Dirac equation with a magnetic field in 3D non-commutative phase space

  • For a spin-1/2 particle moving in a background magnetic field in noncommutative phase space, the Dirac equation is solved when the particle is allowed to move off the plane that the magnetic field is perpendicular to. It is shown that the motion of the charged particle along the magnetic field has the effect of increasing the magnetic field. In the classical limit, matrix elements of the velocity operator related to the probability give a clear physical picture. Along an effective magnetic field, the mechanical momentum is conserved and the motion perpendicular to the effective magnetic field follows a round orbit. If using the velocity operator defined by the coordinate operators, the motion becomes complicated.
      PCAS:
  • 加载中
  • [1] Snyder H. Phys. Rev., 1947, 71: 38[2] Seiberg N, Witten E. JHEP, 1999, 09: 032[3] Douglas M R, Nekrasov N A. Rev. Mod. Phys., 2001, 73: 977[4] Szabo R. Phys. Rep., 2003, 378: 207[5] Duval C, Horvathy P A. J. Phys. A, 2001, 34: 10097[6] Horvathy P A. Ann. Phys., 2002, 299: 128[7] Dayi O F, Jellal A. J. Math. Phys., 2002, 43: 4592[8] Dulat S, Li K. Eur. Phys. J. C, 2009, 60: 162[9] Basu B, Ghosh S. Phys. Lett. A, 2005, 346: 133[10] Gamboa J, Loewe M, Mendez F et al. Phys. Rev. D, 2001, 64: 067901[11] Smailagic A, Spallmcci E. Phys. Rev. D, 2002, 65: 107701[12] LIN B S, JING S C. Phys. Lett. A, 2008, 372: 4880[13] Scholtz F G, Gouba L, Hafrer A et al. J. Phys. A, 2009, 42: 175303[14] Jellal A, Schreiber M, Kinani E H E. Int. J. Mod. Phys. A, 2005, 20: 1515[15] Geloun J B, Scholtz F G. J. Math. Phys., 2009, 50: 043505[16] Jahan A. Braz. J. Phys., 2007, 37: 144[17] Bemfica F S, Girotti H O. Braz. J. Phys., 2008, 38: 227[18] YUAN Y, LI K, WANG J H et al. Chin. Phys. C (HEP NP), 2010, 34: 543[19] Mirza B, Narimani R, Zare S. Commun. Theor. Phys., 2011, 55: 405[20] LI K, WANG J H, Dulat S et al. Int. J. Theor. Phys., 2010, 49: 134[21] Smailagic A, Spallmcci E. J. Phys. A, 2002, 35: L363[22] ZHANG P M, Horvathy P A, Ngome J P. Phys. Lett. A, 2010, 374: 4275[23] YANG Z H, LONG C Y, QIN S J et al. Int. J. Theor. Phys., 2010, 49: 644[24] Santos E S, de Melo G R. Int. J. Theor. Phys., 2011, 50: 332[25] JIANG Y, LIANG M L, ZHANG Y B. Can. J. Phys., 2011, 89: 769[26] Greenberg W R, Klein A. Phys. Rev. Lett., 1995, 75: 1244[27] Morehead J J. Phys. Rev. A, 1996, 53: 1285[28] HUANG X Y. Phys. Lett. A, 1986, 115: 310[29] JIA Y W, LIU Q H, PENG X H. Acta Physica Sinica, 2002, 51: 201 (in Chinese)[30] Castello-Branco K H C, Martius A G. J. Math. Phys., 2010,51: 102106[31] Bertolami O, Rosa J G, Aragao C M L D et al. Phys. Rev. D, 2005, 72: 025010[32] Duncan R C, Thompson C. Astrophysical Journal, 1992, 392: L9
  • 加载中

Get Citation
LIANG Mai-Lin, ZHANG Ya-Bin, YANG Rui-Lin and ZHANG Fu-Lin. Dirac equation with a magnetic field in 3D non-commutative phase space[J]. Chinese Physics C, 2013, 37(6): 063106. doi: 10.1088/1674-1137/37/6/063106
LIANG Mai-Lin, ZHANG Ya-Bin, YANG Rui-Lin and ZHANG Fu-Lin. Dirac equation with a magnetic field in 3D non-commutative phase space[J]. Chinese Physics C, 2013, 37(6): 063106.  doi: 10.1088/1674-1137/37/6/063106 shu
Milestone
Received: 2012-07-19
Revised: 2012-11-05
Article Metric

Article Views(2056)
PDF Downloads(312)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Dirac equation with a magnetic field in 3D non-commutative phase space

    Corresponding author: LIANG Mai-Lin,

Abstract: For a spin-1/2 particle moving in a background magnetic field in noncommutative phase space, the Dirac equation is solved when the particle is allowed to move off the plane that the magnetic field is perpendicular to. It is shown that the motion of the charged particle along the magnetic field has the effect of increasing the magnetic field. In the classical limit, matrix elements of the velocity operator related to the probability give a clear physical picture. Along an effective magnetic field, the mechanical momentum is conserved and the motion perpendicular to the effective magnetic field follows a round orbit. If using the velocity operator defined by the coordinate operators, the motion becomes complicated.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return