Neutron beam optimization based on a 7Li(p,n)7Be reaction for treatment of deep-seated brain tumors by BNCT

Get Citation
Zahra Ahmadi Ganjeh and S. Farhad Masoudi. Neutron beam optimization based on a 7Li(p,n)7Be reaction for treatment of deep-seated brain tumors by BNCT[J]. Chinese Physics C, 2014, 38(10): 108203. doi: 10.1088/1674-1137/38/10/108203
Zahra Ahmadi Ganjeh and S. Farhad Masoudi. Neutron beam optimization based on a 7Li(p,n)7Be reaction for treatment of deep-seated brain tumors by BNCT[J]. Chinese Physics C, 2014, 38(10): 108203.  doi: 10.1088/1674-1137/38/10/108203 shu
Milestone
Received: 2013-11-04
Revised: 1900-01-01
Article Metric

Article Views(1967)
PDF Downloads(149)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Neutron beam optimization based on a 7Li(p,n)7Be reaction for treatment of deep-seated brain tumors by BNCT

    Corresponding author: S. Farhad Masoudi,

Abstract: Neutron beam optimization for accelerator-based Boron Neutron Capture Therapy (BNCT) is investigated using a 7Li(p,n)7Be reaction. Design and optimization have been carried out for the target, cooling system, moderator, filter, reflector, and collimator to achieve a high flux of epithermal neutron and satisfy the IAEA criteria. Also, the performance of the designed beam in tissue is assessed by using a simulated Snyder head phantom. The results show that the optimization of the collimator and reflector is critical to finding the best neutron beam based on the 7Li(p,n)7Be reaction. Our designed beam has 2.49×109n/cm2s epithermal neutron flux and is suitable for BNCT of deep-seated brain tumors.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return