×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Behavior and finite-size effects of the sixth order cumulant in the three-dimensional Ising universality class

  • The high-order cumulants of conserved charges are suggested to be sensitive observables to search for the critical point of Quantum Chromodynamics (QCD). This has been calculated to the sixth order in experiments. Corresponding theoretical studies on the sixth order cumulant are necessary. Based on the universality of the critical behavior, we study the temperature dependence of the sixth order cumulant of the order parameter using the parametric representation of the three-dimensional Ising model, which is expected to be in the same universality class as QCD. The density plot of the sign of the sixth order cumulant is shown on the temperature and external magnetic field plane. We found that at non-zero external magnetic field, when the critical point is approached from the crossover side, the sixth order cumulant has a negative valley. The width of the negative valley narrows with decreasing external field. Qualitatively, the trend is similar to the result of Monte Carlo simulation on a finite-size system. Quantitatively, the temperature of the sign change is different. Through Monte Carlo simulation of the Ising model, we calculated the sixth order cumulant of different sizes of systems. We discuss the finite-size effects on the temperature at which the cumulant changes sign.
      PCAS:
  • 加载中
  • [1] L. G. Yaffe and B. Svetitsky, Phys. Rev. D, 26:963(1982)
    [2] A. Roberge and N. Weiss, Nucl. Phys. B, 27:5734(1986)
    [3] M. Fukugita, M. Okawa, and A. Ukawa, Phys. Rev. Lett., 63:1768(1989)
    [4] P. de Forcrand and O. Philipsen, Nucl. Phys. B, 64:2290(2002)
    [5] S. Ejiri, Phys. Rev. D, 78:074507(2008)
    [6] E. S. Bowman and J. I. Kapusta, Phys. Rev. C, 79:015202(2009)
    [7] Y. Aoki, G. Endrdi, Z. Fodor et al, Nature, 443:675(2006)
    [8] M. E. Fisher, and A. E. Ferdinand, Phys. Rev. Lett., 49:169(1967)
    [9] M. S. S. Challa, D. P. Landau, and K. Binder, Phys. Rev. B, 34:1841(1986)
    [10] M. A. Stephanov, K. Rajagopal, and E. V. Shuryak, Phys. Rev. D, 60:114028(1999)
    [11] B. Berdnikov and K. Rajagopal, Phys. Rev. D, 61:105017(2000)
    [12] Y. Hatta and M. A. Stephanov, Phys. Rev. Lett., 91:102003(2003)
    [13] V. Koch, arXiv:0810.2520
    [14] M. A. Stephanov, Phys. Rev. Lett., 102:032301(2009)
    [15] M. Asakawa, S. Ejiri, and M. Kitazawa, Phys. Rev. Lett., 103:262301(2009)
    [16] M. A. Stephanov, Phys. Rev. Lett., 107:052301(2001)
    [17] B. Friman, F. Karsch, K. Redlich et al, Eur. Phys. J. C, 71:1694(2001)
    [18] M. Cheng, P. Hegde, C. Jung et al, Phys. Rev. D, 79:074505(2009)
    [19] Wei-jie Fu, Yu-Xin Liu, and Yue-Liang Wu, Phys. Rev. D, 81:014028(2010)
    [20] V. Skokov, B. Stokić, B. Friman et al, Phys. Rev. C, 82:015206(2010)
    [21] V. Skokov, B. Friman, and K. Redlich, Phys. Rev. C, 83:054904(2011)
    [22] V. Skokov, B. Friman, E. Nakano et al, Phys. Rev. D, 82:034029(2010)
    [23] M. M. Aggarwal et al (STAR Collaboration), Phys. Rev. Lett., 105:22302(2010)
    [24] F. Karsch and K. Redlich, Phys. Lett. B, 695:136(2011)
    [25] Li-Zhu Chen, Nucl. Phys. A, 904:471c (2013)
    [26] P. de Forcrand and O. Philipsen, Phys. Rev. Lett., 105:152001(2010)
    [27] M. Stephanov, K. Rajagopal, and E. Shuryak, Phys. Rev. Lett., 81:4816(1998)
    [28] M. Asakawa, J. Phys. G:Nucl. Part. Phys, 36:064042(2009)
    [29] R. D. Pisarski, F. Wilczek, Phys. Rev. D, 29:338(1984)
    [30] Xue Pan, Li-Zhu Chen, X. S. Chen, and Yuan-Fang Wu, Nucl. Phys. A, 913:206(2013)
    [31] L. F. Palhares, E. S. Fraga, and T. Kodama, J. Phys. G:Nucl. Part. Phys, 37:094031(2010)
    [32] L. F. Palhares, E. S. Fraga, and T. Kodama, J. Phys. G:Nucl. Part. Phys, 38:085101(2011)
    [33] J. Braun, B. Klein, and B. J. Schaefer, Phys. Lett. B, 713:216(2012)
    [34] R. A. Tripolt, J. Braun, B. Klein et al, Phys. Rev. D, 90:054012(2014)
    [35] P. Schofield, Phys. Rev. Lett., 22:606(1969)
    [36] D. J. Wallace and R. K. P. Zia, J. Phys. C:Solid State Phys, 7:3480(1974)
    [37] H. W. J. Blte, E. Luijten, and J. R. Heringa, J. Phys. A:Math. Gen, 28:6289(1995)
    [38] B. D. Josephson and J. Phys. C:Solid State Phys, 2:113(1969)
    [39] J. Engels, L. Fromme, and M. Seniuch, Nucl. Phys. B, 655:277(2003)
    [40] U. Wolff, Phys. Rev. Lett., 62:361(1989)
    [41] V. Privman, Finite Size Scaling and Numerical Simulation of Statistical Physics, First edition (Farrer Road, Singapore:World Scientific Publishing Co. Pte. Ltd., 1990), p.11
  • 加载中

