Constraining qqtt operators from four-top production: a case for enhanced EFT sensitivity

  • Recently, experimental collaborations have reported O(10) upper limits on the signal strength of four-top production at the LHC. Surprisingly, we find that the constraining power of four-top production on the qqtt type of operators is already competitive with the measurements of top-pair production, even though the precision level of the latter is more than two orders of magnitude better. This is explained by the enhanced sensitivity of the four-top cross section to qqtt operators, due to multiple insertion of operators in the squared amplitude, and to the large threshold energy of four-top production. We point out that even though the dominant contribution beyond the standard model comes from the O(C44/Λ8) terms, the effective field theory expansion remains valid for a wide range of underlying theories. Considering the possible improvements of this measurement with higher integrated luminosity, we believe that this process will become even more crucial for probing and testing the standard model deviations in the top-quark sector, and will eventually provide valuable information about the top-quark properties, leading to significant improvements in precision top physics.
      PCAS:
  • 加载中
  • [1] C. Patrignani et al (Particle Data Group), Chin. Phys. C, 40(10):100001 (2016)
    [2] G. Bevilacqua and M. Worek, JHEP, 1207:111 (2012)
    [3] J. Alwall et al, JHEP, 1407:079 (2014)
    [4] M. Czakon, P. Fiedler, and A. Mitov, Phys. Rev. Lett., 110:252004 (2013)
    [5] M. Czakon and A. Mitov, Comput. Phys. Commun., 185:2930 (2014)
    [6] B. Lillie, J. Shu, and T. M. P. Tait, JHEP, 0804:087 (2008)
    [7] A. Pomarol and J. Serra, Phys. Rev. D, 78:074026 (2008)
    [8] K. Kumar, T. M. P. Tait, and R. Vega-Morales, JHEP, 0905:022 (2009)
    [9] G. Cacciapaglia, R. Chierici, A. Deandrea et al, JHEP, 1110:042 (2011)
    [10] M. Perelstein and A. Spray, JHEP, 1109:008 (2011)
    [11] J. A. Aguilar-Saavedra, and J. Santiago, Phys. Rev. D, 85:034021 (2012)
    [12] L. Beck, F. Blekman, D. Dobur et al, Phys. Lett. B, 746:48 (2015)
    [13] P. S. Bhupal Dev and A. Pilaftsis, JHEP, 1412:024 (2014) Erratum:[JHEP, 1511:147 (2015)]
    [14] B. S. Acharya, P. Grajek, G. L. Kane et al, arXiv:0901.3367[hep-ph].
    [15] T. Gregoire, E. Katz, and V. Sanz, Phys. Rev. D, 85:055024 (2012)
    [16] C. Degrande, J. M. Gerard, C. Grojean et al, JHEP, 1103:125 (2011)
    [17] Q. H. Cao, S. L. Chen, and Y. Liu, Phys. Rev. D, 95(5):053004 (2017)
    [18] S. Weinberg, Phys. Rev. Lett., 43:1566 (1979)
    [19] C. N. Leung, S. T. Love, and S. Rao, Z. Phys. C, 31:433 (1986)
    [20] W. Buchmuller and D. Wyler, Nucl. Phys. B, 268:621 (1986)
    [21] A. Buckley, C. Englert, J. Ferrando et al, Phys. Rev. D, 92(9):091501 (2015)
    [22] A. Buckley, C. Englert, J. Ferrando et al, JHEP, 1604:015 (2016)
    [23] The ATLAS Collaboration, ATLAS-CONF-2012-130
    [24] CMS Collaboration CMS-PAS-TOP-13-012
    [25] G. Aad et al (ATLAS Collaboration), JHEP, 1508:105 (2015)
    [26] The ATLAS collaboration, ATLAS-CONF-2016-013
    [27] The ATLAS collaboration ATLAS-CONF-2016-020
    [28] The ATLAS collaboration (ATLAS Collaboration), ATLAS-CONF-2016-104
    [29] A. M. Sirunyan et al (CMS Collaboration), Phys. Lett. B, 772:336 (2017)
    [30] A. M. Sirunyan et al (CMS Collaboration), arXiv:1704.07323[hep-ex]
    [31] M. Aaboud et al (ATLAS Collaboration), arXiv:1704.08493[hep-ex]
    [32] E. Alvarez, D. A. Faroughy, J. F. Kamenik et al, Nucl. Phys. B, 915:19 (2017)
    [33] C. Zhang and S. Willenbrock, Phys. Rev. D, 83:034006 (2011)
    [34] J. de Blas, M. Chala, and J. Santiago, JHEP, 1509:189 (2015)
    [35] R. D. Ball et al (NNPDF Collaboration), JHEP, 1504:040 (2015)
    [36] C. Degrande, C. Duhr, B. Fuks et al, Comput. Phys. Commun., 183:1201 (2012)
    [37] A. Alloul, N. D. Christensen, C. Degrande et al, Comput. Phys. Commun., 185:2250 (2014)
    [38] O. Bessidskaia Bylund, F. Maltoni, I. Tsinikos et al, JHEP, 1605:052 (2016)
    [39] C. Degrande, G. Durieux, F. Maltoni et al, in preparation
    [40] G. Servant, doi:10.3204/DESY-PROC-2010-01/251
    [41] B. Grzadkowski, M. Iskrzynski, M. Misiak et al, JHEP, 1010:085 (2010)
    [42] CMS Collaboration CMS-PAS-TOP-14-016
    [43] F. Krauss, S. Kuttimalai, and T. Plehn, Phys. Rev. D, 95(3):035024 (2017)
    [44] T. Appelquist and J. Carazzone, Phys. Rev. D, 11:2856 (1975).
    [45] A. Biekotter, A. Knochel, M. Kramer et al, Phys. Rev. D, 91:055029 (2015)
    [46] R. Contino, A. Falkowski, F. Goertz et al, JHEP, 1607:144 (2016)
    [47] A. Butter, O. J. P. Eboli, J. Gonzalez-Fraile et al, JHEP, 1607:152 (2016)
    [48] A. Falkowski, M. Gonzalez-Alonso, A. Greljo et al, JHEP, 1702:115 (2017)
    [49] A. Pomarol, Higgs Physics, in Proceedings of the 2014 European School of High-Energy Physics (ESHEP 2014):edited by M. Mulders, G. Zanderigh, p.59
    [50] C. Degrande, N. Greiner, W. Kilian et al, Annals Phys., 335:21 (2013)
    [51] A. Kobach, Phys. Lett. B, 758:455 (2016)
    [52] G. Aad et al (ATLAS Collaboration), Eur. Phys. J. C, 74(10):3109 (2014) Addendum:[Eur. Phys. J. C, 76:no. 11:642 (2016)]
    [53] A. M. Sirunyan et al (CMS Collaboration), arXiv:1701.06228[hep-ex]
    [54] M. P. Rosello and M. Vos, Eur. Phys. J. C, 76(4):200 (2016)
    [55] L. A. Harland-Lang, A. D. Martin, P. Motylinski et al, Eur. Phys. J. C, 75(5):204 (2015)
    [56] S. Dulat et al, Phys. Rev. D, 93(3):033006 (2016)
    [57] T. A. Aaltonen et al (CDF and D0 Collaborations), Phys. Rev. D, 89(7):072001 (2014)
    [58] M. Aaboud et al (ATLAS Collaboration), Phys. Lett. B, 761:136 (2016)
    [59] M. Czakon, P. Fiedler, and A. Mitov, Phys. Rev. Lett., 115(5):052001 (2015)
    [60] (CDF and D0 Collaborations), FERMILAB-CONF-16-386-PPD, CDF-NOTE-11206, D0-NOTE-6492.
    [61] W. Bernreuther and Z. G. Si, Phys. Rev. D, 86:034026 (2012)
    [62] G. Aad et al (ATLAS Collaboration), Eur. Phys. J. C, 76(2):87 (2016)
    [63] V. Khachatryan et al (CMS Collaboration), Phys. Rev. D, 93(3):034014 (2016)
    [64] T. Sjostrand, P. Eden, C. Friberg et al, Comput. Phys. Commun., 135:238 (2001)
    [65] M. Aaboud et al (ATLAS Collaboration), Phys. Rev. D, 94(9):092003 (2016)
  • 加载中

