RETRACTED:Impact of charm H1-ZEUS combined data and determination of the strong coupling in two different schemes

  • This article has been retracted at the request of the Editor-in-Chief, in accordance with our policy on publishing ethics.
    We study the impact of recent measurements of charm cross section H1-ZEUS combined data on simultaneous determination of parton distribution functions (PDFs) and the strong coupling, αs(MZ2), in two different schemes. We perform several fits based on Thorne-Roberts (RT) and Thorne-Roberts optimal (RTOPT) schemes at next-to-leading order (NLO). We show that adding charm cross section H1-ZEUS combined data reduces the uncertainty of the gluon distribution and improves the fit quality up to ~0.4% and ~0.9%, without and with the charm contribution, from the RT scheme to the RTOPT scheme, respectively. We also emphasise the central role of the strong coupling, αs(MZ2), in revealing the impact of charm flavour contribution, when it is considered as an extra free parameter. We show that in going from the RT scheme to the RT OPT scheme, we get~0.9% and~2.0% improvement in the value of αs(MZ2), without and with the charm flavour contribution respectively.
      PCAS:
  • 加载中
  • [1] O. Behnke, A. Geiser, and M. Lisovyi, Prog. Part. Nucl. Phys., 84:1(2015)[arXiv:1506.07519[hep-ex]]
    [2] H. Abramowicz et al (H1 and ZEUS Collaborations), Eur. Phys. J. C, 73(2):2311(2013)[arXiv:1211.1182[hep-ex]]
    [3] S. J. Brodsky, P. Hoyer, C. Peterson, and N. Sakai, Phys. Lett. B, 93:451(1980)
    [4] V. M. Abazov et al (D0 Collaboration), Phys. Lett. B, 714:32(2012)[arXiv:1203.5865[hep-ex]]
    [5] V. M. Abazov et al (D0 Collaboration), Phys. Rev. Lett., 102:192002(2009)[arXiv:0901.0739[hep-ex]]
    [6] V. M. Abazov et al (D0 Collaboration), Phys. Lett. B, 719:354(2013)[arXiv:1210.5033[hep-ex]]
    [7] V. M. Abazov et al (D0 Collaboration), Phys. Lett. B, 737:357(2014)[arXiv:1405.3964[hep-ex]]
    [8] T. Aaltonen et al (CDF Collaboration), Phys. Rev. D, 81:052006(2010)[arXiv:0912.3453[hep-ex]]
    [9] T. Aaltonen et al (CDF Collaboration), Phys. Rev. Lett., 111(4):042003(2013)[arXiv:1303.6136[hep-ex]]
    [10] H. Abramowicz et al (H1 and ZEUS Collaborations), Eur. Phys. J. C, 75(12):580(2015)[arXiv:1506.06042[hep-ex]]
    [11] A. Sapronov (HERAFitter Team Collaboration), J. Phys. Conf. Ser., 608(1):012051(2015)
    [12] K. Daum, S. Riemersma, B. W. Harris, E. Laenen, and J. Smith, In Hamburg 1995/96, Future physics at HERA, 89-101[hep-ph/9609478]
    [13] T. Sjostrand, L. Lonnblad, and S. Mrenna, hep-ph/0108264
    [14] A. Aktas et al (H1 Collaboration), Eur. Phys. J. C, 48:715(2006)[hep-ex/0606004]
    [15] A. De Roeck and R. S. Thorne, Prog. Part. Nucl. Phys., 66:727(2011)[arXiv:1103.0555[hep-ph]]
    [16] R. D. Ball, L. Del Debbio, S. Forte, A. Guffanti, J. I. Latorre, J. Rojo, and M. Ubiali, Nucl. Phys. B, 838:136(2010)[arXiv:1002.4407[hep-ph]]
    [17] F. D. Aaron et al (H1 Collaboration), Eur. Phys. J. C, 71:1769(2011); Eur. Phys. J. C, 72:2252(2012)[arXiv:1106.1028[hep-ex]]
    [18] W. K. Tung, H. L. Lai, A. Belyaev, J. Pumplin, D. Stump, and C.-P. Yuan, JHEP, 0702:053(2007)[hep-ph/0611254]
    [19] F. D. Aaron et al (H1 and ZEUS Collaborations), JHEP, 1001:109(2010)[arXiv:0911.0884[hep-ex]]
    [20] J. Engelen and P. Kooijman, Prog. Part. Nucl. Phys., 41:1(1998)
    [21] A. Cooper-Sarkar, J. Phys. G, 39:093001(2012)[arXiv:1206.0894[hep-ph]]
    [22] S. Frixione, M. L. Mangano, P. Nason, and G. Ridolfi, Phys. Lett. B, 319:339(1993)[hep-ph/9310350]
    [23] G. Marchesini, B. R. Webber, G. Abbiendi, I. G. Knowles, M. H. Seymour, and L. Stanco, Comput. Phys. Commun., 67:465(1992)
    [24] H. Jung, Comput. Phys. Commun., 86:147(1995)
    [25] T. Sjostrand, Comput. Phys. Commun., 39:347(1986)
    [26] T. Sjostrand and M. Bengtsson, Comput. Phys. Commun., 43:367(1987)
    [27] L. Lonnblad, Comput. Phys. Commun., 71:15(1992)
    [28] E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Sov. Phys. JETP, 44:443(1976); Zh. Eksp. Teor. Fiz., 71:840(1976)
    [29] M. Ciafaloni, Nucl. Phys. B, 296:49(1988)
    [30] H. Jung and G. P. Salam, Eur. Phys. J. C, 19:351(2001)[hep-ph/0012143]
    [31] M. Beneke, Phys. Lett. B, 344:341(1995)[hep-ph/9408380]
    [32] K. A. Olive et al (Particle Data Group), Chin. Phys. C, 38:090001(2014)
    [33] B. Schmidt and M. Steinhauser, Comput. Phys. Commun., 183:1845(2012)[arXiv:1201.6149[hep-ph]]
    [34] S. Alekhin and S. Moch, Phys. Lett. B, 699:345(2011)[arXiv:1011.5790[hep-ph]]
    [35] J. Gao, M. Guzzi, and P. M. Nadolsky, Eur. Phys. J. C, 73(8):2541(2013)[arXiv:1304.3494[hep-ph]]
    [36] A. D. Martin, R. G. Roberts, W. J. Stirling, and R. S. Thorne, Eur. Phys. J. C, 4:463(1998)[hep-ph/9803445]
    [37] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. M. Nadolsky, and W. K. Tung, JHEP, 0207:012(2002)[hep-ph/0201195]
    [38] S. Chekanov et al (ZEUS Collaboration), Phys. Rev. D, 67:012007(2003)[hep-ex/0208023]
    [39] A. Vafaee and A. N. Khorramian, Nucl. Phys. B, 921:472(2017)
    [40] M. Botje, Comput. Phys. Commun., 182:490(2011)[arXiv:1005.1481[hep-ph]]
    [41] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys., 15:438(1972); Yad. Fiz., 15:781(1972); L. N. Lipatov, Sov. J. Nucl. Phys., 20:94(1975); Yad. Fiz., 20:181(1974); Y. L. Dokshitzer, Sov. Phys. JETP, 46:641(1977); Zh. Eksp. Teor. Fiz., 73:1216(1977); G. Altarelli and G. Parisi, Nucl. Phys. B, 126:298(1977)
    [42] H. L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin, and C.-P. Yuan, Phys. Rev. D, 82:074024(2010)[arXiv:1007.2241[hep-ph]]
    [43] S. Alekhin, J. Blumlein, S. Klein, and S. Moch, arXiv:0908.3128[hep-ph]
    [44] R. D. Ball et al (NNPDF Collaboration), Nucl. Phys. B, 809:1(2009); Nucl. Phys. B, 816:293(2009)[arXiv:0808.1231[hep-ph]]
    [45] A. Mironov and A. Morozov, JHEP, 1004:040(2010)[arXiv:0910.5670[hep-th]]
    [46] J. C. Collins, Phys. Rev. D, 58:094002(1998)[hep-ph/9806259]
    [47] A. D. Martin, W. J. Stirling, and R. S. Thorne, Phys. Lett. B, 636:259(2006)[hep-ph/0603143]
    [48] S. Forte, E. Laenen, P. Nason, and J. Rojo, Nucl. Phys. B, 834:116(2010)[arXiv:1001.2312[hep-ph]]
    [49] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C, 63:189(2009)[arXiv:0901.0002[hep-ph]]
    [50] R. S. Thorne, Phys. Rev. D, 73:054019(2006)[hep-ph/0601245]
    [51] R. S. Thorne, Phys. Rev. D, 86:074017(2012)[arXiv:1201.6180[hep-ph]]
    [52] F. James and M. Roos, Comput. Phys. Commun., 10:343(1975)
  • 加载中

