Quasinormal modes of a Schwarzschild black hole immersed in an electromagnetic universe

  • We study the quasinormal modes (QNMs) of a Schwarzschild black hole immersed in an electromagnetic (EM) universe. The immersed Schwarzschild black hole (ISBH) originates from the metric of colliding EM waves with double polarization[Class. Quantum Grav. 12, 3013 (1995)]. The perturbation equations of the scalar fields for the ISBH geometry are written in the form of separable equations. We show that these equations can be transformed to the confluent Heun's equations, for which we are able to use known techniques to perform analytical quasinormal (QNM) analysis of the solutions. Furthermore, we employ numerical methods (Mashhoon and 6th-order Wentzel-Kramers-Brillouin (WKB)) to derive the QNMs. The results obtained are discussed and depicted with the appropriate plots.
      PCAS:
  • [1] S. Fernando, Phys. Rev. D, 79:124026 (2009)
    [2] I. Sakalli, Int. J. Mod. Phys. A, 26:2263-2269 (2011); Int. J. Mod. Phys. A, 28:1392002 (2013)
    [3] D. Du, B. Wang, and R. Su, Phys. Rev. D, 70:064024 (2004)
    [4] C. Chirenti, Braz. J. Phys., 48(1):102 (2018)
    [5] K. D. Kokkotas and B. G. Schmidt, Living Rev. Rel., 2:2 (1999), arXiv:gr-qc/9909058
    [6] H-P Nollert, Class. Quantum Grav., 16:R159 (1999)
    [7] E. Berti, V. Cardoso, and A. O. Starinets, Class. Quantum Grav., 26:163001 (2009)
    [8] A. Flachi and J. P. S. Lemos, Phys. Rev. D, 87:024034 (2013)
    [9] A. Nagar and L. Rezzolla, Class. Quantum Grav., 22:R167 (2005)
    [10] C. B. M. H. Chirenti and L. Rezzolla, Class. Quantum Grav., 24:4191 (2007)
    [11] B. Toshmatov, C. Bambi, B. Ahmedov, Z. Stuchlik, and J. Schee, Phys. Rev. D, 96:064028 (2017)
    [12] S. Aneesh, S. Bose, and S. Kar, Phys. Rev. D, 97:124004 (2018)
    [13] B. P. Abbott et al (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett., 116:061102 (2016)
    [14] B. P. Abbott et al (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett., 119:161101 (2017)
    [15] A. Krolak and M. Patil, Universe, 3:59 (2017)
    [16] N. Stergioulas, Living Rev Relativ., 1:8 (1998)
    [17] J. Abadie et al (LIGO Scientific Collaboration), Nat. Phys., 7:962 (2011)
    [18] M. Page, J. Qin, J. La Fontaine, C. Zhao, and D. Blair, Phys. Rev. D, 97:124060 (2018)
    [19] P. A. Gonzalez, J. Saavedra, and Y. Vasquez, Int. J. Mod. Phys. D, 21:125005 (2012)
    [20] S. Iyer and C. M. Will, Phys. Rev. D, 35:3621 (1987)
    [21] R. A. Konoplya, Phys. Rev. D, 68:024018 (2003)
    [22] R. Konoplya, Phys. Rev. D, 71:024038 (2005)
    [23] R. A. Konoplya and A. Zhidenko, Phys. Rev. Lett., 103:161101 (2009)
    [24] S. Fernando, Phys. Rev. D, 77:124005 (2008)
    [25] S. Fernando, Gen. Rel. Grav., 36:71 (2004)
    [26] S. Fernando, Int. J. Mod. Phys. D, 24:1550104 (2015)
    [27] N. Breton, T. Clark, and S. Fernando, Int. J. Mod. Phys. D, 26(10):1750112 (2017)
    [28] I. Sakalli, Mod. Phys. Lett. A, 28:1350109 (2013)
