Critical behavior of higher cumulants of order parameter in the 3D-Ising universality class

  • QCD deconfinement phase transition is supposed to be the same universality class as the 3D-Ising model. According to the universality of critical behavior, the Binder-like ratios and ratios of higher cumulants of order parameter near the critical temperature in the 3D-Ising model are studied. The Binder-like ratio is shown to be a step function of temperature. The critical point is the intersection of the ratios of different system sizes between two platforms. The normalized cumulant ratios, like the Skewness and Kurtosis, do not diverge with correlation length, contrary to the corresponding cumulants. Possible applications of these characters in locating critical point in relativistic heavy ion collisions are discussed.
      PCAS:
  • 加载中
  • [1] Stephanov M A, Rajagopal K, Shuyak E. Phys. Rev. Lett., 1998, 81: 4816; Jeon S, Koch V. Phys. Rev. Lett., 2000, 85: 2076; Asakawa M, Heinz U, Müller B. Phys. Rev. Lett., 2000, 85: 2072; Heiselberg H. Phys. Rept., 2001, 351: 161[2] Hatta Y, Stephanov M A. Phys. Rev. Lett., 2003, 91: 102003; Hatta Y, Ikeda T. Phys. Rev. D, 2003, 67: 014028[3] Antoniou N G, Diakonos F K, Kapoyannis A S, Kousouris K S. Phys. Rev. Lett., 2006, 97: 032002; Bower D, Gavin S. Phys. Rev. C, 2001, 64: 051902; Antoniou N G. Nucl. Phys. B, Proc. Suppl., 2001, 92: 26[4] Kapusta J. arXiv: 1005.0860[5] Koch V. arXiv: 0810.2520[6] Stephanov M A. Phys. Rev. Lett., 2009, 102: 032301[7] Athanasiou C, Rajagopal K, Stephanov M. arXiv: 1006.4636; Athanasiou C, Rajagopal K, Stephanov M. arXiv: 1008.3385[8] Aggarwal M M et al. Phys. Rev. Lett., 2010, 105: 022302[9] Stephanov M A. Int. J. Mod. Phys. A, 2005, 20: 4387[10] CHENG M, Hegde P, Jung C, Karsch F, Kaczmarek O, Laermann E, Mawhinney R D, MIAO C, Petreczky P, Schmidt C, Soeldner W. Phys. Rev. D, 2009, 79: 074505[11] Stokić B, Friman B, Redlich K. Phys. Lett. B, 2009, 673: 192[12] FU Wei-Jie, LIU Yu-Xin, WU Yue-Liang. Phys. Rev. D, 2010, 81: 014028[13] Skokov V, Stokić B, Friman B, Redlich K. Phys. Rev. D, 2010, 82: 034029[14] FU Wei-Jie, WU Yue-Liang. Phys. Rev. D, 2010, 82: 074013[15] Gupta S. arXiv: 0909.4630[16] Philippe de Forcrand, Owe Philipsen. Phys. Rev. Lett., 2010, 105: 152001[17] Stephanov M, Rajagopal K, Shuryak E. Phys. Rev. Lett., 1998, 81: 4816[18] Asakawa M. J. Phys. G, 2009, 36: 064042[19] Berges J, Rajagopal K. Nucl. Phys. B, 1999, 538: 215[20] Halasz M A, Jackson A D, Shrock R E, Stephanov M A, Verbaarschot J J M. Phys. Rev. D, 1998, 58: 096007[21] Hatta Y, Ikeda T. Phys. Rev. D, 2003, 67: 014028[22] D'Elia M, Sanfilippo F. Phys. Rev. D, 2009, 80: 111501(R)[23] Rajagopal K, Wilczek F. Nucl. Phys. B, 1993, 399: 395; Pisarski R D, Wilczek F. Phys. Rev. D, 1984, 29: 338[24] Braun-Munzinger P, Stachel J. arXiv: 1101.3167[25] Christoph Blume. arXiv:1111.7140[26] Binder K. Z. Phys. B, 1981, 43: 119; Binder K. Rep. Prog. Phys., 1997, 60: 487[27] Cleymans J, Oeschler H, Redlich K, Wheaton S. Phys. C, 2006, 73: 034905[28] Wolff U. Phys. Rev. Lett., 1989, 62: 361[29] Hasenbusch M. Int. J. Mod. Phys. C, 2001, 12: 911[30] Privman V. Finite Size Scaling and Numerical Simulation of Statistical Physics. World Scientific, Singapore, 1990[31] WU Yuan-Fang, CHEN Li-Zhu, CHEN X S. PoS (CPOD, 2009) 036; CHEN Li-Zhu, CHEN X S, WU Yuan-Fang. arXiv: 0904.1040; 1002: 4139[32] Asakawa M, Ejiri S, Kitazawa M. Phys. Rev. Lett., 2009, 103: 262301[33] Stephanov M A. Phys. Rev. Lett., 2011, 107: 052301[34] Brzychczyk J. Phys. Rev. C, 2006, 73: 024601
  • 加载中

Get Citation
CHEN Li-Zhu, PAN Xue, CHEN Xiao-Song and WU Yuan-Fang. Critical behavior of higher cumulants of order parameter in the 3D-Ising universality class[J]. Chinese Physics C, 2012, 36(8): 727-732. doi: 10.1088/1674-1137/36/8/008
CHEN Li-Zhu, PAN Xue, CHEN Xiao-Song and WU Yuan-Fang. Critical behavior of higher cumulants of order parameter in the 3D-Ising universality class[J]. Chinese Physics C, 2012, 36(8): 727-732.  doi: 10.1088/1674-1137/36/8/008 shu
Milestone
Received: 2011-12-20
Revised: 1900-01-01
Article Metric

Article Views(2178)
PDF Downloads(273)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Critical behavior of higher cumulants of order parameter in the 3D-Ising universality class

    Corresponding author: CHEN Li-Zhu,
    Corresponding author: PAN Xue,

Abstract: QCD deconfinement phase transition is supposed to be the same universality class as the 3D-Ising model. According to the universality of critical behavior, the Binder-like ratios and ratios of higher cumulants of order parameter near the critical temperature in the 3D-Ising model are studied. The Binder-like ratio is shown to be a step function of temperature. The critical point is the intersection of the ratios of different system sizes between two platforms. The normalized cumulant ratios, like the Skewness and Kurtosis, do not diverge with correlation length, contrary to the corresponding cumulants. Possible applications of these characters in locating critical point in relativistic heavy ion collisions are discussed.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return