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Abstract: In this paper, we investigate Lyapunov exponents of chaos for both massless and charged particles

around a non-linear electrodynamics black hole, and explore their relationships with a phase transition and a chaos

bound of this black hole. Our results indicate that these exponents can effectively reveal the phase transition. Spe-
cifically, during the phase transition, the violation of the chaos bound occurs solely within a stable branch of a small
black hole. Moreover, regardless of whether the phase transition takes place; the violations are observed.
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I. INTRODUCTION

Phase transitions of black holes (BHs) have always
attracted people's attention. The foundational work in this
direction was initiated by Hawking and Page through
their investigation of the Schwarzschild anti-de Sitter
(AdS) spacetime [1]. They discovered the first-order
phase transition between a large BH and a thermal AdS
vacuum, known as the Hawking-Page phase transition.
When the temperature is below the critical value, the
thermal AdS vacuum phase is more stable; conversely,
when the temperature exceeds the critical value, the BH
phase dominates. In the thermodynamic context of an ex-
tended phase space, where the cosmological constant is
regarded as thermodynamic pressure [2, 3], the phase
structure of AdS BHs is fascinating. In [4], Kubiznak and
Mann examined the thermodynamic properties of the Re-
issner-Nordstrém (RN) AdS BH within the framework of
an extended phase space. It was found that this BH exhib-
its van der Waals-like phase transition behavior, with the
P-V criticality matching the P-T diagram, and the P-T co-
existence line terminating at the phase transition point.
Subsequently, people have conducted in-depth studies on
the phase behavior and P-V criticality of other BHs with-
in the extended phase space framework [5—7], and de-
termined the critical exponents associated with phase
transitions. These critical exponents are found to be in
perfect agreement with those of classical van der Waals
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fluids. For other interesting results on thermodynamic re-
search in extended phase spaces, please refer to [8—23].

In recent years, people have begun to explore the con-
nections between black hole (BH) phase transitions and
observable physical quantities. For instance, the behavi-
ors of physical quantities such as the circular orbit radius
of test particles [24-26], the BH shadow [27, 28], and
quasinormal modes (QNMs) [29-32] can reveal the phase
structure of BHs. The discontinuous changes in these
physical quantities near the phase transition point are ana-
logous to the behavior of order parameters.

A Lyapunov exponent (LE) serves as an indicator to
describe the rate of separation of adjacent trajectories in a
dynamical system. A positive exponent value indicates
that adjacent orbits diverge over time, signifying a chaot-
ic system, while a negative exponent value implies that
adjacent orbits converge over time, describing the stabil-
ity of the system's motion. It has been widely applied in
the study of chaotic dynamics in general relativity
[33—43]. It is not only used to identify the chaotic motion
of particles in BH backgrounds but is also closely related
to fundamental issues such as BH area quantization and
the determination of QNM frequencies. Notably, there is
a close relationship between the exponent and the imagin-
ary part of QNMs [44], and BHs' QNMs are associated
with their phase transitions. Recent research has provided
a new approach for using LEs to detect phase transitions
[45]. In this work, the authors first investigated the rela-
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tionship between the chaotic motion of particles around
the RN AdS BH and its thermodynamic phase transition.
The study revealed that when the phase transition occurs,
the exponent exhibits multi-valuedness, with its branches
corresponding to the phase structure of this BH.
Moreover, the discontinuous change in the exponent can
be regarded as an order parameter, possessing a critical
exponent of 1/2 near the critical point. Subsequent re-
search has extended this work to other spherically sym-
metric spacetimes [46—52].

