Low energy range dielectronic recombination of Fluorine-like Fe17+ at the CSRm

  • The accuracy of dielectronic recombination (DR) data for astrophysics related ions plays a key role in astrophysical plasma modeling. The absolute DR rate coefficient of Fe17+ ions was measured at the main cooler storage ring at the Institute of Modern Physics, Lanzhou, China. The experimental electron-ion collision energy range covers the first Rydberg series up to n=24 for the DR resonances associated with the 2P1/22P3/2Δn=0 core excitations. A theoretical calculation was performed by using FAC code and compared with the measured DR rate coefficient. Overall reasonable agreement was found between the experimental results and calculations. Moreover, the plasma rate coefficient was deduced from the experimental DR rate coefficient and compared with the available results from the literature. At the low energy range, significant discrepancies were found, and the measured resonances challenge state-of-the-art theory at low collision energies.
      PCAS:
  • 加载中
  • [1] D. W. Savin, AIP Conference Proceedings, 926: 124 (2007)
    [2] T. R. Kallman, Space Sci. Rev., 157: 177 (2010)
    [3] P. Bryans et al, Astrophys. J. suppl. S., 167: 343 (2006)
    [4] C. S. Reynolds, A. Fabian, Mon. Not. R. Astron. Soc., 273: 1167 (1995)
    [5] M. C. Weisskopf et al, X-Ray Optics, Instruments, and Missions Ⅲ, 4012: 2 (2000)
    [6] F. Jansen et al, AA, 365: L1 (2001)
    [7] D. W. Savin, AIP Conference Proceedings, 774: 297 (2005)
    [8] A. Mler, Adv. Atom. Mol. Opt. Phys., 55: 293 (2008)
    [9] S. Schippers et al, Int, Rev. At. Mol. Phys., 1: 109 (2010)
    [10] O. Novotn et al, Astrophys. J., 753: 57 (2012)
    [11] P. Mazzotta et al, Astron. Astrophys. Suppl. S., 133: 403 (1998)
    [12] P. Bryans, E. Landi, D. W. Savin, Astrophys. J., 691: 1540 (2009)
    [13] D. W. Savin et al, Astrophys. J. suppl. S., 123: 687 (1999)
    [14] K. Arnaud, Astronomical Data Analysis Software and Systems V, 101: 17 (1996)
    [15] R. K. Smith et al, Astrophys. J. Lett., 556: L91 (2001)
    [16] T. Kallman, P. Palmeri, Rev. Mod. Phys., 79: 79 (2007)
    [17] S. Schippers et al, Astron. Astrophys., 421: 1185 (2004)
    [18] Z. Huang et al, Astrophys. J. suppl. S., 235: 2 (2018)
    [19] S. Mahmood et al, Astrophys. J., 771: 78 (2013)
    [20] N. R. Badnell, J. Phys. B: at. Mol. Opt., 39: 4825 (2006)
    [21] S. Schippers et al, J. Phys.: Conf. Ser., 388: 062029 (2012)
    [22] M. Sako et al, Astron. Astrophys., 365: L168 (2001)
    [23] H. Netzer et al, Astrophys. J., 599: 933 (2003)
    [24] G. Ferland et al, Publ. Astron. Soc. Pac., 110: 761 (1998)
    [25] T. Kallman et al, Astrophys. J. suppl. S., 155: 675 (2004)
    [26] S. Schippers et al, J. Phys.: Conf. Ser., 388: 062029 (2012)
    [27] D. W. Savin et al, Astrophys. J. Lett., 489: L115 (1997)
    [28] D. Savin et al, Astrophys. J., 642: 1275 (2006)
    [29] G. J. Ferland, Annu. Rev. Astron. Astr., 41: 517 (2003)
    [30] D. W. Savin, J. M. Laming, Astrophys. J., 566: 1166 (2002)
    [31] M. F. Gu, Can. J. Phys., 86: 675 (2008)
    [32] D. Bernhardt et al, Phys. Rev. A, 91: 012710 (2015)
    [33] M. Lestinsky et al, Phys. Rev. Lett., 100: 033001 (2008)
    [34] J.-W. Xia et al, Nucl. Instrum. Meth. A, 488: 11 (2002)
    [35] Z. Huang et al, Phys. Scripta., 2015: 014023 (2015)
    [36] M. Ling-Jie et al, Chinese Physics C, 37: 017004 (2013)
    [37] W. Wen et al, Nucl. Instrum. Meth. B, 317: 731 (2013)
    [38] T. Shirai et al, J. Phys. Chem. Ref. Data, 19: 127 (1990)
    [39] S. Schippers et al, Phys. Rev. A, 62: 022708 (2000)
    [40] C.-Y. Chen et al, J. Quant. Spectrosc. Ra, 111: 843 (2010)
    [41] O. Zatsarinny et al, Astron. Astrophys., 447: 379 (2006)
    [42] A. Mler, Int. J. Mass. Spectrom., 192: 9 (1999)
    [43] M. Fogle et al, Astron. Astrophy., 409: 781 (2003)
  • 加载中

