Dynamical chiral symmetry breaking in NJL Model with a strong background magnetic field and Lorentz-violating extension of the Standard Model

  • The Eigenstate Method has been developed to deduce the fermion propagator with a constant external magnetic field. In general, we find its result is equivalent to other methods and this new method is more convenient, especially when one evaluates the contribution from the infinitesimal imaginary term of the fermion propagator. Using the Eigenstate Method we try to discuss whether the infinitesimal imaginary frequency of the fermion propagator in a strong magnetic field and Lorentz-violating extension of the minimal SU(3)×SU(2)×SU(1) Standard Model could have a significant influence on the dynamical mass. When the imaginary term of the fermion propagator in this model is not trivial (√(α-1)eB/3< σ < √(α-1)2eB/3), this model gives a correction to the dynamical mass. When one does not consider the influence from the imaginary term (σ > √(α-1)2eB/3), there is another correction from the conventional term. Under both circumstances, chiral symmetry is broken.
      PCAS:
  • 加载中
  • [1] A. Chodos, K. Everding, and D. A. Owen, Phys. Rev. D, 42: 2881 (1990)
    [2] K. Klimenko, Theor. Math. Phys., 90: 1 (1992)
    [3] S. Shi, Y. C. Yang, Y. H. Xia, Z. F. Cui, X. J. Liu, and H. S. Zong, Phys. Rev. D, 91: 036006 (2015)
    [4] C. E. Carlson, C. D. Carone, and R. F. Lebed, Physics Letters B, 518: 201 (2001)
    [5] A. Anisimov, T. Banks, M. Dine, and M. Graesser, Phys. Rev. D, 65: 085032 (2002)
    [6] O. Bertolami and L. Guisado, Phys. Rev. D, 67: 025001 (2003)
    [7] V. A. Kosteleck and S. Samuel, Phys. Rev. D, 39: 683 (1989)
    [8] D. Colladay and V. A. Kosteleck, Phys. Rev. D, 58: 116002 (1998)
    [9] D. Colladay and V. A. Kosteleck, Phys. Rev. D, 55: 6760 (1997)
    [10] S. Coleman and S. L. Glashow, Phys. Rev. D, 59: 116008 (1999)
    [11] R. C. Duncan and C. Thompson, Astrophys. J, 392: L9 (1992)
    [12] D. Kharzeev, Phys. Lett. B, 633: 260 (2006)
    [13] M. S. Turner and L. M. Widrow, Phys. Rev. D, 37: 2743 (1988)
    [14] B. Ratra, Astrophys. J, 391: L1 (1992)
    [15] L. M. Widrow, Rev. Mod. Phys., 74: 775 (2002)
    [16] V. de la Incera, AIP Conference Proceedings, 1361: 74 (2011)
    [17] C. Kouveliotou, S. Dieters, T. Strohmayer, J. Van Paradijs, G. Fishman, C. Meegan, K. Hur- ley, J. Kommers, I. Smith, D. Frail et al, Nature, 393: 235 (1998)
    [18] V. V. Skokov, A. Y. Ilarionov, and V. D. Toneev, Int. J. Mod. Phys. A, 24: 5925 (2009)
    [19] E. V. Shuryak, Phys. Rep, 61: 71 (1980)
    [20] T. Inagaki, D. Kimura, and T. Murata, Prog. Theor. Phys., 111: 371 (2004)
  • 加载中

Get Citation
Cui-Bai Luo, Song Shi, Yong-Hui Xia and Hong-Shi Zong. Dynamical chiral symmetry breaking in NJL Model with a strong background magnetic field and Lorentz-violating extension of the Standard Model[J]. Chinese Physics C, 2017, 41(6): 063104. doi: 10.1088/1674-1137/41/6/063104
Cui-Bai Luo, Song Shi, Yong-Hui Xia and Hong-Shi Zong. Dynamical chiral symmetry breaking in NJL Model with a strong background magnetic field and Lorentz-violating extension of the Standard Model[J]. Chinese Physics C, 2017, 41(6): 063104.  doi: 10.1088/1674-1137/41/6/063104 shu
Milestone
Received: 2016-01-19
Revised: 2017-03-04
Fund

    Supported in part by National Natural Science Foundation of China (11275097, 11475085, 11535005, 11690030), China Postdoctoral Science Foundation (2014M561621), and Jiangsu Planned Projects for Postdoctoral Research Funds (1401116C)}

Article Metric

Article Views(1598)
PDF Downloads(52)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Dynamical chiral symmetry breaking in NJL Model with a strong background magnetic field and Lorentz-violating extension of the Standard Model

    Corresponding author: Hong-Shi Zong,
  • 1.  Department of Physics, Nanjing University, Nanjing 210093, China
  • 2. Department of Physics, Nanjing University, Nanjing 210093, China
  • 3. Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210093, China
  • 4. State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
Fund Project:  Supported in part by National Natural Science Foundation of China (11275097, 11475085, 11535005, 11690030), China Postdoctoral Science Foundation (2014M561621), and Jiangsu Planned Projects for Postdoctoral Research Funds (1401116C)}

Abstract: The Eigenstate Method has been developed to deduce the fermion propagator with a constant external magnetic field. In general, we find its result is equivalent to other methods and this new method is more convenient, especially when one evaluates the contribution from the infinitesimal imaginary term of the fermion propagator. Using the Eigenstate Method we try to discuss whether the infinitesimal imaginary frequency of the fermion propagator in a strong magnetic field and Lorentz-violating extension of the minimal SU(3)×SU(2)×SU(1) Standard Model could have a significant influence on the dynamical mass. When the imaginary term of the fermion propagator in this model is not trivial (√(α-1)eB/3< σ < √(α-1)2eB/3), this model gives a correction to the dynamical mass. When one does not consider the influence from the imaginary term (σ > √(α-1)2eB/3), there is another correction from the conventional term. Under both circumstances, chiral symmetry is broken.

    HTML

Reference (20)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return