Resonant nuclear reaction 23Mg (p,γ) 24Al in strongly screening magnetized neutron star crust

  • Based on the relativistic theory of superstrong magnetic fields (SMF), by using three models those of Lai (LD), Fushiki (FGP), and our own (LJ), we investigate the influence of SMFs due to strong electron screening (SES) on the nuclear reaction 23Mg (p,γ) 24Al in magnetars. In a relatively low density environment (e.g., ρ7<0.01) and 1 < B12 < 102, our screening rates are in good agreement with those of LD and FGP. However, in relatively high magnetic fields (e.g., B12>102), our reaction rates can be 1.58 times and about three orders of magnitude larger than those of FGP and LD, respectively (B12, ρ7 are in units of 1012G, 107 g cm-3). The significant increase of strong screening rate can imply that more 23Mg will escape from the Ne-Na cycle due to SES in a SMF. As a consequence, the next reaction, 24Al (β+, ν) 24Mg, will produce more 24Mg to participate in the Mg-Al cycle. Thus, it may lead to synthesis of a large amount of A > 20 nuclides in magnetars.
      PCAS:
  • 加载中
  • [1] R. K. Wallace and S. E. Woosley, ApJS., 45:389 (1981)
    [2] C. Iliadis, J. M. D'Auria, S. Starrfield et al, ApJS, 134:151 (2001)
    [3] S. Kubono, T. Kajino, and S. Kato, Nucl. Phys. A., 588:521(1995)
    [4] H. Herndl, M. Fantini, C. Iliadis, P. M. Endt, and H. Oberhummer, Phys. Rev. C., 58:1798 (1998)
    [5] D. W. Visser, C. Wrede, J. A. Caggiano et al, Phys. Rev. C., 76:5803 (2007)
    [6] J. J. Liu and D. M. Liu, RAA, 2017, arXiv:1711.01955
    [7] J. N. Bahcall, L. Brown, A. Gruzinov, and R. Sawer, AandA, 383:291 (2002)
    [8] J. J. Liu, MNRAS, 433:1108 (2013)
    [9] J. J. Liu, MNRAS, 438:930 (2014)
    [10] J. J. Liu, RAA, 16:83 (2016)
    [11] J. J. Liu et al, RAA, 17:107 (2017)
    [12] J. J. Liu et al, ChPhC, 41:095101 (2017)
    [13] E. E. Salpeter and H. M. van Horn, ApJ, 155:183 (1969)
    [14] E. E. Salpeter, AuJPh., 7:373 (1954)
    [15] H. C. Graboske and H. E. DeWitt, ApJ, 181:457 (1973)
    [16] H. E. Dewitt, Phys. Rev. A., 14:1290 (1976)
    [17] T. E. Liolios, EPJA., 9:287 (2000)
    [18] T. E. Liolios, Phys. Rev. C., 64:8801 (2001)
    [19] Z. F. Gao et al, ChPhB, 21:057109 (2012)
    [20] Q. H. Peng and H. Tong, MNRAS, 378:159 (2007)
    [21] Z. F. Gao., N. Wang, J. P. Yuan, L. Jiang, and D. L. Song, ApandSS, 332:129(2011)
    [22] Z. F. Gao, N. Wang, Q. H. Peng, X. D. Li, and Y. J. Du, Mod. Phys. Lett. A., 28:50138 (2013)
    [23] Z. F. Gao., N. Wang, Y. Xu, H. Shan, and X. D. Li., AN, 336:866(2015)
    [24] Z. F. Gao., N. Wang, H. Shan, X. D. Li, and W. Wang, ApJ, eprint arXiv:1709.03459
    [25] Z. F. Gao., Y. Xu, H. Shan, X. D. Li., H. Shan, W. Wang, and N. Wang., AN, eprint arXiv:1709.02186 (2017)
    [26] X. H. Li, Z. F. Gao, X. D. li et al, IJMPD, 25:1650002(2016)
    [27] D. Lai, Rev. Mod. Phys., 73:629 (2001)
    [28] R. C. Duncan and C. Thompson, ApJ, 392:9 (1992)
    [29] D. Lai and S. L. Shapiro, ApJ, 383:745 (1991)
    [30] I. Fushiki, E. H. Gudmundsson, and C. J. Pethick, ApJ, 342:958 (1989)
    [31] L. D. Landau and E. M. Lifshitiz, Quantium mechanics, (3rd ed., Oxford:Pergamon Press 1977), p.457
    [32] C. Zhu, Z. F. Gao., X. D. Li et al, Mod. Phys. Lett. A., 31:50070(2016)
    [33] N. W. Ashcroft and N. D. Mermin, Solid State Physics, (Saunders College:Philadelphia 1976), p.123
    [34] B. B. Kadomtsev and O. P. Pogutse, Phys. Rev. L., 25:1155 (1971)
    [35] J. M. Lattimer, C. J. Pethick, D. G. Ravenhall, and D. Q. Lamb, Nucl. Phys. A., 432:646 (1985)
    [36] W. Stolzmann and T. Bloecker, AandA, 314:1024 (1996)
    [37] D. G. Yakovlev and D. A. Shalybkov, Astrophys. Space. Phys. Rev., 7:311 (1989)
    [38] W. A. Fowler, G. R. Caughlan, and B. A. Zimmerman, ARAandA., 5:525 (1967)
    [39] A. M. Lane and R. G. Thomas, Rev. Mod. Phys., 30:257 (1958)
    [40] H. Schatz, A. Aprahamian, J. Goerres et al, Phys. Rep., 294:167 (1998)
    [41] Canuto, V. and H. Y. Chiu, Phys. Rev., 173:1210 (1968)
    [42] Canuto, V. and H. Y. Chiu, Space. Sci. Rev., 12:3 (1971)
    [43] R. Kubo, Statistics Mechanics, (Amsterdam:North-Holland Publishing Co.1965) p.278
    [44] R. K. Pathria, Statistics Mechanics, (2nd. Singapore:Isevier 2003), p.280
    [45] M. Wiescher, J. Gorres, F.-K. Thielemann, and H. Ritter, AandA, 160:56 (1986)
    [46] P. M. Endt, Nucl. Phys. A., 633:1 (1998)
    [47] G. Audi and A. H. Wapstra, Nucl. Phys. A., 595:409 (1995)
  • 加载中