There are various methods for determining the expo-
nent discussed in previous works, [44, 53-56]. In this pa-
per, we adopt the method proposed by Lei and Ge [57,
58], which determines the exponent by calculating the ei-
genvalues of the Jacobian matrix. We investigate the LEs
of both massless and charged particles orbiting a nonlin-
ear electrodynamics (NLED) BH in the canonical en-
semble and explore their relationships with the phase
transitions of this BH and the chaos bound. The NLED
model, as an extension of the Born-Infeld and Euler-Heis-
enberg electrodynamics, has garnered significant atten-
tion since it was proposed. For example, this model can
explain the early universe expansion [59]; certain NLED
models can serve as alternatives to dark energy to de-
scribe the accelerated expansion of the universe and elim-
inate the Big Bang singularity [60]. The first regular BH
solution of this model was gotten by Bardeen [61]. Sub-
sequently, Bronnikov discovered a class of magnetically
charged regular BHs within the framework of coupling
general relativity with a specific model [62]. Hayward
found a specific model that can describe BH collapse and
evaporation [63]. Balart and Vagenas derived multiple
regular BH solutions with nonlinear electrodynamics
[64], and Yu and Gao derived an exact solution for the
RN BH with nonlinear electromagnetism [65]. For regu-
lar solutions derived from other NLED models, please
refer to [66].

The rest of this paper is organized as follows. In the
next section, we first briefly review the thermodynamics
of the NLED BH. In Section III, we calculate the LEs for
both massless and charged particles orbiting the NLED
BH and explore their relationship with the phase trans-
ition. In the fourth section, we discuss the chaos bound in
this BH. The last section presents our conclusions.

II. THERMODYNAMICS OF NLED BH

The minimal interaction between NLED theory and
gravity is described as

1
s:ii/ﬁﬁ§m+Kw»fm (1)
7T

where

Fuv = VﬂAV - VVA/u 'ﬁ = F/,IVFHV$ (2)
In the above equation, R represents the Ricci scalar, A,
denotes the Maxwell field, and K(y) is a nonlinear func-
tion of y. The corresponding field equations are obtained

by varying the above action.

1
Guv = 7g,uvK[¢] _ZK[w],wa/lF;},

> 3)
dK
where K[yl, = %, the corresponding generalized

Maxwell equations are expressed in the following form

V(K F*")=0. 4)
The spherically symmetric static metric is given by
[65]

1
ds* = —F(r)dt* + ——dr* + r*d&” + r*sin*6d¢*,  (5)
F(r)

The only non-zero component of the Maxwell field tensor
is A, = —¢(r), and y = —2¢"%. Next, we consider the spe-
cific expression K[y]=—y—2A+2 V2a(=y)?, where o is
coupling constant and A is cosmological constant factor.
The corresponding solution to the field equayions is giv-
en by [65]

#)=2 4 ra, ©)
_oo2M F P a?r?
F(r)—l—7+?+ﬁ+20Q—?, (7)

QO and a are the charge, coupling constant, respectively.
And / is the AdS radius, in the extended phase space, the
cosmological constant is treated as pressure, defined as

81 8nl”

Using Eq. (7), the physical properties of the black
hole event horizon can be determined when F(r) = 0, Fig-
ure (1) shows the behavior of the event horizon for differ-
ent values of QO and a. From Figure 1(a), it is seen that the
size of the black hole increases with the increase of the
charge 0. When Q=1.1, a naked singularity appears,
which means that no black hole exists when Q exceeds
the threshold. When Q is smaller than the threshold, two
simple zeros appear, corresponding to two event hori-
zons, as shown in Figure 1(a) for 0 =0.5,0.7,0.9. In Fig-
ure 1(b), it is clear that the size of the black hole is also
affected by the coupling constant o, and and the size of
the black hole increases as a increases.
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(a) a=0.04and M =1
Fig. 1.

The event horizon is located at r = r. and determined
by F(r) =0. M is the mass and can be expressed in terms
of the horizon as

M = r—+ QZ V%_ ale"i) .

