Event-by-event efficiency fluctuations and efficiency correction for cumulants of superposed multiplicity distributions in relativistic heavy-ion collision experiments

  • We performed systematic studies on the effects of event-by-event efficiency fluctuations on efficiency correction for cumulant analysis in relativistic heavy-ion collision experiments. Experimentally, particle efficiencies of events measured under different experimental conditions should be different. For fluctuation measurements, the final event-by-event multiplicity distributions should be the superposed distributions of various type of events measured under different conditions. We demonstrate efficiency fluctuation effects using numerical simulation, in which we construct an event ensemble consisting of events with two different efficiencies. By using the mean particle efficiencies, we find that the efficiency corrected cumulants show large deviations from the original inputs when the discrepancy between the two efficiencies is large. We further studied the effects of efficiency fluctuations for the cumulants of net-proton distributions by implementing the UrQMD events of Au+Au collisions at √sNN=7.7 GeV in a realistic STAR detector acceptance. We consider the unequal efficiency in two sides of the Time Projection Chamber (TPC), multiplicity dependent efficiency, and the event-by-event variations of the collision vertex position along the longitudinal direction (Vz). When the efficiencies fluctuate dramatically within the studied event sample, the effects of efficiency fluctuations have significant impacts on the efficiency corrections of cumulants with the mean efficiencies. We find that this effect can be effectively suppressed by binning the entire event ensemble into various sub-event samples, in which the efficiency variations are relatively small. The final efficiency corrected cumulants can be calculated from the weighted average of the corrected factorial moments of the sub-event samples with the mean efficiencies.
      PCAS:
  • 加载中
  • [1] S. Gupta, X. Luo, B. Mohanty, H. G. Ritter, and N. Xu, Science, 332:1525 (2011), arXiv:1105.3934[hep-ph].
    [2] J. Cleymans, H. Satz, E. Suhonen, and D. W. von Oertzen, Phys. Lett. B, 242:111 (1990).
    [3] N. J. Davidson, H. G. Miller, R. M. Quick, and J. Cleymans, Phys. Lett. B, 255:105 (1991).
    [4] H.-L. Lao, F.-H. Liu, B.-C. Li, and M.-Y. Duan, Nucl. Sci. Tech., 29:82 (2018), arXiv:1703.04944[nucl-th].
    [5] L. Adamczyk et al (STAR), Phys. Rev. Lett., 112:162301 (2014), arXiv:1401.3043[nucl-ex].
    [6] J. Brachmann, S. Soff, A. Dumitru, H. Stoecker, J. A. Maruhn, W. Greiner, L. V. Bravina, and D. H. Rischke, Phys. Rev. C, 61:024909 (2000), arXiv:nucl-th/9908010[nuclth].
    [7] H. Song, Y. Zhou, and K. Gajdosova, Nucl. Sci. Tech., 28:99 (2017), arXiv:1703.00670[nucl-th].
    [8] K. Hattori and X.-G. Huang, Nucl. Sci. Tech., 28:26 (2017), arXiv:1609.00747[nucl-th].
    [9] Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabo, Nature, 443:675 (2006), arXiv:hep-lat/0611014[hep-lat].
    [10] B. J. Schaefer and M. Wagner, Phys. Rev. D, 85:034027 (2012), arXiv:1111.6871[hep-ph].
    [11] M. Asakawa, S. Ejiri, and M. Kitazawa, Phys. Rev. Lett., 103:262301 (2009), arXiv:0904.2089[nucl-th].