    [29] I. Sakalli and S. F. Mirekhtiary, Astrophys.Space Sci., 350:727 (2014)
    [30] I. Sakalli, Eur. Phys. J. C, 75(4):144 (2015)
    [31] B. S. Kandemir and U. Ertem, Annalen Der Physik, 529:1600330 (2017)
    [32] I. Sakalli and G. Tokgoz, Annalen Der Physik, 528:612 (2016)
    [33] A. vgn and K. Jusufi, Annals Phys. 395:138 (2018)
    [34] I. Sakalli, K. Jusufi, and A. vgn, arXiv:1803.10583[gr-qc]
    [35] K. Jusufi, I. Sakalli and A. vgn, Gen. Rel. Grav., 50(1):10 (2018)
    [36] P. A. Gonzalez, A. vgn, J. Saavedra, and Y. Vasquez, Gen. Rel. Grav., 50(6):62 (2018)
    [37] R. Becar, S. Lepe, and J. Saavedra, Phys.Rev. D, 75:084021 (2007)
    [38] J. Saavedra, Mod. Phys. Lett. A, 21:1601 (2006)
    [39] S. Lepe, and J. Saavedra, Phys. Lett. B, 617:174 (2005)
    [40] J. Crisostomo, Samuel Lepe and J. Saavedra, Class. Quant. Grav. 21:2801 (2004)
    [41] P. A. Gonzalez, E. Papantonopoulos, J. Saavedra, and Y.Vasquez, Phys. Rev. D, 95(6):064046 (2017)
    [42] M. Cruz, M. Gonzalez-Espinoza, J. Saavedra, and D. Vargas-Arancibia, Eur. Phys. J. C, 76(2):75 (2016)
    [43] X. Kuang and J. Wu, Phys. Lett. B, 770:117 (2017)
    [44] X. He, B. Wang, S. Wu, and C. Lin, Phys. Lett. B, 673:156 (2009)
    [45] X. Rao, B. Wang, and G. Yang, Phys. Lett. B, 649:472 (2007)
    [46] S. Chen, B. Wang and R. Su, Class. Quantum Grav., 23:7581 (2006)
    [47] X. He, Songbai-Chen, B. Wang, R. Cai, and C. Lin, Phys. Lett. B, 665:392 (2008)
    [48] X. He, B. Wang, and S. Chen, Phys. Rev. D, 79:084005 (2009)
    [49] B. Wang, C. Lin and E. Abdalla, Phys. Lett. B, 481:79 (2000)
    [50] B. Wang, C. Lin, and C. Molina, Phys. Rev. D, 70:064025 (2004)
    [51] A. Jansen, Eur. Phys. J. Plus, 132(12):546 (2017)
    [52] M. Halilsoy and A. Al-Badawi, IL Nuovo Cimento B, 113:761 (1998)
    [53] M. Halilsoy, Gen. Relativ. Gravit., 25(3):275 (1992)
    [54] M. Halilsoy and A. Al-Badawi, Class. Quantum Grav., 12:3013 (1995)
    [55] A. Ovgun, Int. J. Theor. Phys., 55(6):2919 (2016)
    [56] H. Reissner, Annalen der Physik (in German), 50:106 (1916)
    [57] G. Nordstrm, Verhandl. Koninkl. Ned. Akad. Wetenschap., Afdel. Natuurk., Amsterdam., 26:1201 (1918)
    [58] S. Chandrasekhar, The Mathematical Theory of Black Holes (New York:Oxford University Press, 1983)
    [59] R. M. Wald, General Relativity (The University of Chicago Press, Chicago and London, 1984)
    [60] S. Q. Wu and X. Cai, J. Math. Phys. (N.Y.), 44:1084 (2003)
    [61] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965)
    [62] H. S. Vieira, V. B. Bezerra, and G. V. Silva, Ann. Phys. (Amsterdam), 362:576 (2015)
    [63] K. Heun, Math. Ann., 33:161 (1888)
    [64] A. Ronveaux, Heun's differential equations:(New York:Oxford University Press, 1995)
    [65] R. S. Maier, The 192 Solutions of Heun Equation:(Preprint math CA/0408317, 2004)
    [66] P. P. Fiziev, J. Phys. A:Math. Theor., 43:035203 (2010)
