Ω and φ in Au+Au collisions at sqrt(SNN)=200 and 11.5 GeV from a multiphase transport model

  • Within the framework of a multiphase transport model, we study the production and properties of Ω and φ in Au + Au collisions with a new set of parameters for √sNN=200 GeV and with the original set of parameters for √sNN=11.5 GeV. The AMPT model with string melting provides a reasonable description at √sNN=200 GeV, while the default AMPT model describes the data well at √sNN=11.5 GeV. This indicates that the system created at top RHIC energy is dominated by partonic interactions, while hadronic interactions become important at lower beam energy, such as √sNN=11.5 GeV. The comparison of N+-)/[2N(φ)] ratio between data and calculations further supports the argument. Our calculations can generally describe the data of nuclear modification factor as well as elliptic flow.
      PCAS:
  • 加载中
  • [1] Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabo, Nature, 443:675 (2006)
    [2] F. Karsch, Prog. Theor. Phys. Suppl., 168:237 (2007)
    [3] B. I. Abelev et al (STAR Collaboration), Science, 328:58 (2010)
    [4] B. I. Abelev et al (STAR Collaboration), Nature, 473:353 (2011)
    [5] For a review paper, see eg., Yu-Gang Ma, Jin-Hui Chen, and Liang Xue, Front. Phys., 7:637 (2012)
    [6] L. Adamczyk et al (STAR Collaboration), Nature, 527:345 (2015)
    [7] Z. Q. Zhang and Y. G. Ma, Nucl. Sci. Tech., 27:152 (2016)
    [8] L. Adamczyk et al (STAR Collaboration), Phys. Rev. Lett., 112:032302 (2014)
    [9] L. Adamczyk et al (STAR Collaboration), Phys. Rev. Lett., 113:092301 (2014)
    [10] L. Adamczyk et al (STAR Collaboration), Phys. Rev. C, 92:021901(R) (2015)
    [11] C. M. Ko, F. Li, Nucl. Sci. Tech., 27:140 (2016)
    [12] For a review paper, see eg., X. F. Luo and N. Xu, Nucl. Sci. Tech., 28:in press (2017)
    [13] S. V. Afanasiev et al (NA49 Collaboration), Phys. Rev. C, 66:054902 (2002)
    [14] C. Alt et al (NA49 Collaboration), Phys. Rev. C, 77:024903 (2008)
    [15] D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nucl. Phys. A, 803:227 (2008)
    [16] For a review paper, see eg., K. Hattori and X. Huang, Nucl. Sci. Tech., 28:26 (2017)
    [17] G. L. Ma and X. G. Huang, Phys. Rev. C, 91:054901 (2015)
    [18] L. Adamczyk et al (STAR Collaboration), Phys. Rev. Lett., 110:142301 (2013)
    [19] J. Tian, J. H. Chen, Y. G. Ma et al:Phys. Rev. C, 79:067901 (2009)
    [20] J. Xu, T. Song, C. M. Ko, and F. Li, Phys. Rev. Lett., 112:012301 (2014)
    [21] C. M. Ko et al, Nucl. Sci. Tech., 24:050525 (2013)
    [22] J. H. Chen, F. Jin, D. Gangadharan, X. Z. Cai, H. Z. Huang, and Y. G. Ma, Phys. Rev. C, 78:034907 (2008)
    [23] L. Adamczyk, et al (STAR Collaboration), Phys. Rev. C, 93:021903(R) (2016)
    [24] K. Ackermann et al. (STAR Collaboration), Nucl. Instrum. Methods A, 499:624 (2003)
    [25] Y. F. Xu, Y. J. Ye, J. H. Chen, Y. G. Ma, S. Zhang, and C. Zhong, Nucl. Sci. Tech., 27:87 (2016)
    [26] L. Ma, X. Dong, H. Qiu, S. Margetis, and Y. G. Ma, Nucl. Sci. Tech., 28:25 (2017)
    [27] Z. W. Lin, C. M. Ko, B. A. Li, B. Zhang, and S. Pal, Phys. Rev. C, 72:064901 (2005)
    [28] X. N. Wang and M. Gyulassy, Phys. Rev. D, 44:3501 (1991); M. Gyulassy and X. N. Wang, Comput. Phys. Commun., 83:307 (1994)
    [29] B. Zhang, Comput. Phys. Commum., 109:193 (1998)
    [30] B. Andersson, G. Gustafson, G. Ingelman, and T. Sjstrand, Phys. Rep., 97:31 (1983)
    [31] B. A. Li and C. M. Ko, Phys. Rev. C, 52:2037 (1995)
    [32] Z. W. Lin and C. M. Ko, Phys. Rev. C, 65:034904 (2002)
    [33] J. Xu and C. M. Ko, Phys. Rev. C, 84:014903 (2011)
    [34] Z. W. Lin, Phys. Rev. C, 90:014904 (2014)
    [35] G. L. Ma and Z. W. Lin, Phys. Rev. C, 93:054911 (2016)
    [36] B. I. Abelev et al (STAR Collaboration), Phys. Rev. C, 76:064904 (2007)
    [37] Z. W. Lin, S. Pal, C. M. Ko, B. A. Li, and B. Zhang, Phys. Rev. C, 64:011902(R) (2001)
    [38] B. I. Abelev et al (STAR Collaboration), Phys. Lett. B, 655:104 (2007)
    [39] B.I. Abelev et al (STAR Collaboration), Phys. Rev. Lett., 99:112301 (2007)
    [40] J. Adams et al (STAR Collaboration), Phys. Rev. Lett., 98:062301 (2007)
    [41] R. C. Hwa and C. B. Yang, Phys. Rev. C, 75:054904 (2007)
    [42] J. Adams et al (STAR Collaboration), Phys. Rev. Lett., 92:052302 (2004)
    [43] J. H. Chen, Y. G. Ma, and G. L. Ma et al:Phys. Rev. C, 74:064902 (2006)
    [44] For a review paper, see e.g., J. Ollitrault, Nucl. Phys. A, 638:195 (1998)
    [45] Z. W. Lin and C. M. Ko, Phys. Rev. C, 65:034904 (2002)
    [46] B. Zhang, M. Gyulassy, and C. M. Ko, Phys. Lett. B, 455:45 (1999)
    [47] D. Molnar and M. Gyulassy, Nucl. Phys. A, 697:495 (2002)
    [48] E. E. Zabrodin et al, Phys. Lett. B, 508:184 (2001)
    [49] P. F. Kolb, J. Sollfrank, and U. W. Heinz, Phys. Lett. B, 459:667 (1999); Phys. Rev. C, 62:054909 (2000)
    [50] D. Teaney, J. Lauret, and E. V. Shuryak, Phys. Rev. Lett., 86:4783 (2001)
    [51] P. Huovijnen et al, Phys. Lett. B, 503:58 (2001)
    [52] P. F. Kolb et al, Nucl. Phys., A696:197 (2001)
    [53] L. Adamczyk et al (STAR Collaboration), Phys. Rev. Lett., 116:062301 (2016)
    [54] L. Adamczyk et al (STAR Collaboration), Phys. Rev. Lett., 99:112301 (2007)
    [55] L. Adamczyk et al (STAR Collaboration), Phys. Rev. C, 93:014907 (2016)
  • 加载中

