-
[1]
B. P. Abbott et al. (LIGO Scientific, Virgo Collaboration) , Phys. Rev. Lett. 116(6), 061102 (2016), arXiv:1602.03837
-
[2]
P. Amaro-Seoane et al. (LISA Collaboration), Laser Interferometer Space Antenna, arXiv: 1702.00786
-
[3]
W.-H. Ruan, Z.-K. Guo, R.-G. Cai et al., Int. J. Mod. Phys. A 35(17), 2050075 (2020), arXiv:1807.09495
-
[4]
J. Mei et al. (TianQin Collaboration) , PTEP 2021(5), 05A107 (2021), arXiv:2008.10332
-
[5]
A. Pound and B. Wardell, Black hole perturbation theory and gravitational self-force, arXiv: 2101.04592
-
[6]
D. N. Page and K. S. Thorne, Astrophys. J. 191, 499 (1974)
-
[7]
R. Penrose and R. M. Floyd, Nature 229, 177 (1971)
-
[8]
T. Damour, Phys. Rev. D 97(4), 044038 (2018), arXiv:1710.10599
-
[9]
T. Lee, Z. Hu, M. Guo et al., Circular orbits and polarized images of charged particles orbiting Kerr black hole with a weak magnetic field, arXiv: 2211.04143
-
[10]
Y. Su, M. Guo, H. Yan et al., Photon emissions from Kerr equatorial geodesic orbits, arXiv: 2211.09344
-
[11]
H. Yan, Z. Hu, M. Guo et al., Phys. Rev. D 104(12), 124005 (2021), arXiv:2108.09051
-
[12]
Z. Zhang, Y. Hou, Z. Hu et al., Polarized images of charged particles in vortical motions around a magnetized Kerr black hole, arXiv: 2304.03642
-
[13]
G. V. Kraniotis, Eur. Phys. J. C 81(2), 147 (2021), arXiv:1912.10320
-
[14]
R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963)
-
[15]
B. Carter, Phys. Rev. 174, 1559 (1968)
-
[16]
G. Compère, A. Druart, and J. Vines, Generalized Carter constant for quadrupolar test bodies in Kerr spacetime, arXiv: 2302.14549
-
[17]
D. C. Wilkins, Phys. Rev. D 5, 814 (1972)
-
[18]
J. M. Bardeen, Timelike and null geodesics in the Kerr metric, in Les Houches Summer School of Theoretical Physics: Black Holes, pp. 215–240. 1973
-
[19]
S. E. Vazquez and E. P. Esteban, Nuovo Cim. B 119, 489 (2004), arXiv:gr-qc/0308023
-
[20]
E. Hackmann and C. Lämmerzahl, AIP Conf. Proc. 1577(1), 78 (2015), arXiv:1506.00807
-
[21]
C. Lämmerzahl and E. Hackmann, Springer Proc. Phys. 170, 43 (2016), arXiv:1506.01572
-
[22]
S. Chandrasekhar, The Mathematical Theory of Black Holes, in General Relativity and Gravitation, Volume 1, B. Bertotti, F. de Felice, and A. Pascolini, eds., vol. 1, p. 6. July, 1983
-
[23]
Y. Mino, Phys. Rev. D 67, 084027 (2003), arXiv:gr-qc/0302075
-
[24]
W. Schmidt, Class. Quant. Grav. 19, 2743 (2002), arXiv:gr-qc/0202090
-
[25]
J. Levin and G. Perez-Giz, Phys. Rev. D 79, 124013 (2009), arXiv:0811.3814
-
[26]
R. Fujita and W. Hikida, Class. Quant. Grav. 26, 135002 (2009), arXiv:0906.1420
-
[27]
M. van de Meent, Class. Quant. Grav. 37(14), 145007 (2020), arXiv:1906.05090
-
[28]
V. Vertogradov, Grav. Cosmol. 21(2), 171 (2015), arXiv:2210.04674
-
[29]
S. Hadar, A. P. Porfyriadis, and A. Strominger, JHEP 07, 078 (2015), arXiv:1504.07650
-
[30]
D. Kapec and A. Lupsasca, Class. Quant. Grav. 37(1), 015006 (2020), arXiv:1905.11406
-
[31]
G. Compère, K. Fransen, T. Hertog et al., Class. Quant. Grav. 35(10), 104002 (2018), arXiv:1712.07130
-
[32]
G. Compère and A. Druart, Phys. Rev. D 101(8), 084042 (2020) [Erratum: Phys. Rev. D 102 , 029901(2020)] , arXiv:2001.03478
-
[33]
S. E. Gralla and A. Lupsasca, Phys. Rev. D 101(4), 044032 (2020), arXiv:1910.12881
-
[34]
G. Compère, Y. Liu, and J. Long, Phys. Rev. D 105(2), 024075 (2022), arXiv:2106.03141
-
[35]
A. Mummery and S. Balbus, Inspirals from the innermost stable circular orbit of Kerr black holes: Exact solutions and universal radial flow, arXiv: 2209.03579
-
[36]
A. Mummery and S. Balbus, A complete characterisation of the orbital shapes of the non-circular Kerr geodesic solutions with circular orbit constants of motion, 2302.01159
-
[37]
C. Dyson and M. van de Meent, Kerr-fully Diving into the Abyss: Analytic Solutions to Plunging Geodesics in Kerr, arXiv: 2302.03704
-
[38]
A. Cieślik, E. Hackmann, and P. Mach, Phys. Rev. D 108(2), 024056 (2023), arXiv:2305.07771
-
[39]
K. Glampedakis and D. Kennefick, Phys. Rev. D 66, 044002 (2002), arXiv:gr-qc/0203086
-
[40]
R. W. O'Shaughnessy, Phys. Rev. D 67, 044004 (2003), arXiv:gr-qc/0211023
-
[41]
G. Mittag-Leffler, Annals of Mathematics 24(4), 271 (1923)
-
[42]
E. T. Whittaker and G. N. Watson, A Course of Modern Analysis. Cambridge Mathematical Library. Cambridge University Press, 4 ed., 1996