> (1+r§+lz+2aQ_ 3

®)

When « = 0, the metric is reduced to the RN AdS metric.
When a = Q =0, the metric recovers the Schwarzschild
metric. The Hawking temperature and entropy are [67]

K 1 /1 3r., 0% 220 o )
T =— = —| — _ L —_ 9
21 477<r+ * R * Ty @) ©)
S =nr. (10)

The Gibbs free energy is

G=M-TS =

1 3
(90> +3r,% +6a0r,” +(a” = S)r, ).
12r, 2 a1

By using Eq. (9), we can demonstrate that the horizon is a
function of the temperature. When a specific temperature
value is correlated with multiple values of the horizon ra-
dius, it serves as a clear indication that the BH experi-
ences multiple distinct phases at that particular temperat-
ure. On the contrary, in the scenario where such a multi-
valued correlation does not exist, it implies that no phase
transition takes place within the BH. It is noteworthy that
the critical temperature for this phase transition is determ-
ined by

oar _ OT

ar,

0, =0.

(12)
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(color online) The variation of the F(r) with respect to the r of the NLED BH

The critical curve in the coupling constant and charge
(O - a) space is shown in Figure 2. The curve divides the
plane into two distinct regions. Region A corresponds to
the parameter range in which the BH undergoes a S/L
phase transition, while in Region B the BH remains in a
stable single phase with no phase transition.

From the above equation, we obtained the analytical
solution at the critical point,

912 —3a2l* + V9a2I6 —3a*[®
54 —42a2]% + 8a*l* ’

_ @'+ N9a?l° - 3a*

Fie =

= , 13
2al% (9 —44%[?) (13)
and
G-aP) 1817 — 6a%* +2V9a2l6 — 3a* 8
o122 474
T, = 27 =21a%1? + 4a’l (14)

3Pr

We order a =0.04, [ =1.00, and get the values at the crit-
ical point as follows

r.. =0.411108, Q.=0.168965, T.=0.272423.

(15)
A graphical representation of the temperature as a func-
tion of the horizon radius is presented in Figure 3. Each
curve depicted in this figure corresponds to a distinct
value of the BH's charge. The figure reveals that no max-
imum values are present, which provides an evidence that
the BH exists in a single phase state under the condition
of Q> Q.. Conversely, when Q < Q., maximum values
become evident in the plot. This phenomenon implies that
the BH undergoes a transition to a multi phase state, with
multiple distinct phases coexisting within its structure.
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(color online) The critical curve in Q—a parameter

To further study the phase transition, we utilized Eq.
(9) and Eq. (11) to establish the relationship between the
Gibbs free energy and the temperature. The correspond-
ing graphical representation is presented in Figure 4. As
clearly illustrated in Figure 4, when Q < Q., multiple
phases emerge. These phases can be precisely categor-
ized into three types: small BH, intermediate BH, and
large BH. It is of great significance to note that these
three BH phases coexist within the temperature range
T, < T < T,. The temperature 7, marks the point where a
first-order phase transition occurs. Conversely, when
0 > Q., the BH system does not undergo any phase trans-
ition.

ITI. LEs AND PHASE TRANSITION OF NLED BH

In this section, we first obtain the LEs of chaos for the
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Fig. 3. (color online) The variation of the temperature with
respect to the horizon radius of the NLED BH, where o = 0.04.

massless and charged particles in the equatorial plane
around the four-dimensional NLED BH, and then ex-
plore their relationships with the phase transition. There
are lots of work to derived the LEs. First, we review the
method developed in [57, 58].

A. LEs

When a particle with charge ¢ moves in a circular or-
bit within the equatorial plane of the BH, its Lagrangian
is

1, 2. .
L=3 (—th + % +r2¢2) —gAf, (16)

d
where X = e and 7 is a proper time. From the Lagrangi-

an and using the definition of generalized momenta
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(b) Q = 0.20 > Q.

