundation of China (NSFC) (11475071, 11547308) and the Seeds Funding of Jilin University

Article Metric

Article Views(1782)
PDF Downloads(16)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Nuclear axial currents from scale-chiral effective field theory

  • 1.  Center for Theoretical Physics and College of Physics, Jilin University, Changchun 130012, China
  • 2.  Institut de Physique Thé
Fund Project:  Supported by National Science Foundation of China (NSFC) (11475071, 11547308) and the Seeds Funding of Jilin University

Abstract: By incorporating hidden scale symmetry and hidden local symmetry in the nuclear effective field theory, combined with the double soft-pion theorem, we predict that the Gamow-Teller operator coming from the space component of the axial current should remain unaffected by the QCD vacuum change caused by the baryonic density, whereas the first forbidden beta transition operator coming from the time component should be strongly enhanced. While the latter has been confirmed for some time, the former was given support by a powerful recent ab initio quantum Monte Carlo calculation for light nuclei, which also confirmed the old "chiral filter hypothesis." Formulated in terms of the Fermi-liquid fixed point structure of strong-coupled nuclear interactions, we offer an extremely simple resolution to the long-standing puzzle of the "quenched gA," gAeff≈ 1[1], found in nuclear Gamow-Teller beta transitions, giant Gamow-Teller resonances, and double beta decays.

    HTML

Reference (28)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return