    [67] I. Sakalli and M. Halilsoy, Phys. Rev. D, 69:124012 (2004)
    [68] A. Al-Badawi and I. Sakalli, J. Math. Phys., 49:052501 (2008)
    [69] T. Birkandan and M. Hortacsu, EPL, 119(2):20002 (2017)
    [70] I. Sakalli, Phys. Rev. D, 94:084040 (2016)
    [71] G. V. Kraniotis, 2016 Class. Quantum Grav., 33:225011 (2016)
    [72] Here, the computer package, Maple 2017 is used for solving the confluent Heun differential equation
    [73] H. S. Vieira and V. B. Bezerra, Ann. Phys. (NY), 373:28 (2016)
    [74] H. S. Vieira, J. P. Morais Graca, and V. B. Bezerra, Chin. Phys. C, 41:095102 (2017)
    [75] V. Frolov and I. Novikov, Black Hole Physics:Basic Concepts and New Developments. Fundamental Theories of Physics (Kluwer Academic, London, 1998)
    [76] P. P. Fiziev, Class. Quantum Grav., 27:135001 (2010)
    [77] S. A. Teukolsky, Phys. Rev. Lett., 29:1114 (1972); S. A. Teukolsky, Astrophys. J., 185:635 (1973); W. H. Press and S. A. Teukolsky, Astrophys. J., 185:649 (1973); S. A. Teukolsky and W. H. Press, Astrophys. J., 193:443 (1974)
    [78] P. P. Fiziev, Phys. Rev. D, 80:124001 (2009)
    [79] S. Chandrasekhar, Proc. R. Soc. London A, 348:39 (1976); Proc. R. Soc. London A, 372:475 (1980)
    [80] S. Hod, arXiv:gr-qc/0307060 (2003)
    [81] E. Berti, V. Cardoso, K. D. Kokkotas, and H. Onozawa, Phys. Rev. D, 68:124018 (2003)
    [82] L. Motl, Ad. Theor. Math. Phys., 6:1135 (2002)
    [83] R. A. Konoplya and A. Zhidenko, Rev. Mod. Phys., 83:793 (2011)
    [84] H. J. Blome and B. Mashhoon, Phys. Lett. A, 110:231 (1984)
    [85] P. Musgrave and K. Lake, Class. Quant. Grav., 13:1885 (1996)
    [86] B. Toshmatov, A. Abdujabbarov, Z. Stuchlik, and B. Ahmedov, Phys. Rev. D, 91:083008 (2015)
    [87] B. Toshmatov, A. Abdujabbarov, J. Schee, and B. Ahmedov, Phys. Rev. D, 93:124017 (2016)
    [88] V. Cardoso, A. S. Miranda, E. Berti, H. Witeck, and V. T. Zanchin, Phys. Rev. D, 79:064016 (2009)
    [89] B. Mashhoon, Phys. Rev. D, 31:290 (1985)
    [90] R. A. Konoplya and Z. Stuchlik, Phys. Lett. B, 771:597 (2017)
  • [1] S. Fernando, Phys. Rev. D, 79:124026 (2009)
    [2] I. Sakalli, Int. J. Mod. Phys. A, 26:2263-2269 (2011); Int. J. Mod. Phys. A, 28:1392002 (2013)
    [3] D. Du, B. Wang, and R. Su, Phys. Rev. D, 70:064024 (2004)
    [4] C. Chirenti, Braz. J. Phys., 48(1):102 (2018)
    [5] K. D. Kokkotas and B. G. Schmidt, Living Rev. Rel., 2:2 (1999), arXiv:gr-qc/9909058
    [6] H-P Nollert, Class. Quantum Grav., 16:R159 (1999)
    [7] E. Berti, V. Cardoso, and A. O. Starinets, Class. Quantum Grav., 26:163001 (2009)
    [8] A. Flachi and J. P. S. Lemos, Phys. Rev. D, 87:024034 (2013)
    [9] A. Nagar and L. Rezzolla, Class. Quantum Grav., 22:R167 (2005)
    [10] C. B. M. H. Chirenti and L. Rezzolla, Class. Quantum Grav., 24:4191 (2007)
    [11] B. Toshmatov, C. Bambi, B. Ahmedov, Z. Stuchlik, and J. Schee, Phys. Rev. D, 96:064028 (2017)
    [12] S. Aneesh, S. Bose, and S. Kar, Phys. Rev. D, 97:124004 (2018)
