Analysis of the coupling constants ga0ηπ0 and ga0η′π0 with light-cone QCD sum rules

  • In this article, we take the point of view that the light scalar meson a0(980) is a conventional qq state, and calculate the coupling constants ga0ηπ0 and ga0η′π0 with the light-cone QCD sum rules. The central value of the coupling constant ga0ηπ0 is consistent with that extracted from the radiative decay φ(1020)→a0(980)γ→ηπ0γ. The central value and lower bound of the decay width Γa0→ηπ0=127+84-48 MeV are compatible with the experimental data of the total decay width Γa0(980)=(50-100) MeV from the Particle Data Group with a very model dependent estimation (the decay width can be much larger), while the upper bound is too large. We give a possible explanation for the discrepancy between the theoretical calculation and experimental data.

  • 加载中
  • [1] . Godfrey S, Napolitano J. Rev. Mod. Phys., 1999, 71: 1411-14622. Close F E, Tornqvist N A. J. Phys. G, 2002, 28: R249{R2673. Ja e R L. Phys. Rept., 2005, 409: 1-454. Amsler C, Tornqvist N A. Phys. Rept., 2004, 389: 61-1175. Ja e R L. Phys. Rev. D, 1977, 15: 267-280, 281-2896. Ja e R L. Phys. Rev. D, 1978, 17: 1444-14467. Weinstein J D, Isgur N. Phys. Rev. D, 1990, 41: 2236-22578. Weinstein J D, Isgur N, Phys. Rev. D, 1983, 27: 588-5999. Tornqvist N A. Z. Phys. C, 1995, 68: 647-66010. Boglione M, Pennington M R. Phys. Rev. Lett., 1997, 79:1998-200111. Boglione M, Pennington M R. Phys. Rev. D, 2002, 65:11401012. Bramon A, Colangelo G, Franziniet P J et al. Phys. Lett.B, 1992, 287: 263-26613. Franzini P J, Kim W, Lee-Franzini J. Phys. Lett. B, 1992,287: 259-26214. Colangelo G, Franzini P J. Phys. Lett. B, 1992, 289: 189-19315. Achasov N N, Gubin V V, Solodov E P. Phys. Rev. D, 1997,55: 2672-268216. Bramon A, Grau A, Pancheri G. Phys. Lett. B, 1992, 289:97-10217. Bramon A, Escribano R, Lucio M J L et al. Eur. Phys. J.C, 2002, 26: 253-26018. Marco E, Hirenzaki S, Oset E et al. Phys. Lett. B, 1999,470: 20-2619. WANG Z G, WAN S L. Phys. Rev. D, 2006, 73: 09402020. WANG Z G. J. Phys. G, 2007, 34: 753-76521. WANG Z G, WAN S L. Phys. Rev. D, 2006, 74: 01401722. Colangelo P, Fazio F D. Phys. Lett. B, 2003, 559: 49-5923. WANG Z G, YANG W M, WAN S L. Eur. Phys. J. C,2004, 37: 223-23124. WANG Z G. Phys. Rev. D, 2008, 77: 05402425. Gokalp A, Sarac Y, Yilmaz O. Mod. Phys. Lett. A, 2004,19: 3011-301726. Gokalp A, Sarac Y, Yilmaz O. Phys. Lett. B, 2005, 609:291-29727. Balitsky I I, Braun V M, Kolesnichenko A V. Nucl. Phys.B, 1989, 312: 509-55028. Chernyak V L, Zhitnitsky I R. Nucl. Phys. B, 1990, 345:137-17229. Chernyak V L, Zhitnitsky A R. Phys. Rept., 1984, 112:173-31830. Braun V M, Filyanov I E. Z. Phys. C, 1989, 44: 157-16631. Braun V M, Filyanov I E. Z. Phys. C, 1990, 48: 239-24832. Shifman M A, Vainshtein A I, Zakharov V I. Nucl. Phys.B, 1979, 147: 385-44733. Shifman M A, Vainshtein A I, Zakharov V I. Nucl. Phys.B, 1979, 147: 448-51834. Reinders L J, Rubinstein H, Yazaki S. Phys. Rept., 1985,127: 1-9735. Belyaev V M, Braun V M, Khodjamirian A et al. Phys.Rev. D, 1995, 51: 6177-619536. Ball P. JHEP, 1999, 9901: 01037. Ball P, Zwicky R. Phys. Lett. B, 2006, 633: 289-29738. Ball P, Zwicky R. JHEP, 2006, 0602: 03439. Ball P, Braun V M, Lenz A. JHEP, 2006, 0605: 00440. Burakovsky L, Goldman J T. Phys. Lett. B, 1998, 427:361-37041. YAO W M et al. J. Phys. G, 2006, 33: 1-123242. Schmedding A, Yakovlev O I. Phys. Rev. D, 2000, 62:11600243. Bakulev A P, Mikhailov S V, Stefanis N G. Phys. Lett. B,2001, 508: 279-28944. Bakulev A P, Mikhailov S V, Stefanis N G. Phys. Rev. D,2003, 67: 07401245. Bakulev A P, Mikhailov S V, Stefanis N G. Phys. Lett. B,2004, 578: 91-9846. Bakulev A P, Pimikov A V. Acta. Phys. Polon. B, 2006,37: 3627-363447. Bakulev A P. hep-ph/061113948. Achasov N N, Ivanchenko V N. Nucl. Phys. B, 1989, 315:465-47649. Achasov N N, Gubin V V. Phys. Rev. D, 1997, 56: 4084-409750. Achasov M N et al. Phys. Lett. B, 2000, 485: 349-35651. Achasov M N et al. Phys. Lett. B, 2000, 479: 53-5852. Aloisio A et al. Phys. Lett. B, 2002, 536: 209-21653. Aloisio A et al. Phys. Lett. B, 2002, 537: 21-2654. Ambrosino F et al. arXiv:0707.460955. Brito T V, Navarra F S, Nielsen M et al. Phys. Lett. B,2005, 608: 69-76
  • 加载中

Get Citation
WANG Zhi-Gang. Analysis of the coupling constants ga0ηπ0 and ga0η′π0 with light-cone QCD sum rules[J]. Chinese Physics C, 2010, 34(1): 7-15. doi: 10.1088/1674-1137/34/1/002
WANG Zhi-Gang. Analysis of the coupling constants ga0ηπ0 and ga0η′π0 with light-cone QCD sum rules[J]. Chinese Physics C, 2010, 34(1): 7-15.  doi: 10.1088/1674-1137/34/1/002 shu
Milestone
Received: 2009-01-19
Revised: 2009-02-24
Article Metric

Article Views(2790)
PDF Downloads(587)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Analysis of the coupling constants ga0ηπ0 and ga0η′π0 with light-cone QCD sum rules

    Corresponding author: WANG Zhi-Gang,
  • Department of Physics, North China Electric Power University, Baoding 071003, China

Abstract: 

In this article, we take the point of view that the light scalar meson a0(980) is a conventional qq state, and calculate the coupling constants ga0ηπ0 and ga0η′π0 with the light-cone QCD sum rules. The central value of the coupling constant ga0ηπ0 is consistent with that extracted from the radiative decay φ(1020)→a0(980)γ→ηπ0γ. The central value and lower bound of the decay width Γa0→ηπ0=127+84-48 MeV are compatible with the experimental data of the total decay width Γa0(980)=(50-100) MeV from the Particle Data Group with a very model dependent estimation (the decay width can be much larger), while the upper bound is too large. We give a possible explanation for the discrepancy between the theoretical calculation and experimental data.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return