Covariant open string field theory on multiple Dp-branes

  • We study covariant open bosonic string field theories on multiple Dp-branes by using the deformed cubic string field theory, which is equivalent to string field theory in the proper-time gauge. Constructing the Fock space representations of the three-string vertex and the four-string vertex on multiple Dp-branes, we obtain the field theoretical effective action in the zero-slope limit. On multiple D0-branes, the effective action reduces to the Banks-Fishler-Shenker-Susskind (BFSS) matrix model. We also discuss the relation between open string field theory on multiple D-instantons in the zero-slope limit and the Ishibashi-Kawai-Kitazawa-Tsuchiya (IKKT) matrix model. The covariant open string field theory on multiple Dp-branes could be useful to study the non-perturbative properties of quantum field theories in (p+1)-dimensions in the framework of the string theory. The non-zero-slope corrections may be evaluated systematically by using covariant string field theory.
      PCAS:
  • 加载中
  • [1] T. Banks, W. Fischler, S. H. Shenker, and L. Susskind, Phys. Rev. D, 55:5112(1997)
    [2] N. Ishibashi, H. Kawai, Y. Kitazawa, and A. Tsuchiya, Nucl. Phys. B, 498:467(1997)
    [3] C. M. Hull and P. K. Townsend, Nucl. Phys. B, 438:109(1995)
    [4] E. Witten, Nucl. Phys. B, 443:85(1995)
    [5] M. J. Duff, J. T. Liu, and R. Minasian, Nucl. Phys. B, 452:261(1995)
    [6] T. Lee, Jour. Kor. Phys. Soc., 71:886(2017)
    [7] T. Lee, Phys. Lett. B, 768:248(2017)
    [8] T. Lee, Ann. Phys., 183:191(1988)
    [9] H. Feng and W. Siegel, Phys. Rev. D, 75:046006(2007)
    [10] V. A. Kostelecky, and S. Samuel, Nucl. Phys. B, 336:263(1990)
    [11] V. A. Kostelecky, and R. Potting, Phys. Lett. B, 381:89(1996)
    [12] A. Sen and B. Zwiebach, JHEP, 0003:002(2000)
    [13] N. Moeller and W. Taylor, Nucl. Phys. B, 583:105(2000)
    [14] E. Coletti, I. Sigalov, and W. Taylor, JHEP, 0309:050(2003)
    [15] A. A. Tseytlin, Nucl. Phys. B, 276:391(1986)
    [16] J.-C. Lee and Y. Yang, Review on High energy String Scattering Amplitudes and Symmetries of String Theory, (2015), arXiv:1510.03297
    [17] S.-H. Lai, J.-C. Lee, and Y. Yang, J. High Energy Phys., 11:062(2016)
    [18] Y.-t. Huang, O. Schlotterer, and C. Wen, J. High Energy Phys., 09:155(2016)
    [19] Y.-t. Huang, W. Siegel, and E. Y. Yuan, J. High Energy Phys., 09:101(2016)
    [20] S. H. Lai, J. C. Lee, Y. Yang, and T. Lee, Phys. Lett. B, 776:150(2018)
    [21] L. Hua and M. Kaku, Phys. Rev. D, 41:3748(1990)
    [22] S. Mandelstam, Nucl. Phys. B, 64:205(1973)
    [23] S. Mandelstam, Nucl. Phys. B, 69:77(1974)
    [24] M. Kaku and K. Kikkawa, Phys. Rev. D, 10:1110(1974)
    [25] M. Kaku and K. Kikkawa, Phys. Rev. D, 10:1823(1974)
    [26] E. Cremmer and J. L. Gervais, Nucl. Phys. B, 76:209(1974)
    [27] E. Cremmer and J. L. Gervais, Nucl. Phys. B, 90:410(1975)
    [28] M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory Volume 1 and 2, (Cambridge University Press, 1987)
    [29] E. Witten, Nucl. Phys. B, 268:253(1986)
    [30] E. Witten, Phys. Rev. D, 46:5467(1992)
    [31] J. Bordes, H. M. Chan, L. Nellen and S. T. Tsou, Nucl. Phys. B, 351:441(1991)
    [32] A. Abdurrahman and J. Bordes, Phys. Rev. D, 58:086003(1998)
    [33] L. Rastelli, A. Sen, and B. Zwiebach, JHEP, 0111:035(2001)
    [34] D. J. Gross and W. Taylor, JHEP, 0108:009(2001)
    [35] T. Kawano and K. Okuyama, JHEP, 0106:061(2001)
    [36] J. R. David, JHEP, 10:017(2000)
    [37] H. Hata, K. Itoh, T. Kugo, H. Kunitomo, and K. Ogawa, Phys. Lett. B, 172:186(1986)
    [38] L. Rastelli and B. Zwiebach, JHEP, 0109:038(2001)
    [39] Y. Okawa, Prog. Theor. Phys., 128:1001(2012)
    [40] T. Lee, EPJ Web of Conferences, 168:07004(2018)
    [41] T. Lee, Four-Graviton Scattering and String Path Integral in the Proper-time gauge, arXiv:1806.02702[hep-th]
    [42] T. Lee, Phys. Lett. B, 782:589(2018)
  • 加载中

Get Citation
Taejin Lee. Covariant open string field theory on multiple Dp-branes[J]. Chinese Physics C, 2018, 42(11): 113105. doi: 10.1088/1674-1137/42/11/113105
Taejin Lee. Covariant open string field theory on multiple Dp-branes[J]. Chinese Physics C, 2018, 42(11): 113105.  doi: 10.1088/1674-1137/42/11/113105 shu
Milestone
Received: 2018-08-07
Fund

    Supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1A02017805)

Article Metric

Article Views(1642)
PDF Downloads(20)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Covariant open string field theory on multiple Dp-branes

  • 1. Department of Physics, Kangwon National University, Chuncheon 24341, Korea
Fund Project:  Supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1A02017805)

Abstract: We study covariant open bosonic string field theories on multiple Dp-branes by using the deformed cubic string field theory, which is equivalent to string field theory in the proper-time gauge. Constructing the Fock space representations of the three-string vertex and the four-string vertex on multiple Dp-branes, we obtain the field theoretical effective action in the zero-slope limit. On multiple D0-branes, the effective action reduces to the Banks-Fishler-Shenker-Susskind (BFSS) matrix model. We also discuss the relation between open string field theory on multiple D-instantons in the zero-slope limit and the Ishibashi-Kawai-Kitazawa-Tsuchiya (IKKT) matrix model. The covariant open string field theory on multiple Dp-branes could be useful to study the non-perturbative properties of quantum field theories in (p+1)-dimensions in the framework of the string theory. The non-zero-slope corrections may be evaluated systematically by using covariant string field theory.

    HTML

Reference (42)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return