    [13] B. P. Abbott et al (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett., 116:061102 (2016)
    [14] B. P. Abbott et al (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett., 119:161101 (2017)
    [15] A. Krolak and M. Patil, Universe, 3:59 (2017)
    [16] N. Stergioulas, Living Rev Relativ., 1:8 (1998)
    [17] J. Abadie et al (LIGO Scientific Collaboration), Nat. Phys., 7:962 (2011)
    [18] M. Page, J. Qin, J. La Fontaine, C. Zhao, and D. Blair, Phys. Rev. D, 97:124060 (2018)
    [19] P. A. Gonzalez, J. Saavedra, and Y. Vasquez, Int. J. Mod. Phys. D, 21:125005 (2012)
    [20] S. Iyer and C. M. Will, Phys. Rev. D, 35:3621 (1987)
    [21] R. A. Konoplya, Phys. Rev. D, 68:024018 (2003)
    [22] R. Konoplya, Phys. Rev. D, 71:024038 (2005)
    [23] R. A. Konoplya and A. Zhidenko, Phys. Rev. Lett., 103:161101 (2009)
    [24] S. Fernando, Phys. Rev. D, 77:124005 (2008)
    [25] S. Fernando, Gen. Rel. Grav., 36:71 (2004)
    [26] S. Fernando, Int. J. Mod. Phys. D, 24:1550104 (2015)
    [27] N. Breton, T. Clark, and S. Fernando, Int. J. Mod. Phys. D, 26(10):1750112 (2017)
    [28] I. Sakalli, Mod. Phys. Lett. A, 28:1350109 (2013)
    [29] I. Sakalli and S. F. Mirekhtiary, Astrophys.Space Sci., 350:727 (2014)
    [30] I. Sakalli, Eur. Phys. J. C, 75(4):144 (2015)
    [31] B. S. Kandemir and U. Ertem, Annalen Der Physik, 529:1600330 (2017)
    [32] I. Sakalli and G. Tokgoz, Annalen Der Physik, 528:612 (2016)
    [33] A. vgn and K. Jusufi, Annals Phys. 395:138 (2018)
    [34] I. Sakalli, K. Jusufi, and A. vgn, arXiv:1803.10583[gr-qc]
    [35] K. Jusufi, I. Sakalli and A. vgn, Gen. Rel. Grav., 50(1):10 (2018)
    [36] P. A. Gonzalez, A. vgn, J. Saavedra, and Y. Vasquez, Gen. Rel. Grav., 50(6):62 (2018)
    [37] R. Becar, S. Lepe, and J. Saavedra, Phys.Rev. D, 75:084021 (2007)
    [38] J. Saavedra, Mod. Phys. Lett. A, 21:1601 (2006)
    [39] S. Lepe, and J. Saavedra, Phys. Lett. B, 617:174 (2005)
    [40] J. Crisostomo, Samuel Lepe and J. Saavedra, Class. Quant. Grav. 21:2801 (2004)
    [41] P. A. Gonzalez, E. Papantonopoulos, J. Saavedra, and Y.Vasquez, Phys. Rev. D, 95(6):064046 (2017)
    [42] M. Cruz, M. Gonzalez-Espinoza, J. Saavedra, and D. Vargas-Arancibia, Eur. Phys. J. C, 76(2):75 (2016)
    [43] X. Kuang and J. Wu, Phys. Lett. B, 770:117 (2017)
    [44] X. He, B. Wang, S. Wu, and C. Lin, Phys. Lett. B, 673:156 (2009)
    [45] X. Rao, B. Wang, and G. Yang, Phys. Lett. B, 649:472 (2007)
    [46] S. Chen, B. Wang and R. Su, Class. Quantum Grav., 23:7581 (2006)
    [47] X. He, Songbai-Chen, B. Wang, R. Cai, and C. Lin, Phys. Lett. B, 665:392 (2008)
    [48] X. He, B. Wang, and S. Chen, Phys. Rev. D, 79:084005 (2009)
    [49] B. Wang, C. Lin and E. Abdalla, Phys. Lett. B, 481:79 (2000)
    [50] B. Wang, C. Lin, and C. Molina, Phys. Rev. D, 70:064025 (2004)
    [51] A. Jansen, Eur. Phys. J. Plus, 132(12):546 (2017)
    [52] M. Halilsoy and A. Al-Badawi, IL Nuovo Cimento B, 113:761 (1998)
