Backbendings of superdeformed bands in 36,40Ar

  • Experimentally observed superdeformed (SD) rotational bands in 36Ar and 40Ar are studied by the cranked shell model (CSM) with the pairing correlations treated by a particle-number-conserving (PNC) method. This is the first time that PNC-CSM calculations have been performed on the light nuclear mass region around A=40. The experimental kinematic moments of inertia J(1) versus rotational frequency are reproduced well. The backbending of the SD band at frequency around =1.5 MeV in 36Ar is attributed to the sharp rise of the simultaneous alignments of the neutron and proton 1d5/2[202]5/2 pairs and 1f7/2[321]3/2 pairs, which is a consequence of the band crossing between the 1d5/2[202]5/2 and 1f7/2[321]3/2 configuration states. The gentle upbending at low frequency of the SD band in 40Ar is mainly affected by the alignments of the neutron 1f7/2[321]3/2 pairs and proton 1d5/2[202]5/2 pairs. The PNC-CSM calculations show that besides the diagonal parts, the off-diagonal parts of the alignments play an important role in the rotational behavior of the SD bands.
      PCAS:
  • 加载中
  • [1] P. J. Twin, B. M. Nyak, A. H. Nelson et al, Phys. Rev. Lett., 57(7):811-814(1986)
    [2] C. E. Svensson, A. O. Macchiavelli, A. Juodagalvis et al, Phys. Rev. Lett., 85(13):2693-2696(2000)
    [3] C. E. Svensson, A. O. Macchiavelli, A. Juodagalvis et al, Phys. Rev. C, 63(6):061301(2001)
    [4] E. Ideguchi, S. Ota, T. Morikawa et al, Phys. Lett. B, 686(1):18-22(2010)
    [5] E. Ideguchi, D. G. Sarantites, W. Reviol et al, Phys. Rev. Lett., 87(22):222501(2001)
    [6] C. D. O'Leary, M. A. Bentley, B. A. Brown et al, Phys. Rev. C, 61(6):064314(2000)
    [7] A. Poves, Nucl. Phys. A, 731:339-346(2004)
    [8] E. Caurier, F. Nowacki, and A. Poves, Phys. Rev. Lett., 95(4):042502(2005)
    [9] E. Caurier, J. Menndez, F. Nowacki et al, Phys. Rev. C, 75(5):054317(2007)
    [10] M. Bender, H. Flocard, and P. H. Heenen, Phys. Rev. C, 68(4):044321(2003)
    [11] R. R. Rodrguez-guzmn, J. L. Egido, and L. M. Robledo, Int. J. Mod. Phys. E, 13(01):139-146(2004)
    [12] G. L. Long and Y. Sun, Phys. Rev. C, 63(2):021305(R) (2001)
    [13] Y. C. Yang, Y. X. Liu, Y. Sun et al, arXiv:1508.04055
    [14] B. N. Lu, E. Hiyama, H. Sagawa et al, Phys. Rev. C, 89(4):044307(2014)
    [15] Y. Kanada-En'yo and M. Kimura, Phys. Rev. C, 72(6):064322(2005)
    [16] M. Kimura and H. Horiuchi, Nucl. Phys. A, 767:58-80(2006)
    [17] Y. Taniguchi, M. Kimura, Y. Kanada-En'yo et al, Phys. Rev. C, 76(4):044317(2007)
    [18] Y. Taniguchi, Y. Kanada-En'yo, M. Kimura et al, Phys. Rev. C, 82(1):011302(2010)
    [19] T. Sakuda and S. Ohkubo, Nucl. Phys. A, 744:77-91(2004)
    [20] N. H. Medina, J. R. B. Oliveira, F. Brandolini et al, Phys. Rev. C, 84(2):024315(2011)
    [21] J. Y. Zeng, T. H. Jin, and Z. J. Zhao, Phys. Rev. C, 50(3):1388-1397(1994)
    [22] C. S. Wu and J. Y. Zeng, Phys. Rev. C, 44(6):2566-2580(1991)
    [23] J. Y. Zeng, S. X. Liu, L. X. Gong et al, Phys. Rev. C, 65(4):044307(2002)
    [24] S. X. Liu, J. Y. Zeng, Phys. Rev. C, 66(6):067301(2002)
    [25] S. X. Liu, J. Y. Zeng, and L. Yu, Nucl. Phys. A, 735(1):77-85(2004)
    [26] J. Y. Zeng, S. X. Liu, Y. A. Lei et al, Phys. Rev. C, 63(2):024305(2001)
    [27] C. S. Wu, L. Cheng, C. Z. Lin et al, Phys. Rev. C, 45(5):2507-2510(1992)
    [28] S. X. Liu, J. Y. Zeng, and E. G. Zhao, Phys. Rev. C, 66(2):024320(2002)
    [29] S. X. Liu and J. Y. Zeng, Nucl. Phys. A, 736(3-4):269-279(2004)
    [30] J. Y. Zeng, J. Meng, C. S. Wu et al, Phys. Rev. C, 44(5):R1745-R1748(1991)
    [31] X. T. He, S. Y. Yu, J. Y. Zeng et al, Nucl. Phys. A, 760(3):263-273(2005)
    [32] B. H. Li, Z. H. Zhang, and Y. A. Lei, Chin. Phys. C, 37(1):014101(2013)
    [33] Z. H. Zhang, Y. A. Lei, and J. Y. Zeng, Phys. Rev. C, 80(3):034313(2009)
    [34] Z. H. Zhang, X. Wu, Y. A. Lei et al, Nucl. Phys. A, 816(1-4):19-32(2009)
    [35] X. M. Fu, F. R. Xu, J. C. Pei et al, Phys. Rev. C, 87(4):044319(2013)
    [36] Y. C. Li, X. T. He, Sci. Chin. Phys. Mech., 59(7):672011(2016)
    [37] Z. H. Zhang, Sci. Chin. Phys. Mech., 59(7):672012(2016)
    [38] Z. H. Zhang, J. Meng, E. G. Zhao et al, Phys. Rev. C, 87(5):054308(2013)
    [39] Z. H. Zhang, X. T. He, J. Y. Zeng et al, Phys. Rev. C, 85(1):014324(2012)
    [40] Z. H. Zhang, J. Y. Zeng, E. G. Zhao et al, Phys. Rev. C, 83(1):011304(R) (2011)
    [41] X. T. He, Z. Z. Ren, S. X. Liu et al, Nucl. Phys. A, 817(1):45-60(2009)
    [42] J. Meng, J. Y. Guo, L. Liu et al, Front. Phy. China, 1(1):38-46(2006)
    [43] Z. Shi, Z. H. Zhang, Q. B. Chen et al, Phys. Rev. C, 97(3):034317(2018)
    [44] J. Y. Zeng, Y. A. Lei, T. H. Jin et al, Phys. Rev. C, 50(2):746-756(1994)
    [45] J. Y. Zeng and T. S. Cheng, Nucl. Phys. A, 405(1):1-28(1983)
    [46] S. Nilsson, Dan. Mat. Fys. Medd., 29(16):1-68(1955)
    [47] S. Nilsson, C. F. Tsang, A. Sobiczewski et al, Nucl. Phys. A, 131(1):1-66(1969)
    [48] C. S. Wu and J. Y. Zeng, Phys. Rev. C, 39(2):666-670(1989)
    [49] T. Bengtsson and I. Ragnarsson, Nucl. Phys. A, 436(1):14-82(1985)
  • 加载中

