-
[1]
I. M. H. Etherington, Phil. Mag. 15(18), 761 (1933)
-
[2]
B. A. Bassett and M. Kunz, Phys. Rev. D 69, 101305 (2004)
-
[3]
P. S. Corasaniti, Mon. Not. Roy. Astron. Soc. 372(1), 191 (2006)
-
[4]
G. F. R. Ellis, R. Poltis, J.-P. Uzan et al., Phys. Rev. D 87, 103530 (2013)
-
[5]
R. F. L. Holanda, J. A. S. Lima, and M. B. Ribeiro, Astrophys. J. Lett. 722, L233 (2010)
-
[6]
Z. Li, P. Wu, and H. W. Yu, Astrophys. J. Lett. 729, L14 (2011)
-
[7]
N. Liang, Z. Li, P. Wu, et al., Mon. Not. Roy. Astron. Soc. 436(2), 1017 (2013)
-
[8]
K. Liao, Z. Li, S. Cao et al., Astrophys. J. 822(2), 74 (2016)
-
[9]
X. Li and H. N. Lin, Mon. Not. Roy. Astron. Soc. 474(1), 313 (2018)
-
[10]
H.-N. Lin and X. Li, Chin. Phys. C 44(7), 075101 (2020)
-
[11]
H.-N. Lin, X. Li, and L. Tang, Chin. Phys. C 45(1), 015109 (2021)
-
[12]
R. Arjona, H.-N. Lin, S. Nesseris et al., Phys. Rev. D 103(10), 103513 (2021)
-
[13]
F. S. Lima, R. F. L. Holanda, S. H. Pereira et al., JCAP 08, 035 (2021)
-
[14]
D. M. Scolnic et al., Astrophys. J. 859(2), 101 (2018)
-
[15]
C. Zhou, J. Hu, M. Li et al., Astrophys. J. 909(2), 118 (2021)
-
[16]
H.-N. Lin, M.-H. Li, and X. Li, Mon. Not. Roy. Astron. Soc. 480(3), 3117 (2018)
-
[17]
C.-Z. Ruan, F. Melia, and T.-J. Zhang, Astrophys. J. 866(1), 31 (2018)
-
[18]
J. Qin, F. Melia, and T.-J. Zhang, Mon. Not. Roy. Astron. Soc. 502(3), 3500 (2021)
-
[19]
R. F. L. Holanda, V. C. Busti, F. S. Lima et al., JCAP 09, 039 (2017)
-
[20]
X. Fu and P. Li, Int. J. Mod. Phys. D 26(9), 1750097 (2017)
-
[21]
L.-X. Li, Mon. Not. Roy. Astron. Soc. 379, L55 (2007)
-
[22]
H.-N. Lin, X. Li, and Z. Chang, Mon. Not. Roy. Astron. Soc. 455(2), 2131 (2016)
-
[23]
L. Tang, X. Li, H.-N. Lin et al., Astrophys. J. 907(2), 121 (2021)
-
[24]
A. Geron, Hands-On Machine Learning with Scikit-Learn and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition, O'Reilly Media, 2017.
-
[25]
C. Escamilla-Rivera, M. A. C. Quintero, and S. Capozziello, JCAP 03, 008 (2020)
-
[26]
G.-J. Wang, X.-J. Ma, S.-Y. Li et al., Astrophys. J. Suppl. 246(1), 13 (2020)
-
[27]
L. Tang, H.-N. Lin, X. Li et al., Mon. Not. Roy. Astron. Soc. 509(1), 1194 (2021)
-
[28]
T. Liu, S. Cao, S. Zhang et al., Eur. Phys. J. C 81(10), 903 (2021)
-
[29]
S. Mollerach and E. Roulet, Gravitational lensing and microlensing, World Scientific, Singapore, 2002.
-
[30]
S. Khedekar and S. Chakraborti, Phys. Rev. Lett. 106, 221301 (2011)
-
[31]
C. S. Kochanek, Astrophys. J. 384, 1 (1992)
-
[32]
E. O. Ofek, H.-W. Rix, and D. Maoz, Mon. Not. Roy. Astron. Soc. 343, 639 (2003)
-
[33]
S. Cao, Y. Pan, M. Biesiada et al., JCAP 03, 016 (2012)
-
[34]
I. Jorgensen, M. Franx, and P. Kjaergaard, Mon. Not. Roy. Astron. Soc. 276, 1341 (1995)
-
[35]
M. Cappellari et al., Mon. Not. Roy. Astron. Soc. 366, 1126 (2006)
-
[36]
Y. Chen, R. Li, Y. Shu et al., Mon. Not. Roy. Astron. Soc. 488(3), 3745 (2019)
-
[37]
L. V. E. Koopmans, T. Treu, A. S. Bolton et al., Astrophys. J. 649, 599 (2006)
-
[38]
S. Birrer et al., Mon. Not. Roy. Astron. Soc. 484, 4726 (2019)
-
[39]
B. Wang, J.-Z. Qi, J.-F. Zhang et al., Astrophys. J. 898(2), 100 (2020)
-
[40]
S. Räsänen, K. Bolejko, and A. Finoguenov, Phys. Rev. Lett. 115(10), 101301 (2015)
-
[41]
B. Karlik, A. V. Olgac, Performance analysis of various activation functions in generalized mlp architectures of neural networks, International Journal of Artificial Intelligence and Expert Systems, 1(4), 111 (2011). http://www.cscjournals.org/library/manuscriptinfo.php
-
[42]
A. F. Agarap, Deep Learning using Rectified Linear Units (ReLU), arxiv: 1803.08375
-
[43]
D.-A. Clevert, T. Unterthiner, and S. Hochreiter, Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs), arXiv: 1511.07289
-
[44]
G. Klambauer, T. Unterthiner, A. Mayr et al., Self-Normalizing Neural Networks, arXiv: 1706.02515
-
[45]
Y. Gal and Z. Ghahramani, A Theoretically Grounded Application of Dropout in Recurrent Neural Networks, arXiv: 1512.05287
-
[46]
Y. Gal and Z. Ghahramani, Dropout as a Bayesian Approximation: Appendix, arXiv: 1506.02157
-
[47]
Y. Gal and Z. Ghahramani, Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, arXiv: 1506.02142
-
[48]
D. Muthukrishna, G. Narayan, K. S. Mandel et al., Publ. Astron. Soc. Pac. 131(1005), 118002 (2019)
-
[49]
V. Bonjean, Astron. Astrophys. 634, A81 (2020)
-
[50]
T. Mangena, S. Hassan, and M. G. Santos, Mon. Not. Roy. Astron. Soc. 494(1), 600 (2020)
-
[51]
D. Foreman-Mackey, D. W. Hogg, D. Lang et al., Publ. Astron. Soc. Pac. 125, 306 (2013)
-
[52]
S. Cao, M. Biesiada, M. Yao et al., Mon. Not. Roy. Astron. Soc. 461(2), 2192 (2016)