    [53] M. Halilsoy, Gen. Relativ. Gravit., 25(3):275 (1992)
    [54] M. Halilsoy and A. Al-Badawi, Class. Quantum Grav., 12:3013 (1995)
    [55] A. Ovgun, Int. J. Theor. Phys., 55(6):2919 (2016)
    [56] H. Reissner, Annalen der Physik (in German), 50:106 (1916)
    [57] G. Nordstrm, Verhandl. Koninkl. Ned. Akad. Wetenschap., Afdel. Natuurk., Amsterdam., 26:1201 (1918)
    [58] S. Chandrasekhar, The Mathematical Theory of Black Holes (New York:Oxford University Press, 1983)
    [59] R. M. Wald, General Relativity (The University of Chicago Press, Chicago and London, 1984)
    [60] S. Q. Wu and X. Cai, J. Math. Phys. (N.Y.), 44:1084 (2003)
    [61] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965)
    [62] H. S. Vieira, V. B. Bezerra, and G. V. Silva, Ann. Phys. (Amsterdam), 362:576 (2015)
    [63] K. Heun, Math. Ann., 33:161 (1888)
    [64] A. Ronveaux, Heun's differential equations:(New York:Oxford University Press, 1995)
    [65] R. S. Maier, The 192 Solutions of Heun Equation:(Preprint math CA/0408317, 2004)
    [66] P. P. Fiziev, J. Phys. A:Math. Theor., 43:035203 (2010)
    [67] I. Sakalli and M. Halilsoy, Phys. Rev. D, 69:124012 (2004)
    [68] A. Al-Badawi and I. Sakalli, J. Math. Phys., 49:052501 (2008)
    [69] T. Birkandan and M. Hortacsu, EPL, 119(2):20002 (2017)
    [70] I. Sakalli, Phys. Rev. D, 94:084040 (2016)
    [71] G. V. Kraniotis, 2016 Class. Quantum Grav., 33:225011 (2016)
    [72] Here, the computer package, Maple 2017 is used for solving the confluent Heun differential equation
    [73] H. S. Vieira and V. B. Bezerra, Ann. Phys. (NY), 373:28 (2016)
    [74] H. S. Vieira, J. P. Morais Graca, and V. B. Bezerra, Chin. Phys. C, 41:095102 (2017)
    [75] V. Frolov and I. Novikov, Black Hole Physics:Basic Concepts and New Developments. Fundamental Theories of Physics (Kluwer Academic, London, 1998)
    [76] P. P. Fiziev, Class. Quantum Grav., 27:135001 (2010)
    [77] S. A. Teukolsky, Phys. Rev. Lett., 29:1114 (1972); S. A. Teukolsky, Astrophys. J., 185:635 (1973); W. H. Press and S. A. Teukolsky, Astrophys. J., 185:649 (1973); S. A. Teukolsky and W. H. Press, Astrophys. J., 193:443 (1974)
    [78] P. P. Fiziev, Phys. Rev. D, 80:124001 (2009)
    [79] S. Chandrasekhar, Proc. R. Soc. London A, 348:39 (1976); Proc. R. Soc. London A, 372:475 (1980)
    [80] S. Hod, arXiv:gr-qc/0307060 (2003)
    [81] E. Berti, V. Cardoso, K. D. Kokkotas, and H. Onozawa, Phys. Rev. D, 68:124018 (2003)
    [82] L. Motl, Ad. Theor. Math. Phys., 6:1135 (2002)
    [83] R. A. Konoplya and A. Zhidenko, Rev. Mod. Phys., 83:793 (2011)
    [84] H. J. Blome and B. Mashhoon, Phys. Lett. A, 110:231 (1984)
    [85] P. Musgrave and K. Lake, Class. Quant. Grav., 13:1885 (1996)
    [86] B. Toshmatov, A. Abdujabbarov, Z. Stuchlik, and B. Ahmedov, Phys. Rev. D, 91:083008 (2015)
    [87] B. Toshmatov, A. Abdujabbarov, J. Schee, and B. Ahmedov, Phys. Rev. D, 93:124017 (2016)
