HTL resummation in the light cone gauge

  • The light cone gauge with light cone variables is often used in pQCD calculations in relativistic heavy-ion collision physics. The Hard Thermal Loops (HTL) resummation is an indispensable technique for hot QCD calculation. It was developed in covariant gauges with conventional Minkowski varaiables; we shall extend this method to the light cone gauge. In the real time formalism, using the Mandelstam-Leibbrant prescription of (n· K)-1, we calculate the transverse and longitudinal components of the gluon HTL self energy, and prove that there are no infrared divergences. With this HTL self energy, we derive the HTL resummed gluon propagator in the light cone gauge. We also calculate the quark HTL self energy and the resummed quark propagator in the light cone gauge and find it is gauge independent. As application examples, we analytically calculate the damping rates of hard quarks and gluons with the HTL resummed gluon propagator in the light cone gauge and showed that they are gauge independent. The final physical results are identical to those computed in covariant gauge, as they should be.
      PCAS:
  • 加载中
  • [1] E. Braaten and R. D. Pisarski, Nucl.Phys. B, 337:569 (1990)
    [2] G. Curci, W. Furmanski, and R. Petronzio, Nucl. Phys. B, 175:27-92 (1980)
    [3] W. Furmanski and R. Petronzio, Phys. Lett. B, 97:437-442 (1980)
    [4] E.G. Floratos,R. Lacaze, and C. Kounnas, Phys. Lett. B, 98:89-95 (1981)
    [5] J. Kalinowski, K. Konishi, and T. R. Taylor, Nucl. Phys. B, 181:221-252 (1981)
    [6] George Leibbrandt, Phys. Rev. D, 29:1699 (1984); George Leibbrandt, Rev. Mod. Phys., 59:106 (1987)
    [7] A. Bassetto, G. Nardelli, and R. Soldati, Yang-Mills Theory in algebraic non-covariant gauge (Singapore:World Scientific, 1991)
    [8] John C. Collins, Davison E. Soper, and George F. Sterman, Perturbative Quantum Chromodynamics (Singapore:World Scientific, 1989)
    [9] D. J. Pritchard and W. James Stirling, Nucl. Phys. B, 165:237-268 (1980)
    [10] Yuri L. Dokshitzer, Dmitri Diakonov, and S. I. Troian, Phys. Rept., 58:269-395 (1980)
    [11] John C. Collins and Jian-wei Qiu, Phys. Rev. D, 39:1398 (1989)
    [12] Jian-Wei Qiu, Phys. Rev. D, 42:30-44 (1990)
    [13] Jian-wei Qiu and George F. Sterman, Nucl. Phys. B, 353:105-136 (1991)
    [14] Jian-wei Qiu and George F. Sterman, Nucl. Phys. B,353:137-164 (1991)
    [15] Enke Wang and Xin-Nian Wang, Phys. Rev. C,64:034901 (2001)
    [16] Enke Wang and Xin-Nian Wang, Phys. Rev. Lett., 87:142301 (2001)
    [17] Enke Wang and Xin-Nian Wang, Phys. Rev. Lett., 89:162301 (2002)
    [18] Xin-nian Wang, Phys. Rev. Lett., 68:1480-1483 (1992)
    [19] Xin-Nian Wang and Miklos Gyulassy, Phys. Rev. Lett., 68:1480-1483 (1992)
    [20] Xin-nian Wang, Phys. Rept., 280:287-371 (1997)
    [21] Xin-nian Wang, Phys. Rev. C, 58:2321 (1998)
    [22] Xin-nian Wang, Phys. Lett. B, 650:213-218 (2007)
    [23] Jorge Casalderrey-Solana and Xin-Nian Wang, Phys. Rev. C, 77:024902 (2008)
    [24] Guang-You Qin and Abhijit Majumder, Phys. Rev. Lett., 105:262301 (2010)
    [25] Guang-You Qin, Jorg Ruppert, Charles Gale, Sangyong Jeon, Guy D. Moore, and Munshi G. Mustafa, Phys. Rev. Lett., 100:072301 (2008)
    [26] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C, 63:189-285 (2009)
    [27] John C. Collins, Davison E. Soper, and George F. Sterman, Adv. Ser. Direct. High Energy Phys., 5:1-91 (1989)
    [28] A. Metz and A. Vossen, arXiv:1607.02521v2
    [29] David d' Enterria and Peter Z.Skands, arXiv:1702.0139v1
    [30] Xin-Nian Wang and Xiao-feng Guo, Nucl. Phys. A, 696:788-832 (2001)
    [31] Jonathan A. Osborne, Enke Wang, and Xin-Nian Wang, Phys. Rev. D, 67:094022 (2003)
    [32] M. Le Bellac, Thermal field theory (Cambridge, 1996)
    [33] H. A. Weldon, Phys. Rev. D, 26:1394 (1982)
    [34] Jens O. Andersen, Michael Strickland and Nan Su, JHEP, 1008:113 (2010)
    [35] Markus H. Thoma, arXiv:0010164v1
    [36] K.Chou, Z. Su, B. Hao, and L. Yu, Phys. Rep., 118:1 (1985)
    [37] L.V. Keldysh, JETP, 20:1018 (1965)
    [38] Margaret E. Carrington, Hou Defu, and Markus H. Thoma, Eur. Phys. J. C, 7:347-354 (1999)
    [39] N. P. Landsmann and C. G. Van weert, Phys. Rep, 145:141 (1987)
    [40] H. A. Weldon, Phys. Rev. D, 26:2789 (1982)
    [41] Robert D. Pisarski, Phys. Rev. Lett.63:(1989) 1129.
    [42] J.I.Kapusta, Finite-Temperature Field Theory (Cambridge University Press, Cambridge, 1989)
  • 加载中

Get Citation
Qi Chen and De-fu Hou. HTL resummation in the light cone gauge[J]. Chinese Physics C, 2018, 42(4): 043102. doi: 10.1088/1674-1137/42/4/043102
Qi Chen and De-fu Hou. HTL resummation in the light cone gauge[J]. Chinese Physics C, 2018, 42(4): 043102.  doi: 10.1088/1674-1137/42/4/043102 shu
Milestone
Received: 2017-12-04
Fund

    Supported by National Natural Science Foundation of China (11375070, 11735007, 11521064)

Article Metric

Article Views(1695)
PDF Downloads(18)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

HTL resummation in the light cone gauge

    Corresponding author: Qi Chen,
    Corresponding author: De-fu Hou,
  • 1. Key Laboratory of Quark and Lepton Physics(MOE), Institue of Particle Physics Central China Normal University, Wuhan 430079, China
Fund Project:  Supported by National Natural Science Foundation of China (11375070, 11735007, 11521064)

Abstract: The light cone gauge with light cone variables is often used in pQCD calculations in relativistic heavy-ion collision physics. The Hard Thermal Loops (HTL) resummation is an indispensable technique for hot QCD calculation. It was developed in covariant gauges with conventional Minkowski varaiables; we shall extend this method to the light cone gauge. In the real time formalism, using the Mandelstam-Leibbrant prescription of (n· K)-1, we calculate the transverse and longitudinal components of the gluon HTL self energy, and prove that there are no infrared divergences. With this HTL self energy, we derive the HTL resummed gluon propagator in the light cone gauge. We also calculate the quark HTL self energy and the resummed quark propagator in the light cone gauge and find it is gauge independent. As application examples, we analytically calculate the damping rates of hard quarks and gluons with the HTL resummed gluon propagator in the light cone gauge and showed that they are gauge independent. The final physical results are identical to those computed in covariant gauge, as they should be.

    HTML

Reference (42)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return