    [12] G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabo, JHEP, 04:001 (2011), arXiv:1102.1356[hep-lat].
    [13] M. A. Stephanov, Prog. Theor. Phys. Suppl., 153:139 (2004),[Int. J. Mod. Phys. A, 20:4387 (2005)], arXiv:hepph/0402115[hep-ph].
    [14] J.-W. Chen, J. Deng, H. Kohyama, and L. Labun, Phys. Rev. D, 93:034037 (2016), arXiv:1509.04968[hep-ph].
    [15] V. Vovchenko, D. V. Anchishkin, M. I. Gorenstein, and R. V. Poberezhnyuk, Phys. Rev. C, 92:054901 (2015), arXiv:1506.05763[nucl-th].
    [16] V. Vovchenko, M. I. Gorenstein, and H. Stoecker, Phys. Rev. Lett., 118:182301 (2017), arXiv:1609.03975[hep-ph].
    [17] W. Fan, X. Luo, and H. Zong, Identifying the presence of the critical end point in QCD phase diagram by higher order susceptibilities, (2017), arXiv:1702.08674[hep-ph].
    [18] K. Fukushima, Phys. Rev. C, 91:044910 (2015), arXiv:1409.0698[hep-ph].
    [19] F. Karsch and K. Redlich, Phys. Lett. B, 695:136 (2011), arXiv:1007.2581[hep-ph].
    [20] P. Braun-Munzinger, B. Friman, F. Karsch, K. Redlich, and V. Skokov, Phys. Rev. C, 84:064911 (2011), arXiv:1107.4267[hep-ph].
    [21] R. V. Gavai and S. Gupta, Phys. Lett. B, 696:459 (2011), arXiv:1001.3796[hep-lat].
    [22] S. Borsanyi, Z. Fodor, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabo, Phys. Rev. Lett., 111:062005 (2013), arXiv:1305.5161[hep-lat].
    [23] A. Bazavov et al, Phys. Rev. Lett., 109:192302 (2012), arXiv:1208.1220[hep-lat].
    [24] K. Morita, B. Friman, and K. Redlich, Phys. Lett. B, 741:178 (2015), arXiv:1402.5982[hep-ph].
    [25] L. Jiang, P. Li, and H. Song, Nucl. Phys. A, 956:360 (2016), arXiv:1512.07373[nucl-th].
    [26] L. Jiang, P. Li, and H. Song, Phys. Rev. C, 94:024918 (2016), arXiv:1512.06164[nucl-th].
    [27] L. Adamczyk et al (STAR), Phys. Rev. Lett., 113:092301 (2014), arXiv:1402.1558[nucl-ex].
    [28] P. Alba, W. Alberico, R. Bellwied, M. Bluhm, V. Mantovani Sarti, M. Nahrgang, and C. Ratti, Phys. Lett. B, 738:305 (2014), arXiv:1403.4903[hep-ph].
    [29] X. Luo and N. Xu, Nucl. Sci. Tech., 28:112 (2017), arXiv:1701.02105[nucl-ex].
    [30] S. Ejiri, F. Karsch, and K. Redlich, Phys. Lett. B, 633:275 (2006), arXiv:hep-ph/0509051[hep-ph].
    [31] M. A. Stephanov, K. Rajagopal, and E. V. Shuryak, Phys. Rev. D, 60:114028 (1999), arXiv:hep-ph/9903292[hep-ph].
    [32] M. A. Stephanov, Phys. Rev. Lett., 102:032301 (2009), arXiv:0809.3450[hep-ph].
    [33] M. A. Stephanov, Phys. Rev. Lett., 107:052301 (2011),arXiv:1104.1627[hep-ph].
    [34] A. Bzdak, V. Koch, and N. Strodthoff, Phys. Rev. C, 95:054906 (2017), arXiv:1607.07375[nucl-th].
    [35] X. Luo (STAR), Nucl. Phys. A, 904-905:911c (2013),[Central Eur. J. Phys., 10:1372 (2012)], arXiv:1210.5573[nucl-ex].
    [36] B. Friman, Nucl. Phys. A, 928:198 (2014), arXiv:1404.7471[nucl-th].
    [37] M. Kitazawa and M. Asakawa, Phys. Rev. C, 85:021901 (2012), arXiv:1107.2755[nucl-th].
    [38] M. Kitazawa and M. Asakawa, Phys. Rev. C, 86:024904 (2012),[Erratum:Phys. Rev. C, 86:069902 (2012)], arXiv:1205.3292[nucl-th].
    [39] B. Friman, F. Karsch, K. Redlich, and V. Skokov, Eur. Phys. J. C, 71:1694 (2011), arXiv:1103.3511[hep-ph].
    [40] M. Cheng et al, Phys. Rev. D, 79:074505 (2009), arXiv:0811.1006[hep-lat].
    [41] X. Luo, Nucl. Phys. A, 956:75 (2016), arXiv:1512.09215[nucl-ex].
