Super-light baryo-photons, weak gravity conjecture and exotic instantons in neutron-antineutron transitions

  • In companion papers A. Addazi, Nuovo Cim. C, 38(1):21 (2015), A. Addazi, Z. Berezhiani, and Y. Kamyshkov, arXiv:1607.00348, we have discussed current bounds on a new super-light baryo-photon, associated with a U(1)B-L gauge, from current neutron-antineutron data, which are competitive with Eötvös-type experiments. Here, we discuss the implications of possible baryo-photon detection in string theory and quantum gravity. The discovery of a very light gauge boson should imply violation of the weak gravity conjecture, carrying deep consequences for our understanding of holography, quantum gravity and black holes. We also show how the detection of a baryo-photon would exclude the generation of all B-L violating operators from exotic stringy instantons. We will argue against the common statement in the literature that neutron-antineutron data may indirectly test at least the 300-1000 TeV scale. Searches for baryo-photons can provide indirect information on the Planck (or string) scale (quantum black holes, holography and non-perturbative stringy effects). This strongly motivates new neutron-antineutron experiments with adjustable magnetic fields dedicated to the detection of super-light baryo-photons.
      PCAS:
  • 加载中
  • [1] Y. Chikashige, R. N. Mohapatra, and R. D. Peccei, Phys. Lett. B, 98:265(1981)
    [2] J. Schechter and J. W. F. Valle, Phys. Rev. D, 25:774(1982)
    [3] E. K. Akhmedov, Z. G. Berezhiani, R. N. Mohapatra, and G. Senjanovic, Phys. Lett. B, 299:90(1993) doi:10.1016/0370-2693(93)90887-N[hep-ph/9209285]
    [4] V. Berezinsky and J. W. F. Valle, Phys. Lett. B, 318:360(1993) doi:10.1016/0370-2693(93)90140-D[hep-ph/9309214].
    [5] Z. G. Berezhiani, A. Y. Smirnov and J. W. F. Valle, Phys. Lett. B, 291:99(1992) doi:10.1016/0370-2693(92)90126-O[hep-ph/9207209]
    [6] Z. G. Berezhiani and A. Rossi, Phys. Lett. B, 336:439(1994) doi:10.1016/0370-2693(94)90556-8[hep-ph/9407265]
    [7] M. Kachelriess, R. Tomas, and J. W. F. Valle, Phys. Rev. D, 62:023004(2000) doi:10.1103/PhysRevD.62.023004[hep-ph/0001039]
    [8] M. Lattanzi and J. W. F. Valle, Phys. Rev. Lett., 99:121301(2007) doi:10.1103/PhysRevLett.99.121301[arXiv:0705.2406[astro-ph]]
    [9] M. Lattanzi, S. Riemer-Srensen, M. Tortola, and J. W. F. Valle, Nucl. Instrum. Meth. A, 742:154(2014) doi:10.1016/j.nima.2013.09.009
    [10] S. M. Boucenna, S. Morisi, Q. Shafi, and J. W. F. Valle, Phys. Rev. D, 90(5):055023(2014) doi:10.1103/PhysRevD.90.055023[arXiv:1404.3198[hep-ph]]
    [11] N. Arkani-Hamed, L. Motl, A. Nicolis, and C. Vafa, JHEP, 0706:060(2007) doi:10.1088/1126-6708/2007/06/060[hep-th/0601001]
    [12] L. Susskind, hep-th/9501106
    [13] M. Baldo-Ceolin et al, Z. Phys. C, 63:409(1994)
    [14] D. G. Phillips, Ⅱ et al, Phys. Rept., 612:1(2016) doi:10.1016/j.physrep.2015.11.001[arXiv:1410.1100[hep-ex]]
    [15] Z. Berezhiani, Eur. Phys. J. C, 76(12):705(2016) doi:10.1140/epjc/s10052-016-4564-0[arXiv:1507.05478[hep-ph]]
    [16] D. A. Kirzhnitz, JETP Lett., 15:529(1972)
    [17] D. A. Kirzhnitz and A. D. Linde, Phys. Lett. B, 42:47(1972)
    [18] S. Weinberg, Phys. Rev. D, 9:3357(1974)
    [19] L. Dolan and R. Jackiw, Phys. Rev. D, 9:3320(1974)
    [20] R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett., 42:1651(1979); Phys. Rev. D, 20:3390(1979)
    [21] P. Langacker and S.-Y. Pi, Phys. Rev. Lett., 45:1(1980)
    [22] D. E. Morrissey and M. J. Ramsey-Musolf, New J. Phys., 14:125003(2012) doi:10.1088/1367-2630/14/12/125003[arXiv:1206.2942[hep-ph]]
    [23] A. Addazi and M. Bianchi, JHEP, 1412:089(2014) doi:10.1007/JHEP12(2014)089[arXiv:1407.2897[hep-ph]]
