×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Relativistic compact stars with charged anisotropic matter

  • In this article, we perform a detailed theoretical analysis of new exact solutions with anisotropic fluid distribution of matter for compact objects subject to hydrostatic equilibrium. We present a family solution to the Einstein-Maxwell equations describing a spherically symmetric, static distribution of a fluid with pressure anisotropy. We implement an embedding class one condition to obtain a relation between the metric functions. We generalize the properties of a spherical star with hydrostatic equilibrium using the generalised Tolman-Oppenheimer-Volkoff (TOV) equation. We match the interior solution to an exterior Reissner-Nordström one, and study the energy conditions, speed of sound, and mass-radius relation of the star. We also show that the obtained solutions are compatible with observational data for the compact object Her X-1. Regarding our results, the physical behaviour of the present model may serve for the modeling of ultra compact objects.
      PCAS:
  • 加载中
  • [1] J. Jeans, MNRAS, 82:122(1922);
    [2] G. Lemaitre, Gen. Rel. Grav., 29:641(1997)[Annales Soc. Sci. Bruxelles A, 53:51(1933)]
    [3] R. Ruderman, Rev. Astr. Astrophys., 10:427(1972)
    [4] R. L. Bowers and E. P. T. Liang, Astrophys. J., 188:657(1974)
    [5] S. Bayin, Phys. Rev. D, 26:1262(1982); H. Heintzmann, Astron, Astrophys., 38:51(1975); K. Krori, Canadian J. Phys., 62:239(1984); J. Ponce de Leon, J. Math. Phys., 28:1114(1987); P. Florides, Proc. Roy. Soc. Lond. A, 337:529(1974); K. M. Singh and K. S. Bhamra, Int. J. Theor. Phys., 29:1015(1990); T. Singh, G. P. Singh, and R. S. Srivastava, Int. J. Theor. Phys., 31:545(1992)
    [6] L. Herrera and N. O. Santos, Phys. Rept., 286:53(1997)
    [7] M. K. Mak and T. Harko, Proc. Roy. Soc. Lond. A, 459:393-408(2003)
    [8] M. Cosenza and L. Herrera, M. Esculpi, and L. Witten, J. Math. Phys., 22:118-125(1981)
    [9] L. Herrera J. Jimenez, L. Leal, and J. Ponce de Leon, J. Math. Phys., 25:3274-3278(1984)
    [10] L. Herrera and J. Ponce de Leon, J. Math. Phys., 26:2302(1985)
    [11] L. Herrera and J. Ponce de Leon, J. Math. Phys., 26:2018(1985)
    [12] M. Esculpi and L. Herrera, J. Math. Phys., 27:2087(1986)
    [13] L. Herrera, A. Di Prisco, J. Ospino, and E. Fuenmayor, J. Math. Phys., 42:2129(2001)
    [14] L. Herrera, J. Martin, and J. Ospino, J. Math. Phys., 43:4889(2002)
    [15] R. Sharma and S.D. Maharaj, Mon. Not. Roy. Astron.Soc., 375:1265-1268(2007)
    [16] F. Rahaman et al, Eur. Phys. J. C, 72:2071(2012)
    [17] A. Banerjee et al, Eur. Phys. J. Plus,132:150(2017)
    [18] S. K. Maurya, Y. K. Gupta, Astrophys. Space Sci., 353:657(2014)
    [19] D. Kileba Matondo and S. D. Maharaj, Astrophys.Space Sci., 361:221(2016)
    [20] B. V. Ivanov:e-Print:arXiv:1708.07971
    [21] S. K. Maurya and S.D. Maharaj, Eur. Phys. J. C, 77:328(2017)
    [22] Jose D. V. Arbanil and M. Malheiro, JCAP, 1611:012(2016)
    [23] P. Bhar and B.S. Ratanpal, Astrophys.Space Sci., 361:217(2016)
    [24] F. Rahaman et al, Eur. Phys. J. C, 75:564(2015)
    [25] S. Hansraj, Eur. Phys. J. C, 77:557(2017)
    [26] L. Herrera, J. Ospino, and A. Di Prisco, Phys. Rev. D, 77:027502(2008)
    [27] S. K. Maurya, Y. K. Gupta, and S. Ray, Eur. Phys. J. C, 77:360(2017)
    [28] L. Schlfli, Ann. di Mat. 2e srie, 5:170(1871)
    [29] H. Whitney, Ann. Math., 37:645-680(1936)
    [30] M. Janet, Ann. Soc. Polon. Math., 5:38(1926)
    [31] E. Cartan, Ann. Soc. Polon. Math., 6:1(1927)
    [32] L. Randall and R. Sundrum, Phys. Rev. Lett., 83:4690-4693(1999)
    [33] R. Maartens and K. Koyama:Brane-world gravity, arXiv:1004.3962v1[hepth]
    [34] K. R. Karmarkar, Proc. Ind. Acad. Sci. A, 27:56(1948)
    [35] S. K. Maurya et al, Eur. Phys. J. C, 75:389(2015)
    [36] S. K. Maurya et al, Eur. Phys. J. A, 52:191(2016)
    [37] Ksh. Newton Singh, Neeraj Pant, and M. Govender, Chin. Phys. C, 41:015103(2017)
    [38] P. Bhar et al, Int.J.Mod.Phys. D, 26:1750078(2017)
    [39] S. K. Maurya, B. S. Ratanpal, and M. Govender, Annals of Physics, 382:36(2017)
    [40] K. N. Singh, N. Pant, and M. Govender, Eur. Phys. J. C, 77, 100(2017)
    [41] S. K. Maurya et al, Eur. Phys. J. C, 75:225(2015)
    [42] S. K. Maurya et al, Eur. Phys. J. C, 76:266(2016)
    [43] S. K. Maurya et al, Astrophys. Space Sci., 361:351(2016)
    [44] K. N. Singh and N. Pant, Astrophys. Space Sci., 361:177(2016)
    [45] K. N. Singh et al, Eur. Phys. J. C, 76:524(2016)
    [46] K. N. Singh et al, Chin. Phys. C, 41:015103(2017)
    [47] Jose D. V. Arbanil and M. Malheiro, AIP Conf.Proc., 1693:030007(2015)
    [48] T. Gangopadhyay et al, Mon. Not. R. Astron. Soc., 431:3216(2013)
    [49] K. Schwarzschild, Sitz. Deut. Akad. Wiss. Math. Phys. Berlin, 24:424(1916)
    [50] M. Kohler, K. L. Chao, Z. Naturforchg, 20:1537(1965)
    [51] S. K. Maurya and M. Govender, Eur. Phys. J. C, 77:420(2017)
    [52] P. Bhar et al, Eur. Phys. J. C, 77:596(2017)
    [53] S. K. Maurya and M. Govender, Eur. Phys. J. C, 77:347(2017)
    [54] S. K. Maurya, B. S. Ratanpal, and M. Govender, Annals Phys., 382 36-49(2017)
    [55] S. K. Maurya et al, Eur. Phys. J. C, 77:45(2017)
    [56] G. Abbas, M. Zubair, and G. Mustafa, Astrophys.Space Sci., 26:358(2015)
    [57] F. Rahaman et al, Eur. Phys. J. C, 72:2071(2012)
    [58] C. W. Misner and D. H. Sharp, Phys. Rev. B, 136:571(1964)
    [59] R. C. Tolman, Phys. Rev., 55:364(1939)
    [60] J. R. Oppenheimer and G. M. Volkoff, Phys. Rev., 55:374(1939)
    [61] S. Ray et al, Phys. Rev. D, 68:084004(2003)
    [62] J. D. Bekenstein, Phys. Rev. D, 4:2185(1971)
    [63] H. Andrasson, Commun. Math. Phys., 288:715(2009)
    [64] R. L. Bowers and E. P. T. Liang, Astrophys. J., 188:657(1974)
    [65] H.A. Buchdahl, Phys. Rev., 116:1027(1959)
    [66] C. G. Bhmer and T. Harko, Class. Quantum Gravit., 23:6479(2006)
    [67] C. Germani and R. Maartens, Phys. Rev. D, 64:124010(2001)
    [68] L. Herrera, Phys. Lett. A, 165:206(1992)
    [69] P. Bhar et al, Eur. Phys. J. A, 52(10):312(2016)
    [70] S. K. Maurya, S. Ray, S. Ghosh, S. Manna, and T. T. Smitha, Submitted in Eur. Phys. J. C, (2017)
  • 加载中