Fig. 4. (color online) The variation of the Gibbs free energy with respect to the temperature of the NLED BH, where a = 0.04.
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In the above equation, £ and L are the energy and an-
gular momentum of the particle, respectively. Thus the
Hamiltonian is

1
He e gA P e 2P e, (8)

From the Hamiltonian, the equations of motion are

. OH T+ qgA, . OH . OH
[=—=— , :—720, = = rF7
on, F " e "o T

SRV A
’ or 207 F
A F’
+ (m + ;];2[) _ ﬂ_i(r—z)/} )
. OH 7T¢ 6H
=—=—, g,=———=0.
¢ on, 1’ o 0p
(19)

ll,"

In the above equations, the symbol represents the
derivative with respect to r. The normalization of the
four-velocity of a particle is given by g,,x*x” =7, where
n = 0 describes the case of a massless particle, and = -1
corresponds to the case of a massive particle. Using the
normalization and the metric (5), we get a constrain con-
dition for the charged particle,

m+qA =— \/F(l +7T%F+7Tér_2), (20)

Using this constrain, we obtain radial motion equa-
tions at time ¢,

dr ¥ _ mF?

dr i i +qA,’

dn, 7, ., 1[mFF  (n,+qA)F w0 )F

i i Ty 7Tt+qA,+ F - m+qgA, |
(21)

In order to calculate the LE, we select a phase space
(r,m,) and define a matrix with its matrix elements given

oF: (22)

Ky = —, —
21 on,

= ——, K =
on, or =

dr
For convenience, we have defined Fi= 7 and
dn, . . .
Fy = — . Taking into account the motion of the particle

dt
in an equilibrium orbit, we get 7, =

dn

-0
i . From the

constraint Eq. (20), the matrix elements can be rewritten
as [69]

aFl an
Kjy=—7—=0, Kp= =0,
n=a 2 on,
oF F?
K :671 R T
T F(l4myr?)
OF, , I neEy [FaneFy)
K> =5 " —qA

o\ FUemr 4[FA+mr)

(23)

By calculating the eigenvalues of the above matrix,
we obtain the Lyapunov exponent at the specific radial
position of the circular orbit, which takes the following
form

1

F’ +7r$(r‘2F)’
4

1 +7r$r‘2

GATF

It is clearly that the exponent is affected by the angular
momentum 7, =L, the particle's charge and the BH's
charge.

For a massless particle, its charge is zero. The expo-
nent of chaos for this particle is derived by following a
similar procedure analogous to that described above,
which is

2 " — 124
B lFF +7ré(r ’F)

/12
2 1+ ﬂé r2

24

2
1 F(r?Fy" 1 F|[0*F)]
A= - 25
27 2 4 FGop @)
Obviously, it is not affected by the angular momentum at
this time. For the derivation of the exponent for massless
particles, please refer to the Appendix.

B. Massless particle's case

As demonstrated in [46—51], the LEs exhibit remark-
able capability in revealing the thermodynamic phase
transitions of BHs in AdS spacetimes. Building on this
foundation, we first explore the correlation between the
exponent of chaos for the massless particle and the phase
transition of the NLED BH, and draw Figure 5.

In this figure, when Q > Q,., the exponent is single
valued at all temperatures, indicating the absence of the
phase transition. When Q < Q., the exponent is multival-
ued, and as the temperature rises, it approaches a con-
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Fig. 5.

stant value. Specifically, Figure 5(b) illustrates the tem-
perature dependence of the exponent for Q =0.12. The
exponent is single valued when T < T; and T > T, while
it is multivalued when T < T < T,. Within this temperat-
ure range T < T < T,, two distinct scenarios emerge: For
the small BH branch, the exponent slightly increases and
then declines with rising the temperature. For the large
BH branch, the exponent decreases with increasing the
temperature. In contrast, the intermediate BH branch ex-
hibits an increase in the exponent as the temperature
rises. By comparing Figure 4 and Figure 5, we observe
that the temperature range with multivalued exponents
corresponds precisely to the phase transition region
shown in Figure 4. Notably, for the large BH branch
when T > T,, as the temperature keeps increasing, the ex-
ponent approaches 1.