    [24] A. Addazi, JHEP, 1504:153(2015) doi:10.1007/JHEP04(2015)153[arXiv:1501.04660[hep-ph]]
    [25] A. Addazi and M. Bianchi, JHEP, 1507:144(2015) doi:10.1007/JHEP07(2015)144[arXiv:1502.01531[hep-ph]]
    [26] A. Addazi and M. Bianchi, JHEP, 1506:012(2015) doi:10.1007/JHEP06(2015)012[arXiv:1502.08041[hep-ph]]
    [27] A. Addazi, Mod. Phys. Lett. A, 31(17):1650109(2016) doi:10.1142/S0217732316501091[arXiv:1504.06799[hep-ph]]
    [28] A. Addazi, Electron. J. Theor. Phys., 13(35):39(2016)[arXiv:1505.00625[hep-ph]]
    [29] A. Addazi, Int. J. Mod. Phys. A, 31(16):1650084(2016) doi:10.1142/S0217751X16500846[arXiv:1505.02080[hep-ph]]
    [30] A. Addazi, Phys. Lett. B, 757:462(2016) doi:10.1016/j.physletb.2016.04.018[arXiv:1506.06351[hep-ph]]
    [31] A. Addazi, M. Bianchi, and G. Ricciardi, JHEP, 1602:035(2016) doi:10.1007/JHEP02(2016)035[arXiv:1510.00243[hep-ph]]
    [32] A. Addazi, J. W. F. Valle, and C. A. Vaquera-Araujo, Phys. Lett. B, 759:471(2016) doi:10.1016/j.physletb.2016.06.015[arXiv:1604.02117[hep-ph]]
    [33] A. Addazi and M. Khlopov, Mod. Phys. Lett. A, 31(19):1650111(2016) doi:10.1142/S021773231650111X[arXiv:1604.07622[hep-ph]]
    [34] A. Addazi, Mod. Phys. Lett. A, 32(02):1750014(2016) doi:10.1142/S0217732317500146[arXiv:1607.01203[hep-th]]
    [35] A. Addazi, X. W. Kang, and M. Y. Khlopov, arXiv:1705.03622[hep-ph], to appear in Chinese Phys. C
    [36] L. E. Ibanez and A. M. Uranga, JHEP, 0703:052(2007) doi:10.1088/1126-6708/2007/03/052[hep-th/0609213]
    [37] R. Blumenhagen, M. Cvetic, and T. Weigand, Nucl. Phys. B, 771:113(2007) doi:10.1016/j.nuclphysb.2007.02.016[hep-th/0609191]
    [38] L. E. Ibanez, A. N. Schellekens, and A. M. Uranga, JHEP, 0706:011(2007) doi:10.1088/1126-6708/2007/06/011[arXiv:0704.1079[hep-th]]
    [39] R. Blumenhagen, M. Cvetic, S. Kachru, and T. Weigand, Ann. Rev. Nucl. Part. Sci., 59:269(2009) doi:10.1146/annurev.nucl.010909.083113[arXiv:0902.3251[hep-th]]
    [40] R. Blumenhagen, M. Cvetic, R. Richter, and T. Weigand, JHEP, 0710:098(2007) doi:10.1088/1126-6708/2007/10/098[arXiv:0708.0403[hep-th]]
    [41] R. Blumenhagen, M. Cvetic, D. Lust, R. Richter, and T. Weigand, Phys. Rev. Lett., 100:061602(2008) doi:10.1103/PhysRevLett.100.061602[arXiv:0707.1871[hep-th]]
    [42] M. Cvetic, J. Halverson, P. Langacker, and R. Richter, JHEP, 1010:094(2010) doi:10.1007/JHEP10(2010)094[arXiv:1001.3148[hep-th]]
    [43] H. Abe, T. Kobayashi, Y. Tatsuta, and S. Uemura, Phys. Rev. D, 92(2):026001(2015) doi:10.1103/PhysRevD.92.026001[arXiv:1502.03582[hep-ph]]
    [44] M. Cvetic, J. Halverson, and R. Richter, JHEP, 0912:063(2009) doi:10.1088/1126-6708/2009/12/063[arXiv:0905.3379[hep-th]]
    [45] T. A. Wagner, S. Schlamminger, J. H. Gundlach, and E. G. Adelberger, Class. Quant. Grav., 29:184002(2012)[arXiv:1207.2442[gr-qc]]
    [46] M. I. Buchoff and M. Wagman, Phys. Rev. D, 93(1):016005(2016) doi:10.1103/PhysRevD.93.016005[arXiv:1506.00647[hep-ph]]
    [47] E. D. Davis and A. R. Young, Phys. Rev. D, 95(3):036004(2017) doi:10.1103/PhysRevD.95.036004[arXiv:1611.04205[nucl-ex]]
    [48] D. McKeen and A. E. Nelson, Phys. Rev. D, 94(7):076002(2016) doi:10.1103/PhysRevD.94.076002[arXiv:1512.05359[hep-ph]]
    [49] E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D, 15:1753(2006) doi:10.1142/S021827180600942X[hep-th/0603057]
    [50] J. Frieman, M. Turner, and D. Huterer, Ann. Rev. Astron. Astrophys., 46:385(2008) doi:10.1146/annurev.astro.46.060407.145243[arXiv:0803.0982[astro-ph]]
    [51] Y. F. Cai, E. N. Saridakis, M. R. Setare, and J. Q. Xia, Phys. Rept., 493:1(2010) doi:10.1016/j.physrep.2010.04.001[arXiv:0909.2776[hep-th]]
  • 加载中