    [88] V. Cardoso, A. S. Miranda, E. Berti, H. Witeck, and V. T. Zanchin, Phys. Rev. D, 79:064016 (2009)
    [89] B. Mashhoon, Phys. Rev. D, 31:290 (1985)
    [90] R. A. Konoplya and Z. Stuchlik, Phys. Lett. B, 771:597 (2017)
  • 加载中

Cited by

1. Araújo Filho, A.A., Nascimento, J.R., Petrov, A.Y. et al. Properties of an axisymmetric Lorentzian non-commutative black hole[J]. Physics of the Dark Universe, 2025. doi: 10.1016/j.dark.2024.101796
2. Sucu, E., Sakallı, İ. Dynamics of particles surrounding a stationary, spherically-symmetric black hole with Nonlinear Electrodynamics[J]. Physics of the Dark Universe, 2025. doi: 10.1016/j.dark.2024.101771
3. Filho, A.A.A., Nascimento, J.R., Petrov, A.Y. et al. Effects of non-commutative geometry on black hole properties[J]. Physics of the Dark Universe, 2024. doi: 10.1016/j.dark.2024.101630
4. Al-Badawi, A., Kumar Jha, S. Massless Dirac perturbations of black holes in f(Q) gravity: quasinormal modes and a weak deflection angle[J]. Communications in Theoretical Physics, 2024, 76(9): 095403. doi: 10.1088/1572-9494/ad51ee
5. Araújo Filho, A.A., Hassanabadi, H., Heidari, N. et al. Gravitational traces of bumblebee gravity in metric-affine formalism[J]. Classical and Quantum Gravity, 2024, 41(5): 055003. doi: 10.1088/1361-6382/ad1712
6. Gogoi, D.J., Heidari, N., K̆rí̆z, J. et al. Quasinormal Modes and Greybody Factors of de Sitter Black Holes Surrounded by Quintessence in Rastall Gravity[J]. Fortschritte der Physik, 2024, 72(3): 2300245. doi: 10.1002/prop.202300245
7. Heidari, N., Hassanabadi, H., Araújo Filho, A.A. et al. Gravitational signatures of a non-commutative stable black hole[J]. Physics of the Dark Universe, 2024. doi: 10.1016/j.dark.2023.101382
8. Ahmed, F., Güvendi, A. Behavior of spin-0 scalar particles in Eddington-inspired Born-Infeld gravity global monopole with harmonic oscillator potential[J]. Modern Physics Letters A, 2024, 39(2): 2350187. doi: 10.1142/S0217732323501870
9. Sadeghi, J., Afshar, M.A.S., Alipour, M.R. et al. Investigation of hidden symmetry in AdS5 black hole with Heun equation[J]. International Journal of Modern Physics A, 2024, 39(1): 2450001. doi: 10.1142/S0217751X24500015
10. Araújo Filho, A.A.. Analysis of a regular black hole in Verlinde’s gravity[J]. Classical and Quantum Gravity, 2024, 41(1): 015003. doi: 10.1088/1361-6382/ad0a19
11. Díaz Palencia, J.L.. Scalar field solutions and energy bounds for modeling spatial oscillations in Schwarzschild black holes based on the Regge–Wheeler equation[J]. Frontiers in Astronomy and Space Sciences, 2024. doi: 10.3389/fspas.2024.1426406
12. Filho, A.A.A.. Implications of a Simpson–Visser solution in Verlinde’s framework[J]. European Physical Journal C, 2024, 84(1): 73. doi: 10.1140/epjc/s10052-023-12328-7
13. Gogoi, D.J., Övgün, A., Demir, D. Quasinormal modes and greybody factors of symmergent black hole[J]. Physics of the Dark Universe, 2023. doi: 10.1016/j.dark.2023.101314