For Q> Q., the exponent is single valued and ap-
proaches 1 as the temperature increases, as demonstrated
in Figure 5(c). A comparative analysis of Figure 5(b) and
Figure 5(c) reveals that the multivalued nature of the ex-
ponent exclusively emerges when Q < Q., showing re-
markable consistency with the free energy behavior ob-
served in Figure 4. To further elucidate the correlation
between the exponent and phase transition, as well as to

2.0

1.5
— Small BH

— Intermediate B!
Large BH

0.0 0.2 0.4 0.6 0.8 T+

(d) LE vs the horizon radius

(color online) The variation of the LE of chaos for the massless particle with respect to the temperature of the NLED BH.

validate the completeness of our results, Figure 5(d)
presents a graph showing the functional relationship
between the exponent and the horizon radius. The black
dot points describe the case for T =0. We observe that
the exponent value decreases with increasing the charge
at the extremal horizon (the horizon radius located at
T =0). Furthermore, as the horizon radius expands, all
exponents approach 1 regardless of the charge's values.
This establishes that for the massless particle, the LE
serve as an effective probe for detecting the phase trans-
ition.

C. Charged particle's case

Throughout the calculations in this subsection, we fix
L =20.00 and a =0.04, and for a charged particle, we se-
lect n=—1 during the normalization of its four velocity.
The position of its unstable orbit is determined by Eq.
(21). By employing Egs. (7) and (24), we derive the rela-
tionship between the exponent and temperature, which is
plotted in Figure 6. In this analysis, we set ¢ =0.01. The
results presented in this figure exhibit similarities to those
in Figure 5. Specifically, when Q < Q., we observe dis-
tinct behaviors of the exponent of chaos for the charged
particle around different sized BHs. The exponent for the
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where ¢ =0.01.

case of small BHs initially increases slightly and then de-
creases as the temperature T rises, while the exponent for
that of large BHs decreases monotonically with increas-
ing T. In contrast, for case of intermediate BHs, the ex-
ponent increases with the temperature. However, when
0> Q., the exponent is single valued. Moreover, there
exists a terminal temperature at which the exponent ap-
proaches zero, signifying the disappearance of the un-
stable orbit.

Figure 6(b) illustrates the scenario for Q=0.12.
When T, <T < Ty, the exponent is a multivalued func-
tion of T, indicating the coexistence of large, intermedi-
ate and samll BH phases within this temperature range.
Concurrently, in the regime T,, <T <T,, the exponent
also shows two distinct branches corresponding to the in-
termediate and small BH phases. At T =T ,,, the unstable
orbit vanishes as the exponent approaches zero. Further-
more, Figure 6(d) demonstrates the functional relation-
ship between the exponent and the horizon radius.
Through a comparative analysis of Figure 6(b) and Fig-
ure 6(d), we find the following: For small BHs, the expo-
nent is significantly affected by the BH's charge, decreas-
ing with increasing the charge. For large BHs, the influ-
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A
25
2.0
1.5
1.0
0.5 r,

0.2

(d) LE vs the horizon radius

0.4 0.6 0.8

(color online) The variation of the LE of chaos for the charged particle with respect to the temperature of the NLED BH,

ence of the charge becomes negligible. All curves in Fig-
ure 6(d) approach zero at nearly identical critical radii, re-
gardless of the charge's values. This critical radius corres-
ponds to the terminal temperature observed in Figure
6(b). Therefore, the exponent for the charged particle also
reveals the phase transition of the NLED BH.

The exponent of chaos for charged particles is also af-
fected by the particle's charge. As depicted in Figure 7,
we illustrate the relationship between the exponent and
the temperature for different values of the particle's
charge. For the sake of generality, we set
g =0.01,0.04,0.07, which is less than the BH's charge.
Upon analyzing Figure 7, we observe two distinct effects
of the charge on the system. On one hand, although the
overall influence of the charge on the exponent appears to
be relatively minor in a broad sense, there is still a subtle
yet discernible trend. Specifically, the exponent exhibits a
slight decrease as the charge increases, but this change is
well constrained within a certain limit. On the other hand,
the unstable orbital position of the particle undergoes
variations with changes in the charge, which in turn leads
to corresponding alterations in the exponent value. In
conclusion, within the range where g < Q, the exponent
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Fig. 7.  (color online) The variation of the LE of chaos for

the different charged particle with respect to the temperature
of the NLED BH.

remains a valid and reliable probe for detecting the phase
transition in the NLED BH.