Get Citation
Xue Pan, Li-Zhu Chen and Yuan-Fang Wu. Behavior and finite-size effects of the sixth order cumulant in the three-dimensional Ising universality class[J]. Chinese Physics C, 2016, 40(9): 093104. doi: 10.1088/1674-1137/40/9/093104
Xue Pan, Li-Zhu Chen and Yuan-Fang Wu. Behavior and finite-size effects of the sixth order cumulant in the three-dimensional Ising universality class[J]. Chinese Physics C, 2016, 40(9): 093104.  doi: 10.1088/1674-1137/40/9/093104 shu
Milestone
Received: 2016-04-29
Revised: 2016-05-17
Fund

    Supported by Fund Project of Sichuan Provincial Department of Education (16ZB0339), Fund Project of Chengdu Technological University for Doctor (2016RC004), Major State Basic Research Development Program of China (2014CB845402) and National Natural Science Foundation of China (11405088, 11221504)

Article Metric

Article Views(1791)
PDF Downloads(74)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Behavior and finite-size effects of the sixth order cumulant in the three-dimensional Ising universality class

    Corresponding author: Xue Pan,
Fund Project:  Supported by Fund Project of Sichuan Provincial Department of Education (16ZB0339), Fund Project of Chengdu Technological University for Doctor (2016RC004), Major State Basic Research Development Program of China (2014CB845402) and National Natural Science Foundation of China (11405088, 11221504)

Abstract: The high-order cumulants of conserved charges are suggested to be sensitive observables to search for the critical point of Quantum Chromodynamics (QCD). This has been calculated to the sixth order in experiments. Corresponding theoretical studies on the sixth order cumulant are necessary. Based on the universality of the critical behavior, we study the temperature dependence of the sixth order cumulant of the order parameter using the parametric representation of the three-dimensional Ising model, which is expected to be in the same universality class as QCD. The density plot of the sign of the sixth order cumulant is shown on the temperature and external magnetic field plane. We found that at non-zero external magnetic field, when the critical point is approached from the crossover side, the sixth order cumulant has a negative valley. The width of the negative valley narrows with decreasing external field. Qualitatively, the trend is similar to the result of Monte Carlo simulation on a finite-size system. Quantitatively, the temperature of the sign change is different. Through Monte Carlo simulation of the Ising model, we calculated the sixth order cumulant of different sizes of systems. We discuss the finite-size effects on the temperature at which the cumulant changes sign.

    HTML

Reference (41)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return