Get Citation
Jing-Jing Liu and Dong-Mei Liu. Resonant nuclear reaction 23Mg (p,γ) 24Al in strongly screening magnetized neutron star crust[J]. Chinese Physics C, 2017, 41(12): 125102. doi: 10.1088/1674-1137/41/12/125102
Jing-Jing Liu and Dong-Mei Liu. Resonant nuclear reaction 23Mg (p,γ) 24Al in strongly screening magnetized neutron star crust[J]. Chinese Physics C, 2017, 41(12): 125102.  doi: 10.1088/1674-1137/41/12/125102 shu
Milestone
Received: 2017-03-30
Revised: 2017-09-26
Fund

    Supported by National Natural Science Foundation of China (11565020), the Counterpart Foundation of Sanya (2016PT43), the Special Foundation of Science and Technology Cooperation for Advanced Academy and Regional of Sanya (2016YD28), the Scientific Research Starting Foundation for 515 Talented Project of Hainan Tropical Ocean University (RHDRC201701) and the Natural Science Foundation of Hainan Province (114012)

Article Metric

Article Views(1357)
PDF Downloads(41)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Resonant nuclear reaction 23Mg (p,γ) 24Al in strongly screening magnetized neutron star crust

    Corresponding author: Jing-Jing Liu,
    Corresponding author: Dong-Mei Liu,
  • 1. College of Marine Science and Technology, Hainan Tropical Ocean University, Sanya, Hainan 572022, China
Fund Project:  Supported by National Natural Science Foundation of China (11565020), the Counterpart Foundation of Sanya (2016PT43), the Special Foundation of Science and Technology Cooperation for Advanced Academy and Regional of Sanya (2016YD28), the Scientific Research Starting Foundation for 515 Talented Project of Hainan Tropical Ocean University (RHDRC201701) and the Natural Science Foundation of Hainan Province (114012)

Abstract: Based on the relativistic theory of superstrong magnetic fields (SMF), by using three models those of Lai (LD), Fushiki (FGP), and our own (LJ), we investigate the influence of SMFs due to strong electron screening (SES) on the nuclear reaction 23Mg (p,γ) 24Al in magnetars. In a relatively low density environment (e.g., ρ7<0.01) and 1 < B12 < 102, our screening rates are in good agreement with those of LD and FGP. However, in relatively high magnetic fields (e.g., B12>102), our reaction rates can be 1.58 times and about three orders of magnitude larger than those of FGP and LD, respectively (B12, ρ7 are in units of 1012G, 107 g cm-3). The significant increase of strong screening rate can imply that more 23Mg will escape from the Ne-Na cycle due to SES in a SMF. As a consequence, the next reaction, 24Al (β+, ν) 24Mg, will produce more 24Mg to participate in the Mg-Al cycle. Thus, it may lead to synthesis of a large amount of A > 20 nuclides in magnetars.

    HTML

Reference (47)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return