14. Jha, S.K.. Shadow, quasinormal modes, greybody bounds, and Hawking sparsity of loop quantum gravity motivated non-rotating black hole[J]. European Physical Journal C, 2023, 83(10): 952. doi: 10.1140/epjc/s10052-023-12123-4
15. Chakraborty, C., Mukhopadhyay, B. Geometric phase in Taub-NUT spacetime[J]. European Physical Journal C, 2023, 83(10): 937. doi: 10.1140/epjc/s10052-023-12070-0
16. Sekhmani, Y., Gogoi, D.J., Baouahi, M. et al. Thermodynamic geometry of STU black holes[J]. Physica Scripta, 2023, 98(10): 105014. doi: 10.1088/1402-4896/acf7fb
17. Jha, S.K.. Photonsphere, shadow, quasinormal modes, and greybody bounds of non-rotating Simpson–Visser black hole[J]. European Physical Journal Plus, 2023, 138(8): 757. doi: 10.1140/epjp/s13360-023-04384-5
18. Gogoi, D.J., Övgün, A., Koussour, M. Quasinormal modes of black holes in f(Q) gravity[J]. European Physical Journal C, 2023, 83(8): 700. doi: 10.1140/epjc/s10052-023-11881-5
19. Lambiase, G., Pantig, R.C., Gogoi, D.J. et al. Investigating the connection between generalized uncertainty principle and asymptotically safe gravity in black hole signatures through shadow and quasinormal modes[J]. European Physical Journal C, 2023, 83(7): 679. doi: 10.1140/epjc/s10052-023-11848-6
20. Uniyal, A., Kanzi, S., Sakallı, İ. Some observable physical properties of the higher dimensional dS/AdS black holes in Einstein-bumblebee gravity theory[J]. European Physical Journal C, 2023, 83(7): 668. doi: 10.1140/epjc/s10052-023-11846-8
21. Jawad, A., Chaudhary, S., Yasir, M. et al. Quasinormal modes of extended gravity black holes through higher order WKB method[J]. International Journal of Geometric Methods in Modern Physics, 2023, 20(8): 2350129. doi: 10.1142/S0219887823501293
22. Zhang, C., Guo, W., Yan, Z. et al. Quasinormal modes of quantum corrected black hole in the non-Ricci-flat spacetime perturbation[J]. Indian Journal of Physics, 2023, 97(2): 623-629. doi: 10.1007/s12648-022-02389-x
23. Bécar, R., González, P.A., Vásquez, Y. Quasinormal modes of a charged scalar field in Ernst black holes[J]. European Physical Journal C, 2023, 83(1): 75. doi: 10.1140/epjc/s10052-023-11188-5
24. Wu, S.R., Wang, B.Q., Liu, D. et al. Echoes of charged black-bounce spacetimes[J]. European Physical Journal C, 2022, 82(11): 998. doi: 10.1140/epjc/s10052-022-10938-1
25. Sakalli, I., Kanzi, S. Topical Review: greybody factors and quasinormal modes for black holes in various theories - fingerprints of invisibles[J]. Turkish Journal of Physics, 2022, 46(2): 51-103. doi: 10.55730/1300-0101.2691
26. Liu, D., Yang, Y., Wu, S. et al. Ringing of a black hole in a dark matter halo[J]. Physical Review D, 2021, 104(10): 104042. doi: 10.1103/PhysRevD.104.104042
27. Alatas, H., Nuraeni, S.A., Saptiani, I.L. et al. On the photon motion near a five-dimensional Schwarzschild black hole[J]. European Journal of Physics, 2021, 42(5): 055602. doi: 10.1088/1361-6404/ac172e
