Nuclear longitudinal form factors for axially deformed charge distributions expanded by nonorthogonal basis functions

  • In this paper, the nuclear longitudinal form factors are systematically studied from the intrinsic charge multipoles. For axially deformed nuclei, two different types of density profiles are used to describe their charge distributions. For the same charge distributions expanded with different basis functions, the corresponding longitudinal form factors are derived and compared with each other. Results show the multipoles Cλ of longitudinal form factors are independent of the basis functions of charge distributions. Further numerical calculations of longitudinal form factors of 12C indicates that the C0 multipole reflects the contributions of spherical components of all nonorthogonal basis functions. For deformed nuclei, their charge RMS radii can also be determined accurately by the C0 measurement. The studies in this paper examine the model-independent properties of electron scattering, which are useful for interpreting electron scattering experiments on exotic deformed nuclei.
      PCAS:
  • 加载中
  • [1] R. Hofstadter, Rev. Mod. Phys., 28: 214 (1956)
    [2] Herbert erall, Electron Scattering from Complex Nuclei, (Academic Press, New York and London, 1971).
    [3] E. Moya de Guerra, Phys. Rep., 138: 293 (1986)
    [4] T. W. Donnelly and I. Sick, Rev. Mod. Phys., 56, 461 (1984)
    [5] I. Sick, Prog. Part. Nucl. Phys., 47: 245 (2001)
    [6] I. Sick and D. Trautmann, Phys. Rev. C, 89: 012201 (2014)
    [7] H. De Vries, C. W. De Jager, and C. De Vries, At. Data Nucl. Data Tables, 36: 495 (1987)
    [8] I. Angeli and K. P. Marinova, At. Data Nucl. Data Tables, 99: 69 (2013)
    [9] I. Tanihata, Prog. Part. Nucl. Phys., 35: 505 (1995)
    [10] A. C. Mueller, Prog. Part. Nucl. Phys., 46: 359 (2001)
    [11] T. Suda and M. Wakasugi, Prog. Part. Nucl. Phys., 55: 417 (2005)
    [12] H. Simon, Nucl. Phys. A, 787: 102 (2007)
    [13] M. Wakasugi et al, Phys. Rev. Lett., 100: 164801 (2008)
    [14] T. Suda et al, Phys. Rev. Lett., 102: 102501 (2009)
    [15] A. N. Antonov et al, Nucl. Inst. and Meth. in Phys. Res. A, 637: 60 (2011)
    [16] A. Antonov et al, Phys. Rev. C, 72: 044307 (2005)
    [17] E. D. Cooper and C. J. Horowitz, Phys. Rev. C, 72: 034602 (2005)
    [18] X. Roca-Maza, M. Centelles, F. Salvat, and X. Vias, Phys. Rev. C, 78: 044332 (2008)
    [19] Y. Chu, Z. Ren, Z. Wang, and T. Dong, Phys. Rev. C, 82: 024320 (2010)
    [20] J. Liu, Z. Ren, C. Xu, and R. Xu, Phys. Rev. C, 88: 024324 (2013)
    [21] J. Liu, C. Zhang, Z. Ren, and C. Xu, Chin. Phys. C, 40: 034101 (2016)
    [22] X. Roca-Maza, M. Centelles, F. Salvat, and X. Vias, Phys. Rev. C, 87: 014304 (2013)
    [23] K. S. Jassim, A. A. Al-Sammarrae, F. I. Sharrad, and H. A. Kassim, Phys. Rev. C, 89: 014304 (2014)
    [24] R. Raphael and M. Rosen, Phys. Rev. C, 1: 547 (1970)
    [25] J. Langworthy and H. berall, Phys. Rev. C, 2: 911 (1970)
    [26] B. Downs, D. Ravenhall, and D. Yennie, Phys. Rev., 106: 1285 (1957)
    [27] T. Stovall, D. Vinciguerra, and M. Bernherim, Nucl. Phys. A, 91: 513 (1967)
    [28] M. K. Pal, Phys. Rev., 117: 566 (1960)
    [29] S. S. Avancini, B. V. Carlson, and J. R. Marinelli, Eur. Phys. J. A, 49: 75 (2013)
    [30] C. J. Horowitz, Phys. Rev. C, 89: 045503 (2014)
    [31] J. M. Yao, M. Bender, and P.-H. Heenen, Phys. Rev. C, 91: 024301 (2015)
    [32] R. E. Rand, R. Frosch, and M. R. Yearian, Phys. Rev., 144: 859 (1966)
    [33] R. A. Radhi, N. T. Khalaf, and A. A. Najim, Nucl. Phys. A, 724: 333 (2003)
    [34] T. Dong, Z. Ren, and Y. Guo, Phys. Rev. C, 76: 054602 (2007)
    [35] Z. Wang, Z. Ren, T. Dong, and X. Guo, Phys. Rev. C, 92: 014309 (2015)
    [36] D. Yennie, Phys. Rev. C, 95: 500 (1954)
    [37] D. H. Jakubassa-Amundsen, J. Phys. G: Nuclear and Particle Physics, 41: 075103 (2014)
    [38] E. Moya de Guerra, Phys. Rev. C, 27: 2987 (1983)
    [39] M. Nishimura, E. Moya de Guerra, and D. W. L. Sprung, Nucl. Phys. A, 435: 523 (1985)
    [40] E. Moya de Guerra, Ann. Phys., 128: 286 (1980)
    [41] T. de Forest and J. D. Walecka, Adv. Phys., 15: 1 (1966)
    [42] P. Mller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables, 59: 185 (1995)
    [43] G. Lalazissis and S. Raman, At. Data Nucl. Data Tables, 71: 1 (1999)
    [44] S. Raman, C. W. Nestor, and P. Tikkanen, At. Data Nucl. Data Tables, 78: 1 (2001)
    [45] N. J. Stone, At. Data Nucl. Data Tables, 90: 75 (2005)
    [46] Z. Ren, Z. Y. Zhu, Y. H. Cai, and G. Xu, Phys. Lett. B, 380: 241 (1996)
    [47] J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Part. Nucl. Phys., 57: 470 (2006)
    [48] Z. Sheng, Z. Ren, and W. Jiang, Nucl. Phys. A, 832: 49 (2010)
    [49] P. Sarriguren, M. K. Gaidarov, E. M. deGuerra, and A. N. Antonov, Phys. Rev. C, 76: 044322 (2007)
    [50] E. Moya de Guerra, P. Sarriguren, and J. A. Caballero, Nucl. Phys. A, 529: 68 (1991)
    [51] R. S. Willey, Nucl. Phys., 40: 529 (1963)
    [52] L. I. Schiff, Phys. Rev., 96: 765 (1954)
    [53] Z. Wang and Z. Ren, Phys. Rev. C, 70: 034303 (2004)
    [54] B. G. Todd-Rutel and J. Piekarewicz, Phys. Rev. Lett., 95: 122501 (2005)
    [55] W.-C. Chen and J. Piekarewicz, Phys. Rev. C, 90: 044305 (2014)
    [56] P. E. Hodgson, Nuclear Reactions and Nuclear Structure (Clarendon, Oxford, 1971).
    [57] I. Sick and J. S. McCarthy, Nucl. Phys. A, 150: 631 (1970)
    [58] L. S. Cardman, J. W. Lightbody Jr, S. Penner, S. P. Fivozinsky, X. K. Maruyama, W. P. Trower, and S. E. Williamson, Phys. Lett. B, 91: 203 (1980)
  • 加载中