Get Citation
Andrea Addazi. Super-light baryo-photons, weak gravity conjecture and exotic instantons in neutron-antineutron transitions[J]. Chinese Physics C, 2018, 42(5): 053103. doi: 10.1088/1674-1137/42/5/053103
Andrea Addazi. Super-light baryo-photons, weak gravity conjecture and exotic instantons in neutron-antineutron transitions[J]. Chinese Physics C, 2018, 42(5): 053103.  doi: 10.1088/1674-1137/42/5/053103 shu
Milestone
Received: 2018-02-26
Article Metric

Article Views(1292)
PDF Downloads(16)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Super-light baryo-photons, weak gravity conjecture and exotic instantons in neutron-antineutron transitions

    Corresponding author: Andrea Addazi,

Abstract: In companion papers A. Addazi, Nuovo Cim. C, 38(1):21 (2015), A. Addazi, Z. Berezhiani, and Y. Kamyshkov, arXiv:1607.00348, we have discussed current bounds on a new super-light baryo-photon, associated with a U(1)B-L gauge, from current neutron-antineutron data, which are competitive with Eötvös-type experiments. Here, we discuss the implications of possible baryo-photon detection in string theory and quantum gravity. The discovery of a very light gauge boson should imply violation of the weak gravity conjecture, carrying deep consequences for our understanding of holography, quantum gravity and black holes. We also show how the detection of a baryo-photon would exclude the generation of all B-L violating operators from exotic stringy instantons. We will argue against the common statement in the literature that neutron-antineutron data may indirectly test at least the 300-1000 TeV scale. Searches for baryo-photons can provide indirect information on the Planck (or string) scale (quantum black holes, holography and non-perturbative stringy effects). This strongly motivates new neutron-antineutron experiments with adjustable magnetic fields dedicated to the detection of super-light baryo-photons.

    HTML

Reference (51)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return