    [42] M. M. Aggarwal et al (STAR), An Experimental Exploration of the QCD Phase Diagram:The Search for the Critical Point and the Onset of De-confinement, (2010), arXiv:1007.2613[nucl-ex].
    [43] A. Zhao, X. Luo, and H. Zong, Eur. Phys. J. C, 77:207 (2017), arXiv:1609.01416[nucl-th].
    [44] S. Jeon and V. Koch, Phys. Rev. Lett. 83, 5435 (1999), arXiv:nucl-th/9906074[nucl-th].
    [45] M. Asakawa, U. W. Heinz, and B. Muller, Phys. Rev. Lett., 85:2072 (2000), arXiv:hep-ph/0003169[hep-ph].
    [46] J. Xu, J. Phys. Conf. Ser., 736:012002 (2016), arXiv:1611.07134[hep-ex].
    [47] J. Xu, S. Yu, F. Liu, and X. Luo, Phys. Rev. C, 94:024901 (2016), arXiv:1606.03900[nucl-ex].
    [48] L. Adamczyk et al (STAR), Collision Energy Dependence of Moments of Net-Kaon Multiplicity Distributions at RHIC, (2017), arXiv:1709.00773[nucl-ex].
    [49] M. M. Aggarwal et al (STAR), Phys. Rev. Lett., 105:022302 (2010), arXiv:1004.4959[nucl-ex].
    [50] L. Adamczyk et al (STAR), Phys. Rev. Lett., 112:032302 (2014), arXiv:1309.5681[nucl-ex].
    [51] X. Luo (STAR), Proceedings, 9th International Workshop on Critical Point and Onset of Deconfinement (CPOD 2014):Bielefeld, Germany, November 17-21, 2014, PoS, CPOD2014:019 (2015), arXiv:1503.02558[nucl-ex].
    [52] S. Mukherjee, R. Venugopalan, and Y. Yin, Phys. Rev. Lett., 117:222301 (2016), arXiv:1605.09341[hep-ph].
    [53] S. Mukherjee, R. Venugopalan, and Y. Yin, Phys. Rev. C, 92:034912 (2015), arXiv:1506.00645[hep-ph].
    [54] M. Nahrgang, M. Bluhm, P. Alba, R. Bellwied, and C. Ratti, Eur. Phys. J. C, 75:573 (2015), arXiv:1402.1238[hep-ph].
    [55] A. Bzdak, V. Koch, and V. Skokov, Phys. Rev. C, 87:014901 (2013), arXiv:1203.4529[hep-ph].
    [56] B. Ling and M. A. Stephanov, Phys. Rev. C, 93:034915 (2016), arXiv:1512.09125[nucl-th].
    [57] B. Berdnikov and K. Rajagopal, Phys. Rev. D, 61:105017 (2000), arXiv:hep-ph/9912274[hep-ph].
    [58] S. He, X. Luo, Y. Nara, S. Esumi, and N. Xu, Phys. Lett. B, 762:296 (2016), arXiv:1607.06376[nucl-ex].
    [59] M. Nahrgang, T. Schuster, M. Mitrovski, R. Stock, and M. Bleicher, Eur. Phys. J. C, 72:2143 (2012), arXiv:0903.2911[hep-ph].
    [60] M. Sakaida, M. Asakawa, and M. Kitazawa, Phys. Rev. C, 90:064911 (2014), arXiv:1409.6866[nucl-th].
    [61] B. I. Abelev et al (STAR), Phys. Rev. C, 79:034909 (2009), arXiv:0808.2041[nucl-ex].
    [62] A. Bzdak and V. Koch, Phys. Rev. C, 91:027901 (2015), arXiv:1312.4574[nucl-th].
    [63] X. Luo, Phys. Rev. C, 91:034907 (2015), arXiv:1410.3914[physics.data-an].
    [64] T. Nonaka, M. Kitazawa, and S. Esumi, Phys. Rev. C, 95:064912 (2017), arXiv:1702.07106[physics.data-an].
    [65] M. Kitazawa and X. Luo, Phys. Rev. C, 96:024910 (2017), arXiv:1704.04909[nucl-th].
    [66] X. Luo, J. Phys. G, 39:025008 (2012), arXiv:1109.0593[physics.data-an].
    [67] X. Luo, J. Xu, B. Mohanty, and N. Xu, J. Phys. G, 40:105104 (2013), arXiv:1302.2332[nucl-ex].
    [68] W. R. Leo, Techniques for Nuclear and Particle Physics Experiments:A How to Approach (Berlin, Germany:Springer (1987) 368, 1987).
    [69] S. A. Bass et al, Prog. Part. Nucl. Phys., 41:255 (1998),[Prog. Part. Nucl. Phys., 41:225 (1998)], arXiv:nucl-th/9803035[nucl-th].
    [70] S. He and X. Luo, Phys. Lett. B, 774:623 (2017), arXiv:1704.00423[nucl-ex]
  • 加载中

