• [1]

    D. Lovelock, “The einstein tensor and its generalizations,” J. Math. Phys., vol. 12, no. 498, 1971.

  • [2]

    S. Odintsov and S. Nojiri, “Modified Gauss-Bonnet theory as gravitational alternative for dark energy,” Phys. Lett. B, vol. 631, no. 1-2, 2005.

  • [3]

    S. Odintsov and S. Nojiri, “Introduction to modified gravity and gravitational alternative for dark energy,” Int. J. Geom. Methods Mod. Phys., vol. 4, no. 01, 2007.

  • [4]

    I. de Martino, M. De Laurentis, and S. Capozziello, “Tracing the cosmic history by Gauss-Bonnet gravity,” Phys. Rev. D, vol. 102, no. 6, 2020.

  • [5]

    K. Uddin, J. E. Lidsey, and R. Tavakol, “Cosmological scaling solutions in generalised Gauss-Bonnet gravity theories,” Gen. Relativ. Gravit., vol. 41, no. 12, 2009.

  • [6]

    S. D. Odintsov, S. Nojiri, and V. K. Oikonomou, “Ghost-free Gauss-Bonnet theories of gravity,” Phys. Rev. D, vol. 99, no. 4, 2019.

  • [7]

    S. Kawai and J. Kim, “CMB from a Gauss-Bonnet-induced de Sitter fixed point,” Phys. Rev. D, vol. 104, no. 4, 2021.

  • [8]

    D. Glavan and C. Lin, “Einstein-Gauss-Bonnet gravity in 4-dimensional space-time,” Phys. Rev. Lett., vol. 124, no. 8, 2020.

  • [9]

    M. Benetti, S. S. da Costa, S. Capozziello, J. S. Alcaniz, and M. D. Laurentis, “Observational constraints on gauss–bonnet cosmology,” Int. J. Mod. Phys. D, vol. 27, no. 08, 2018.

  • [10]

    Z. Molavi and A. Khodam-Mohammadi, Eur. Phys. J. Plus 134(6), 254 (2019)

  • [11]

    S. Odintsov and V. Oikonomou, “Inflationary phenomenology of einstein gauss-bonnet gravity compatible with gw170817,” Phys. Lett. B, vol. 797, 2019.

  • [12]

    U. Camci, “On dark matter as a geometric effect in the galactic halo,” Astrophys. Space Sci., vol. 366, no. 9, 2021.

  • [13]

    S. Kawai and J. Kim, “Primordial blackholes from Gauss-Bonnet-corrected single field inflation,” Phys. Rev. D, vol. 104, no. 8, 2021.

  • [14]

    S. D. Odintsov, V. K. Oikonomou, I. Giannakoudi, F. P. Fronimos, and E. C. Lymperiadou, “Recent Advances on Inflation,” Symmetry, vol. 15, no. 9, 2023.

  • [15]

    S. Nojiri, S. Odintsov, and V. Oikonomou, Phys. Rep. 692, 1 (2017)

  • [16]

    R. Myrzakulov, L. Sebastiani, and S. Zebini, “Some Aspects of Generalized Modified Gravity Models,” Int. J. Mod. Phys. D, vol. 22, no. 08, 2013.

  • [17]

    K. F. Dialektopoulos and S. Capozziello, “Noether symmetries as a geometric criterion to select theories of gravity,” Int. J. Geom. Methods Mod. Phys., vol. 15, no. supp01, 2018.

  • [18]

    P. G. S. Fernandes, P. Carrilho, T. Clifton, and D. J. Mulryne, “The 4d einstein–gauss–bonnet theory of gravity: a review,” Class. Quantum Gravity, vol. 39, no. 6, 2022.

  • [19]

    A. De Felice and S. Tsujikawa, Phys. Lett. B 675(1), 1 (2009)

  • [20]

    A. De Felice, D. F. Mota, and S. Tsujikawa, “Matter instabilities in general Gauss-Bonnet gravity,” Phys. Rev. D, vol. 81, no. 2, 2010.

  • [21]

    A. De Felice and T. Suyama, J. Cosmol. Astropart. Phys. 2009(06), 034 (2009)

  • [22]

    S. Capozziello, C. A. Mantica, and L. G. Molinari, “Cosmological perfect fluids in gauss–bonnet gravity,” Int. J. Geom. Methods Mod. Phys., vol. 16, no. 09, 2019.

  • [23]

    S. Bahamonde, C. G. Böhmer, S. Carloni, E. J. Copeland, W. Fang, and N. Tamanini, Phys. Rep. 775-777, 1 (2018)

  • [24]

    H. Gould and J. Tobochnik, An Introduction to Computer Simulation Methods: Applications to Physical Systems. Addison Wesley.