×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Quantum phase transitions in matrix product states ofone-dimensional spin-1/2 chains

  • For the matrix product system of a one-dimensional spin-1/2 chain, we present a new model of quantum phase transitions and find that in the thermodynamic limit, both sides of the critical point are respectively described by phases |Ψa>=|1…1> representing all particles spin up and |Ψb>=|0…0> representing all particles spin down, while the phase transition point is an isolated intermediate-coupling point where the two phases coexist equally, which is described by the so-called N-qubit maximally entangled GHZ state |Ψpt>=√2/2(|1…1>+|0…0>). At the critical point, the physical quantities including the entanglement are not discontinuous and the matrix product system has long-range correlation and N-qubit maximal entanglement. We believe that our work is helpful for having a comprehensive understanding of quantum phase transitions in matrix product states of one-dimensional spin chains and of potential directive significance to the preparation and control of one-dimensional spin lattice models with stable coherence and N-qubit maximal entanglement.
      PCAS:
  • 加载中
  • [1] Fannes M, Nachtergaele B, Werner R F. Commun. Math. Phys., 1992, 144: 443[2] Verstraete F, Porras D, Cirac J I. Phys. Rev. Lett., 2004, 93: 227205[3] Verstraete F, Cirac J I. arXiv: cond-mat/0505140; Osborne T J. arXiv: quant-ph/0508031; Hastings M B. arXiv: cond-mat/0508554[4] Garcia D P, Verstraete F, Wolf M M, Cirac J I. Quantum Inf. Comput., 2007, 7: 401[5] Affleck I, Kennedy T, Lieb E H, Tasaki H. Commun. Math. Phys., 1988, 115: 477[6] Klümper A, Schadschneider A, Zittartz J. J. Phys. A, 1991, 24: L955; Z. Phys. B, 1992, 87: 281[7] Klümper A, Schadschneider A, Zittartz J. Europhys. Lett., 1993, 24: 293[8] Wolf M M, Ortiz G, Verstraete F et al. Phys. Rev. Lett., 2006, 97: 110403[9] Asoudeh M, Karimipour V, Sadrolashrafi L A. Phys. Rev. B, 2007, 75: 224427[10] Alipour S, Karimipour V, Memarzadeh L. Phys. Rev. A, 2007, 75: 052322[11] ZHU Jing-Min. Chin. Phys. Lett., 2008, 25(10):3574-3577[12] ZHU Jing-Min. Chinese Physics C (HEP NP), 2011, 35(02): 144-148[13] ZHU Jing-Min. Chin. Phys. C, 2014, 38(10): 103102[14] Nielsen N, Chuang I. Quantum Computation and Quantum Communication. Cambridge: Cambridge University Press, 2000[15] QIN M, TAO Y J. Chinese Physics C(HEP NP), 2008, 32(09): 710-713[16] ZHU Jing-Min, WANG S J. Commun. Theor. Phys., 2010, 54(3): 524-528[17] LIU W Z, ZHANG J F, LONG G L. Chinese Science Bulletin, 2009, 54: 4262-4265[18] WEN Wei. Science China Physics, Mechanics and Astronomy, 2013, 56(5): 947-951[19] ZHAO Hui, ZHANG Xing-Hua, FEI Shao-Ming et al. Chinese Science Bulletin, 2013, 58(19): 2334-2339[20] MAN Zhong-Xiao, SU Fang, XIA Yun-Jie. Chinese Science Bulletin, 2013, 58(20): 2423-2429[21] MA Xiao-San, QIAO Ying, ZHAO Guang-Xing et al. Science China Physics, Mechanics and Astronomy, 2013, 56(3): 600-605[22] CAO Ye, LI Hui, LONG Gui-Lu. Chinese Science Bulletin, 2013, 58(1): 48-52[23] CAO Wan-Cang, LIU Dan, PAN Feng et al. Science in China Series G-Physics Mechanics Astron, 2006, 49(5): 606[24] LIU Dan, ZHAO Xin, LONG Gui-Lu. Commun. Theor. Phys., 2010, 54: 825-828 (or arXiv: quant-ph/07053904)[25] LIU Dan, ZHAO Xin, LONG Gui-Lu. Commun. Theor. Phys., 2008, 49: 329[26] WU Hua, ZHAO Xin, LI Yan-Song et al. International Journal Of Quantum Information, 2010, 8(7): 1169-1177[27] Muralidharan S, Panigrahi P K. Phy. Rev. A, 2008, 77: 032321[28] Muralidharan S, Panigrahi P K. Phy. Rev. A, 2008, 78: 062333[29] ZHU Jing-Min. Commun. Theor. Phys., 2010, 54(2): 373-379[30] ZHU Jing-Min. Chinese Physics C (HEP NP), 2012, 36(4): 311-315[31] Nachtergaele B. Commun. Math. Phys., 1996, 175: 565[32] Verstraete F, Cirac J I, Latorre J I, Rico E, Wolf M M. Phys. Rev. Lett., 2005, 94: 140601
  • 加载中

Get Citation
ZHU Jing-Min. Quantum phase transitions in matrix product states ofone-dimensional spin-1/2 chains[J]. Chinese Physics C, 2014, 38(12): 123102. doi: 10.1088/1674-1137/38/12/123102
ZHU Jing-Min. Quantum phase transitions in matrix product states ofone-dimensional spin-1/2 chains[J]. Chinese Physics C, 2014, 38(12): 123102.  doi: 10.1088/1674-1137/38/12/123102 shu
Milestone
Received: 2014-01-10
Revised: 2014-04-15
Article Metric

Article Views(1842)
PDF Downloads(183)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Quantum phase transitions in matrix product states ofone-dimensional spin-1/2 chains

  • College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China

Abstract: For the matrix product system of a one-dimensional spin-1/2 chain, we present a new model of quantum phase transitions and find that in the thermodynamic limit, both sides of the critical point are respectively described by phases |Ψa>=|1…1> representing all particles spin up and |Ψb>=|0…0> representing all particles spin down, while the phase transition point is an isolated intermediate-coupling point where the two phases coexist equally, which is described by the so-called N-qubit maximally entangled GHZ state |Ψpt>=√2/2(|1…1>+|0…0>). At the critical point, the physical quantities including the entanglement are not discontinuous and the matrix product system has long-range correlation and N-qubit maximal entanglement. We believe that our work is helpful for having a comprehensive understanding of quantum phase transitions in matrix product states of one-dimensional spin chains and of potential directive significance to the preparation and control of one-dimensional spin lattice models with stable coherence and N-qubit maximal entanglement.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return