Get Citation
S. K. Maurya, Ayan Banerjee and Phongpichit Channuie. Relativistic compact stars with charged anisotropic matter[J]. Chinese Physics C, 2018, 42(5): 055101. doi: 10.1088/1674-1137/42/5/055101
S. K. Maurya, Ayan Banerjee and Phongpichit Channuie. Relativistic compact stars with charged anisotropic matter[J]. Chinese Physics C, 2018, 42(5): 055101.  doi: 10.1088/1674-1137/42/5/055101 shu
Milestone
Received: 2018-02-04
Article Metric

Article Views(1639)
PDF Downloads(42)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Relativistic compact stars with charged anisotropic matter

    Corresponding author: S. K. Maurya,
    Corresponding author: Ayan Banerjee,
    Corresponding author: Phongpichit Channuie,
  • 1.  Department of Mathematical &
  • 2.  Department of Mathematics, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
  • 3.  School of Science, Walailak University, Nakhon Si Thammarat, 80160 Thailand

Abstract: In this article, we perform a detailed theoretical analysis of new exact solutions with anisotropic fluid distribution of matter for compact objects subject to hydrostatic equilibrium. We present a family solution to the Einstein-Maxwell equations describing a spherically symmetric, static distribution of a fluid with pressure anisotropy. We implement an embedding class one condition to obtain a relation between the metric functions. We generalize the properties of a spherical star with hydrostatic equilibrium using the generalised Tolman-Oppenheimer-Volkoff (TOV) equation. We match the interior solution to an exterior Reissner-Nordström one, and study the energy conditions, speed of sound, and mass-radius relation of the star. We also show that the obtained solutions are compatible with observational data for the compact object Her X-1. Regarding our results, the physical behaviour of the present model may serve for the modeling of ultra compact objects.

    HTML

Reference (70)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return