Get Citation
Xu-Hui Xiang and Xiao-Tao He. Backbendings of superdeformed bands in 36,40Ar[J]. Chinese Physics C, 2018, 42(5): 054105. doi: 10.1088/1674-1137/42/5/054105
Xu-Hui Xiang and Xiao-Tao He. Backbendings of superdeformed bands in 36,40Ar[J]. Chinese Physics C, 2018, 42(5): 054105.  doi: 10.1088/1674-1137/42/5/054105 shu
Milestone
Received: 2018-02-23
Fund

    Supported by National Natural Science Foundation of China (11775112 and 11275098) and the Priority Academic Program Development of Jiangsu Higher Education Institutions

Article Metric

Article Views(1698)
PDF Downloads(38)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Backbendings of superdeformed bands in 36,40Ar

    Corresponding author: Xiao-Tao He,
  • 1. College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Fund Project:  Supported by National Natural Science Foundation of China (11775112 and 11275098) and the Priority Academic Program Development of Jiangsu Higher Education Institutions

Abstract: Experimentally observed superdeformed (SD) rotational bands in 36Ar and 40Ar are studied by the cranked shell model (CSM) with the pairing correlations treated by a particle-number-conserving (PNC) method. This is the first time that PNC-CSM calculations have been performed on the light nuclear mass region around A=40. The experimental kinematic moments of inertia J(1) versus rotational frequency are reproduced well. The backbending of the SD band at frequency around =1.5 MeV in 36Ar is attributed to the sharp rise of the simultaneous alignments of the neutron and proton 1d5/2[202]5/2 pairs and 1f7/2[321]3/2 pairs, which is a consequence of the band crossing between the 1d5/2[202]5/2 and 1f7/2[321]3/2 configuration states. The gentle upbending at low frequency of the SD band in 40Ar is mainly affected by the alignments of the neutron 1f7/2[321]3/2 pairs and proton 1d5/2[202]5/2 pairs. The PNC-CSM calculations show that besides the diagonal parts, the off-diagonal parts of the alignments play an important role in the rotational behavior of the SD bands.

    HTML

Reference (49)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return