Get Citation
Shu He and Xiaofeng Luo. Event-by-event efficiency fluctuations and efficiency correction for cumulants of superposed multiplicity distributions in relativistic heavy-ion collision experiments[J]. Chinese Physics C, 2018, 42(10): 104001. doi: 10.1088/1674-1137/42/10/104001
Shu He and Xiaofeng Luo. Event-by-event efficiency fluctuations and efficiency correction for cumulants of superposed multiplicity distributions in relativistic heavy-ion collision experiments[J]. Chinese Physics C, 2018, 42(10): 104001.  doi: 10.1088/1674-1137/42/10/104001 shu
Milestone
Received: 2018-04-16
Fund

    Supported by the MoST of China 973-Project No.2015CB856901, NSFC (11575069).

Article Metric

Article Views(1635)
PDF Downloads(26)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Event-by-event efficiency fluctuations and efficiency correction for cumulants of superposed multiplicity distributions in relativistic heavy-ion collision experiments

Fund Project:  Supported by the MoST of China 973-Project No.2015CB856901, NSFC (11575069).

Abstract: We performed systematic studies on the effects of event-by-event efficiency fluctuations on efficiency correction for cumulant analysis in relativistic heavy-ion collision experiments. Experimentally, particle efficiencies of events measured under different experimental conditions should be different. For fluctuation measurements, the final event-by-event multiplicity distributions should be the superposed distributions of various type of events measured under different conditions. We demonstrate efficiency fluctuation effects using numerical simulation, in which we construct an event ensemble consisting of events with two different efficiencies. By using the mean particle efficiencies, we find that the efficiency corrected cumulants show large deviations from the original inputs when the discrepancy between the two efficiencies is large. We further studied the effects of efficiency fluctuations for the cumulants of net-proton distributions by implementing the UrQMD events of Au+Au collisions at √sNN=7.7 GeV in a realistic STAR detector acceptance. We consider the unequal efficiency in two sides of the Time Projection Chamber (TPC), multiplicity dependent efficiency, and the event-by-event variations of the collision vertex position along the longitudinal direction (Vz). When the efficiencies fluctuate dramatically within the studied event sample, the effects of efficiency fluctuations have significant impacts on the efficiency corrections of cumulants with the mean efficiencies. We find that this effect can be effectively suppressed by binning the entire event ensemble into various sub-event samples, in which the efficiency variations are relatively small. The final efficiency corrected cumulants can be calculated from the weighted average of the corrected factorial moments of the sub-event samples with the mean efficiencies.

    HTML

Reference (70)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return