28. Övgün, A., İzzet, S., Mutuk, H. Quasinormal modes of dS and AdS black holes: Feedforward neural network method[J]. International Journal of Geometric Methods in Modern Physics, 2021, 18(10): 2150154. doi: 10.1142/S0219887821501541
29. Dariescu, C., Dariescu, M.-A., Stelea, C. Dirac Equation on the Kerr-Newman Spacetime and Heun Functions[J]. Advances in High Energy Physics, 2021. doi: 10.1155/2021/5512735
30. Kandemir, B.S.. Hairy BTZ black hole and its analogue model in graphene[J]. Annals of Physics, 2020. doi: 10.1016/j.aop.2019.168064
31. Övgün, A., Sakallı, İ. Hawking radiation via Gauss–Bonnet theorem[J]. Annals of Physics, 2020. doi: 10.1016/j.aop.2020.168071
32. Konoplya, R.A., Zhidenko, A., Zinhailo, A.F. Higher order WKB formula for quasinormal modes and grey-body factors: Recipes for quick and accurate calculations[J]. Classical and Quantum Gravity, 2019, 36(15): 155002. doi: 10.1088/1361-6382/ab2e25
33. Sakallı, İ., Jusufi, K., Övgün, A. Analytical solutions in a cosmic string Born–Infeld-dilaton black hole geometry: quasinormal modes and quantization[J]. General Relativity and Gravitation, 2018, 50(10): 125. doi: 10.1007/s10714-018-2455-4
Get Citation
Ali Övgün, Izzet Sakalli and Joel Saavedra. Quasinormal modes of a Schwarzschild black hole immersed in an electromagnetic universe[J]. Chinese Physics C, 2018, 42(10): 105102. doi: 10.1088/1674-1137/42/10/105102
Ali Övgün, Izzet Sakalli and Joel Saavedra. Quasinormal modes of a Schwarzschild black hole immersed in an electromagnetic universe[J]. Chinese Physics C, 2018, 42(10): 105102.  doi: 10.1088/1674-1137/42/10/105102 shu
Milestone
Received: 2018-05-16
Article Metric

Article Views(2329)
PDF Downloads(34)
Cited by(33)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Quasinormal modes of a Schwarzschild black hole immersed in an electromagnetic universe

  • 1. Instituto de Fí
  • 2. Physics Department, Arts and Sciences Faculty, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
  • 3. School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA
  • 4.  Instituto de Fí

Abstract: We study the quasinormal modes (QNMs) of a Schwarzschild black hole immersed in an electromagnetic (EM) universe. The immersed Schwarzschild black hole (ISBH) originates from the metric of colliding EM waves with double polarization[Class. Quantum Grav. 12, 3013 (1995)]. The perturbation equations of the scalar fields for the ISBH geometry are written in the form of separable equations. We show that these equations can be transformed to the confluent Heun's equations, for which we are able to use known techniques to perform analytical quasinormal (QNM) analysis of the solutions. Furthermore, we employ numerical methods (Mashhoon and 6th-order Wentzel-Kramers-Brillouin (WKB)) to derive the QNMs. The results obtained are discussed and depicted with the appropriate plots.

    HTML

Reference (90)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return