×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Molecular dynamics simulation of latent track formation in α-quartz

  • The latent ion track in α -quartz is studied by molecular dynamics simulations. The latent track is created by depositing electron energies into a cylindrical region with a radius of 3 nm. In this study, the electron stopping power varies from 3.0 keV/nm to 12.0 keV/nm, and a continuous latent track is observed for all the simulated values of electron stopping power except 3.0 keV/nm. The simulation results indicate that the threshold electron stopping power for a continous latent track lies between 3.0 keV/nm and 3.7 keV/nm. In addition, the coordination defects produced in the latent track are analyzed for all the simulation conditions, and the results show that the latent track in α -quartz consists of an O-rich amorphous phase and Si-rich point defects. At the end of this paper, the influence of the energy deposition model on the latent track in α -quartz is investigated. The results indicate that different energy deposition models reveal similar latent track properties. However, the values of the threshold electron stopping power and the ion track radius are dependent on the choice of energy deposition model.
      PCAS:
  • 加载中
  • [1] Fleische R L, Price P B, Walker R M. J. Appl. Phys., 1965, 36: 3645-3652[2] Lesueur D, Dunlop A. Radiat. Eff. Defects. S, 1993, 126: 163-172[3] WANG Z G, Dufour C, Paumier E et al. J. Phys-Condens. Mat., 1994, 6: 6733-6750[4] Volkov A E, Borodin V A. Nucl. Instrum. Methods B, 1998, 146: 137-141[5] Toulemonde M, Dufour C, Meftah A et al. Nucl. Instrum. Methods B, 2000, 166: 903-912[6] Meftah A, Brisard F, Costantini J M et al. Phys. Rev. B: Condens. Matter, 1994, 49: 12457-12463[7] Toulemonde M, Constantini J M, Dufour C et al. Nucl. Instrum. Methods B, 1996, 116: 37-42[8] Toulemonde M, Assmann W, Dufour C et al. Ion Beam Science: Solved and Unsolved Problems, Pts 1 and 2, 2006, 52: 263-292[9] Abromeit C, Kuznetsov A R. Nucl. Instrum. Methods B, 2004, 225: 97-104[10] Bringa E M, Johnson R E. Nucl. Instrum. Methods B, 1998, 143: 513-535[11] Bringa E M, Johnson R E, Dutkiewicz L. Nucl. Instrum. Methods B, 1999, 152: 267-290[12] Kluth P, Schnohr C S, Pakarinen O H et al. Phys. Rev. Lett., 2008, 101: 175503[13] Moreira P A F P, Devanathan R, Weber W J. J. Phys-Condens. Mat., 2010, 22: 395008[14] Pakarinen O H, Djurabekova F, Nordlund K. Nucl. Instrum. Methods B, 2010, 268: 3163-3166[15] Pakarinen O H, Djurabekova F, Nordlund K et al. Nucl. Instrum. Methods B, 2009, 267: 1456-1459[16] Phillips C L, Magyar R J, Crozier P S. J. Chem. Phys., 2010, 133: 144711[17] Schwen D, Bringa E M. Nucl. Instrum. Methods B, 2007, 256: 187-192[18] ZHANG J M, LANG M, Ewing R C et al. J. Mater. Res., 2010, 25: 1344-1351[19] Plimpton S. J. Comput. Phys., 1995, 117: 1-19[20] Humphrey W, Dalke A, Schulten K. J. Mol. Graph. Model., 1996, 14: 33-38[21] Watanabe T, Fujiwara H, Noguchi H et al. Jpn. J. Appl. Phys., Part 2-Letters, 1999, 38: L366-L369[22] Watanabe T, Yamasaki D, Tatsumura K et al. Appl. Surf. Sci., 2004, 234: 207-213[23] Ohta H, Hamaguchi S. J. Vac. Sci. Technol. A, 2001, 19: 2373-2381[24] Berendsen H J C, Postma J P M, Vangunsteren W F et al. J. Chem. Phys., 1984, 81: 3684-3690[25] Szenes G. Phys. Rev. B: Condens. Matter, 1995, 52: 6154-6157[26] Mota F, Caturla M J, Perlado J M et al. Fusion. Eng. Des., 2005, 75-79: 1027-1030[27] Waligorski M P R, Hamm R N, Katz R. Nucl. Tracks. Rad. Meas., 1986, 11: 309-319
  • 加载中

Get Citation
LAN Chun-E, XUE Jian-Ming, WANG Yu-Gang and ZHANG Yan-Wen. Molecular dynamics simulation of latent track formation in α-quartz[J]. Chinese Physics C, 2013, 37(3): 038201. doi: 10.1088/1674-1137/37/3/038201
LAN Chun-E, XUE Jian-Ming, WANG Yu-Gang and ZHANG Yan-Wen. Molecular dynamics simulation of latent track formation in α-quartz[J]. Chinese Physics C, 2013, 37(3): 038201.  doi: 10.1088/1674-1137/37/3/038201 shu
Milestone
Received: 2012-04-19
Revised: 1900-01-01
Article Metric

Article Views(1965)
PDF Downloads(267)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Molecular dynamics simulation of latent track formation in α-quartz

    Corresponding author: XUE Jian-Ming,

Abstract: The latent ion track in α -quartz is studied by molecular dynamics simulations. The latent track is created by depositing electron energies into a cylindrical region with a radius of 3 nm. In this study, the electron stopping power varies from 3.0 keV/nm to 12.0 keV/nm, and a continuous latent track is observed for all the simulated values of electron stopping power except 3.0 keV/nm. The simulation results indicate that the threshold electron stopping power for a continous latent track lies between 3.0 keV/nm and 3.7 keV/nm. In addition, the coordination defects produced in the latent track are analyzed for all the simulation conditions, and the results show that the latent track in α -quartz consists of an O-rich amorphous phase and Si-rich point defects. At the end of this paper, the influence of the energy deposition model on the latent track in α -quartz is investigated. The results indicate that different energy deposition models reveal similar latent track properties. However, the values of the threshold electron stopping power and the ion track radius are dependent on the choice of energy deposition model.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return