Get Citation
Cen Zhang. Constraining qqtt operators from four-top production: a case for enhanced EFT sensitivity[J]. Chinese Physics C, 2018, 42(2): 023104. doi: 10.1088/1674-1137/42/2/023104
Cen Zhang. Constraining qqtt operators from four-top production: a case for enhanced EFT sensitivity[J]. Chinese Physics C, 2018, 42(2): 023104.  doi: 10.1088/1674-1137/42/2/023104 shu
Milestone
Received: 2017-08-22
Fund

    Supported by the 100-talent project of Chinese Academy of Sciences

Article Metric

Article Views(1415)
PDF Downloads(24)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Constraining qqtt operators from four-top production: a case for enhanced EFT sensitivity

    Corresponding author: Cen Zhang,
  • 1. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  Supported by the 100-talent project of Chinese Academy of Sciences

Abstract: Recently, experimental collaborations have reported O(10) upper limits on the signal strength of four-top production at the LHC. Surprisingly, we find that the constraining power of four-top production on the qqtt type of operators is already competitive with the measurements of top-pair production, even though the precision level of the latter is more than two orders of magnitude better. This is explained by the enhanced sensitivity of the four-top cross section to qqtt operators, due to multiple insertion of operators in the squared amplitude, and to the large threshold energy of four-top production. We point out that even though the dominant contribution beyond the standard model comes from the O(C44/Λ8) terms, the effective field theory expansion remains valid for a wide range of underlying theories. Considering the possible improvements of this measurement with higher integrated luminosity, we believe that this process will become even more crucial for probing and testing the standard model deviations in the top-quark sector, and will eventually provide valuable information about the top-quark properties, leading to significant improvements in precision top physics.

    HTML

Reference (65)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return