Get Citation
Jian Liu, Jinjuan Zhang, Chang Xu and Zhongzhou Ren. Nuclear longitudinal form factors for axially deformed charge distributions expanded by nonorthogonal basis functions[J]. Chinese Physics C, 2017, 41(5): 054101. doi: 10.1088/1674-1137/41/5/054101
Jian Liu, Jinjuan Zhang, Chang Xu and Zhongzhou Ren. Nuclear longitudinal form factors for axially deformed charge distributions expanded by nonorthogonal basis functions[J]. Chinese Physics C, 2017, 41(5): 054101.  doi: 10.1088/1674-1137/41/5/054101 shu
Milestone
Received: 2016-11-22
Fund

    Supported by National Natural Science Foundation of China (11505292, 11175085, 11575082, 11235001, 11275138, and 11447226), by Shandong Provincial Natural Science Foundation, China (BS2014SF007), Fundamental Research Funds for Central Universities (15CX02072A).

Article Metric

Article Views(1611)
PDF Downloads(27)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Nuclear longitudinal form factors for axially deformed charge distributions expanded by nonorthogonal basis functions

    Corresponding author: Jian Liu,
  • 1.  College of Science, China University of Petroleum (East China), Qingdao 266580, China
  • 2.  College of Electronic, Communication and Physics, Shandong University of Science and Technology,Qingdao 266590, China
  • 3.  Department of Physics and Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093, China
  • 4. Department of Physics and Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093, China
  • 5. Center of Theoretical Nuclear Physics, National Laboratory of Heavy-Ion Accelerator, Lanzhou 730000, China
Fund Project:  Supported by National Natural Science Foundation of China (11505292, 11175085, 11575082, 11235001, 11275138, and 11447226), by Shandong Provincial Natural Science Foundation, China (BS2014SF007), Fundamental Research Funds for Central Universities (15CX02072A).

Abstract: In this paper, the nuclear longitudinal form factors are systematically studied from the intrinsic charge multipoles. For axially deformed nuclei, two different types of density profiles are used to describe their charge distributions. For the same charge distributions expanded with different basis functions, the corresponding longitudinal form factors are derived and compared with each other. Results show the multipoles Cλ of longitudinal form factors are independent of the basis functions of charge distributions. Further numerical calculations of longitudinal form factors of 12C indicates that the C0 multipole reflects the contributions of spherical components of all nonorthogonal basis functions. For deformed nuclei, their charge RMS radii can also be determined accurately by the C0 measurement. The studies in this paper examine the model-independent properties of electron scattering, which are useful for interpreting electron scattering experiments on exotic deformed nuclei.

    HTML

Reference (58)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return