Get Citation
A. Vafaee and A. N. Khorramian. RETRACTED:Impact of charm H1-ZEUS combined data and determination of the strong coupling in two different schemes[J]. Chinese Physics C, 2017, 41(11): 113104. doi: 10.1088/1674-1137/41/11/113104
A. Vafaee and A. N. Khorramian. RETRACTED:Impact of charm H1-ZEUS combined data and determination of the strong coupling in two different schemes[J]. Chinese Physics C, 2017, 41(11): 113104.  doi: 10.1088/1674-1137/41/11/113104 shu
Milestone
Received: 2017-06-14
Article Metric

Article Views(1668)
PDF Downloads(66)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

RETRACTED:Impact of charm H1-ZEUS combined data and determination of the strong coupling in two different schemes

Abstract: This article has been retracted at the request of the Editor-in-Chief, in accordance with our policy on publishing ethics.
We study the impact of recent measurements of charm cross section H1-ZEUS combined data on simultaneous determination of parton distribution functions (PDFs) and the strong coupling, αs(MZ2), in two different schemes. We perform several fits based on Thorne-Roberts (RT) and Thorne-Roberts optimal (RTOPT) schemes at next-to-leading order (NLO). We show that adding charm cross section H1-ZEUS combined data reduces the uncertainty of the gluon distribution and improves the fit quality up to ~0.4% and ~0.9%, without and with the charm contribution, from the RT scheme to the RTOPT scheme, respectively. We also emphasise the central role of the strong coupling, αs(MZ2), in revealing the impact of charm flavour contribution, when it is considered as an extra free parameter. We show that in going from the RT scheme to the RT OPT scheme, we get~0.9% and~2.0% improvement in the value of αs(MZ2), without and with the charm flavour contribution respectively.

    HTML

Reference (52)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return