• [1]

    ATLAS Collaboration, Phys. Lett. B 716, 1 (2012)

  • [2]

    CMS Collaboration, Phys. Lett. B 716, 30 (2012)

  • [3]

    T. Behnke, J. E. Brau, P. N. Burrows et al., The international linear collider technical design report - volume 4: Detectors, 2013. arXiv: 1306.6329

  • [4]

    M. Dong, et al. (CEPC Study Group), CEPC Conceptual Design Report: Volume 2 - Physics & Detector (2018). arXiv: 1811.10545

  • [5]

    The FCC Collaboration, The European Physical Journal Special Topics 228, 261 (2019)

  • [6]

    A. Robson, P. N. Burrows, N. C. Lasheras et al., The compact linear e+e- collider (clic): Accelerator and detector, 2018. arXiv: 1812.07987

  • [7]

    F. An et al., Chin. Phys. C 43, 043002 (2019), arXiv:1810.09037

  • [8]

    ATLAS Collaboration, Measurement of the properties of higgs boson production at \begin{document}$\sqrt{s}=13$\end{document}TeV in the \begin{document}$H \rightarrow \gamma \gamma$\end{document} channel using 139 fb-1 of pp collision data with the atlas experiment, 2022. arXiv: 2207.00348

  • [9]

    Measurements of Higgs boson properties in the diphoton decay channel at \begin{document}$\sqrt{s}=13$\end{document} TeV, Technical Report, CERN, Geneva, 2020. URL: https://cds.cern.ch/record/2725142

  • [10]

    M. Cepeda et al., CERN Yellow Rep. Monogr. 7, 221-584 (2019), arXiv:1902.00134

  • [11]

    CEPC Accelerator Study Group, Snowmass2021 white paper af3- cepc, 2022, arXiv: 2203.09451

  • [12]

    H. Cheng et al. (CEPC Physics Study Group), The Physics potential of the CEPC. Prepared for the US Snowmass Community Planning Exercise (Snowmass 2021), in: 2022 Snowmass Summer Study, 2022. arXiv: 2205.08553

  • [13]

    B. Qi and Y. Liu, R & d of a novel high granularity crystal electromagnetic calorimeter, Instruments 6 (2022), URL: https://www.mdpi.com/2410-390X/6/3/40

  • [14]

    Y. Liu, J. Jiang, and Y. Wang, High-granularity crystal calorimetry: conceptual designs and first studies, Journal of Instrumentation 15, C04056–C04056 (2020)

  • [15]

    M. Thomson, Spectrometers, Detectors and Associated Equipment 611, 25-40 (2009)

  • [16]

    W. Kilian and T. Ohl, J. Reuter, Eur. Phys. J. C 71, 1742 (2011), arXiv:0708.4233

  • [17]

    T. Sjostrand, L. Lonnblad, S. Mrenna et al., Pythia 6.3 physics and manual (2003), arXiv: hep-ph/0308153

  • [18]

    T. Taylor and D. Treille, The Large Electron Positron Collider (LEP): Probing the Standard Model, Adv. Ser. Direct. High Energy Phys. 27, 217–261 (2017) https://cds.cern.ch/record/2312570

  • [19]

    CEPC Conceptual Design Report: Volume 1 - Accelerator (2018). arXiv: 1809.00285

  • [20]

    X. Mo, G. Li, M.-Q. Ruan et al., Chin. Phys. C 40, 033001 (2016), arXiv:1505.01008

  • [21]

    P. Mora de Freitas and H. Videau, Detector simulation with MOKKA /GEANT4: Present and future (2002) 623–627

  • [22]

    S. Agostinelli et al. (GEANT4), Nucl. Instrum. Meth. A 506, 250-303 (2003)

  • [23]

    M. Ruan, Arbor, a new approach of the particle flow algorithm, 2014. doi: 10.48550/ARXIV.1403.4784

  • [24]

    M. Ruan et al., Eur. Phys. J. C 78, 426 (2018), arXiv:1806.04879

  • [25]

    F. Gaede, S. Aplin, R. Glattauer et al., Journal of Physics: Conference Series 513, 022011 (2014)

  • [26]

    D. Yu, M. Ruan, V. Boudry et al., The European Physical Journal C 77 (2017)

  • [27]

    S. Catani, Y. Dokshitzer, M. Olsson et al., Phys. Lett. B 269, 432-438 (1991)

  • [28]

    A. Hoecker et al., TMVA - Toolkit for Multivariate Data Analysis, (2007) arXiv: physics/0703039

  • [29]

    M. Stone, Cross-validatory choice and assessment of statistical predictions, Journal of the Royal Statistical Society. Series B (Methodological) 36, 111–147 (1974)

  • [30]

    G. Cowan, K. Cranmer, E. Gross et al., The Eur. Phys. J. C 71 (2011)

  • [31]

    Y. Wang, S. Descotes-Genon, O. Deschamps et al., JHEP 12, 135 (2022)