Get Citation
Nadir Khan, Zhong-Kui Huang, Wei-Qiang Wen, Sultan Mahmood, Li-Jun Dou, Shu-Xing Wang, Xin Xu, Han-Bing Wang, Chong-Yang Chen, Xiao-Ya Chuai, Xiao-Long Zhu, Dong-Mei Zhao, Li-Jun Mao, Jie Li, Da-Yu Yin, Jian-Cheng Yang, You-Jin Yuan, Lin-Fan Zhu and Xin-Wen Ma. Low energy range dielectronic recombination of Fluorine-like Fe17+ at the CSRm[J]. Chinese Physics C, 2018, 42(6): 064001. doi: 10.1088/1674-1137/42/6/064001
Nadir Khan, Zhong-Kui Huang, Wei-Qiang Wen, Sultan Mahmood, Li-Jun Dou, Shu-Xing Wang, Xin Xu, Han-Bing Wang, Chong-Yang Chen, Xiao-Ya Chuai, Xiao-Long Zhu, Dong-Mei Zhao, Li-Jun Mao, Jie Li, Da-Yu Yin, Jian-Cheng Yang, You-Jin Yuan, Lin-Fan Zhu and Xin-Wen Ma. Low energy range dielectronic recombination of Fluorine-like Fe17+ at the CSRm[J]. Chinese Physics C, 2018, 42(6): 064001.  doi: 10.1088/1674-1137/42/6/064001 shu
Milestone
Received: 2018-03-14
Fund

    Supported by the National Key RD Program of China (2017YFA0402300), the National Natural Science Foundation of China through (11320101003, U1732133, 11611530684) and Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SLH006)

Article Metric

Article Views(1696)
PDF Downloads(28)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Low energy range dielectronic recombination of Fluorine-like Fe17+ at the CSRm

    Corresponding author: Wei-Qiang Wen,
  • 1. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • 3.  Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
  • 4.  Hefei National Laboratory for Physical Sciences at Micro Scale, Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
  • 5.  Shanghai EBIT Laboratory, Key Laboratory of Nuclear Physics and Ion-beam Application, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433, China
Fund Project:  Supported by the National Key RD Program of China (2017YFA0402300), the National Natural Science Foundation of China through (11320101003, U1732133, 11611530684) and Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SLH006)

Abstract: The accuracy of dielectronic recombination (DR) data for astrophysics related ions plays a key role in astrophysical plasma modeling. The absolute DR rate coefficient of Fe17+ ions was measured at the main cooler storage ring at the Institute of Modern Physics, Lanzhou, China. The experimental electron-ion collision energy range covers the first Rydberg series up to n=24 for the DR resonances associated with the 2P1/22P3/2Δn=0 core excitations. A theoretical calculation was performed by using FAC code and compared with the measured DR rate coefficient. Overall reasonable agreement was found between the experimental results and calculations. Moreover, the plasma rate coefficient was deduced from the experimental DR rate coefficient and compared with the available results from the literature. At the low energy range, significant discrepancies were found, and the measured resonances challenge state-of-the-art theory at low collision energies.

    HTML

Reference (43)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return