SLIM — a formalism for linear coupled systems

  • A SLIM formalism to deal with a general, linearly coupled accelerator lattice is summarized. Its application to a wide range of accelerator calculations is emphasized.

  • [1] Courant E D,Snyder H S.Ann.Phys.,1958,3:1[2]There are many such examples:MomentumMomentum compaction ac=1/C∮ηds/pClosed orbit Δx=θk√βkβ/2sinπvxcos[πvx-|ψ-ψk|]Beam size σ2x=σ2xβ+σ2δη2σ2xβ/β=55/32√3h/mcγ2/1-D∮Hds/|p|3/∮ds/p2 Damping parti-Jx=1-D,Jy=1,Js=2+D tion D=∮ηds/p(2K+1/p2)/∮ds/p2[3]Alexander W.Chao,J.Appl.Phys.,1979,50(2):595[4]Alexander W.Chao.Nucl.Instrum.Methods,1981,180:29[5]Edwards D A,Teng L.IEEE Trans Nucl.Sci.,1973,20:3[6]Ruggiero F,Picnsso E,Radicati L.Ann.Phys.,1990,197:439[7]Barber D,Heinemann K,Mais H,Ripkin G.DESY-91-146,1991[8]Ohmi K,Hirata K,Oide K.Phys.Rev.E,1994,49;751[9]Forest E.Phys.Rev.E,1998,58:2481[10]Wolski A.Phys.Rev.ST Accel.Beams,2006,9:024001[11]Nash B.Ph.D.Thesis,Stanford University,2006[12]This is slightly exaggerated.The calculation as given here is valid only if the tunes stay away from the resonances by a distance of the order of the radiation damping constants.Since the radiation damping time constants are typically extremely small,the sacrifice of parameter space is negligibly small
  • [1] Courant E D,Snyder H S.Ann.Phys.,1958,3:1[2]There are many such examples:MomentumMomentum compaction ac=1/C∮ηds/pClosed orbit Δx=θk√βkβ/2sinπvxcos[πvx-|ψ-ψk|]Beam size σ2x=σ2xβ+σ2δη2σ2xβ/β=55/32√3h/mcγ2/1-D∮Hds/|p|3/∮ds/p2 Damping parti-Jx=1-D,Jy=1,Js=2+D tion D=∮ηds/p(2K+1/p2)/∮ds/p2[3]Alexander W.Chao,J.Appl.Phys.,1979,50(2):595[4]Alexander W.Chao.Nucl.Instrum.Methods,1981,180:29[5]Edwards D A,Teng L.IEEE Trans Nucl.Sci.,1973,20:3[6]Ruggiero F,Picnsso E,Radicati L.Ann.Phys.,1990,197:439[7]Barber D,Heinemann K,Mais H,Ripkin G.DESY-91-146,1991[8]Ohmi K,Hirata K,Oide K.Phys.Rev.E,1994,49;751[9]Forest E.Phys.Rev.E,1998,58:2481[10]Wolski A.Phys.Rev.ST Accel.Beams,2006,9:024001[11]Nash B.Ph.D.Thesis,Stanford University,2006[12]This is slightly exaggerated.The calculation as given here is valid only if the tunes stay away from the resonances by a distance of the order of the radiation damping constants.Since the radiation damping time constants are typically extremely small,the sacrifice of parameter space is negligibly small
  • 加载中

Get Citation
Alex Chao. SLIM — a formalism for linear coupled systems[J]. Chinese Physics C, 2009, 33(S2): 115-120. doi: 10.1088/1674-1137/33/S2/030
Alex Chao. SLIM — a formalism for linear coupled systems[J]. Chinese Physics C, 2009, 33(S2): 115-120.  doi: 10.1088/1674-1137/33/S2/030 shu
Milestone
Received: 2009-01-05
Revised: 1900-01-01
Article Metric

Article Views(3493)
PDF Downloads(594)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

SLIM — a formalism for linear coupled systems

    Corresponding author: Alex Chao,
  • Stanford Linear Accelerator Center, Stanford, CA 94309, USA

Abstract: 

A SLIM formalism to deal with a general, linearly coupled accelerator lattice is summarized. Its application to a wide range of accelerator calculations is emphasized.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return