Get Citation
Y. J. Ye, J. H. Chen, Y. G. Ma, S. Zhang and C. Zhong. Ω and φ in Au+Au collisions at sqrt(SNN)=200 and 11.5 GeV from a multiphase transport model[J]. Chinese Physics C, 2017, 41(8): 084101. doi: 10.1088/1674-1137/41/8/084101
Y. J. Ye, J. H. Chen, Y. G. Ma, S. Zhang and C. Zhong. Ω and φ in Au+Au collisions at sqrt(SNN)=200 and 11.5 GeV from a multiphase transport model[J]. Chinese Physics C, 2017, 41(8): 084101.  doi: 10.1088/1674-1137/41/8/084101 shu
Milestone
Received: 2017-02-03
Fund

    Supported by National Natural Science Foundation of China (11421505,11520101004,11220101005,11275250,11322547),Major State Basic Research Development Program in China (2014CB845400,2015CB856904) and Key Research Program of Frontier Sciences of CAS (QYZDJSSW-SLH002)

Article Metric

Article Views(1565)
PDF Downloads(44)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Ω and φ in Au+Au collisions at sqrt(SNN)=200 and 11.5 GeV from a multiphase transport model

  • 1. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • 3.  Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • 4. ShanghaiTech. University, Shanghai 200031, China
Fund Project:  Supported by National Natural Science Foundation of China (11421505,11520101004,11220101005,11275250,11322547),Major State Basic Research Development Program in China (2014CB845400,2015CB856904) and Key Research Program of Frontier Sciences of CAS (QYZDJSSW-SLH002)

Abstract: Within the framework of a multiphase transport model, we study the production and properties of Ω and φ in Au + Au collisions with a new set of parameters for √sNN=200 GeV and with the original set of parameters for √sNN=11.5 GeV. The AMPT model with string melting provides a reasonable description at √sNN=200 GeV, while the default AMPT model describes the data well at √sNN=11.5 GeV. This indicates that the system created at top RHIC energy is dominated by partonic interactions, while hadronic interactions become important at lower beam energy, such as √sNN=11.5 GeV. The comparison of N+-)/[2N(φ)] ratio between data and calculations further supports the argument. Our calculations can generally describe the data of nuclear modification factor as well as elliptic flow.

    HTML

Reference (55)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return