D. Crtical exponents

In this subsection, we calculate the critical exponents
of the phase transition for the NLED black hole to invest-
igate the critical behavior of AA. The relationship
between the critical exponent d and A4 is defined as.

AL~ T -T¢l’, (26)
where 4 represents the chaos LE of particles. The horizon
radius near the critical point can be written as

ry =ri(1+e). (27)
Here, r; is the horizon radius at the critical point and
le <« 1].The Hawking temperature 7 can be written as a
function of r,. T(r,) can be rewritten as

T(ry)=Ti(1+&). (28)
Where |¢ < 1], T; is the critical temperature. Near the crit-
ical point, we perform a Taylor expansion of T(r,) and
obtain the following equation

T(r)=T(r)+ (‘LT) (o —rys L (?92;5

or, /. 2 ) (r+_ri)2+0(ri)-

‘ (29)

In the above equation, the subscript ‘c’ denotes the value

at the critical point. At the critical point, (5’%)6 =0,and
thus the second term on the right-hand side of the equa-
tion vanishes. Furthermore, neglecting the higher-order

terms O(r; and using Eq. (27) and Eq. (29), we obtain

, 1Té (02T) '

E =
2 2
2 r; \or?

(30)

Similarly, performing a Taylor expansion of A(r,) in the
vicinity of the critical point r;.

Ary) =A(r)+ (341) (ry = 1) +O(ry).

o). 3D
Neglecting all higher-order terms in the above equation
and using Egs. (28) (30) and (31), we obtain

o1 18*T
Afre) =) = (7) (5 o

The critical exponent ¢ is defined as Ad ~ |T — T¢|°. From
the above equation, we observe that the critical exponent
is § =1/2. In [47], Al= 2, - As is regarded as the order
parameter, where A; and Ag denote the Lyapunov expo-
nents of the large/small black hole phases. We obtain a
consistent result with theirs, namely that the critical expo-
nentis 6§ =1/2.

) 1
) T-T)5. (32

ry=ri

IV. CHAOS BOUND

Recently, Maldacena, Shenker and Stanford put for-
ward that there is a universal upper bound for the LE in
thermal quantum systems with a large number of degrees
of freedom [68],

/1<27TT
S5

(33)
where T represents the temperature of the system. Fur-
thermore, within the context of single-particle systems, it
has been further discovered that the upper bound of the
exponent does not exceed the surface gravity of the BH
[54]. However, recent studies have revealed that, for cer-
tain BHs within specific parameter ranges, the chaos
bound is violated [53, 55, 56, 69—75]. When combined
with the findings presented in the preceding sections, our
results suggest that the exponent can serve as a reliable
indicator of the BH phase transition. Consequently, we
hypothesize the existence of an intrinsic connection
between the chaos bound and the thermodynamic stabil-
ity of BH. Specifically, our analysis indicates that the
chaos bound may be violated during the phase transition,
implying a potential link between chaotic dynamics and
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thermodynamic behavior in this system.

In Figures 8 and 9, we elucidate the relationship
between the LE and the surface gravity (x normalized by
ZL) of the NLED BH, considering both the massless
(Figure 8) and charged (Figure 9) particles, respectively.
It is important to emphasize that: r, in subfigures 8(a)
and 9(a) denotes a critical radius at which the BH under-
goes a phase transition from the small BH phase to the
non-small BH phase, and this corresponds to the temper-
ature T, depicted in Figure 6(b). The left hand side of r,
represents the stable branch of small BHs. 21—« > 0 indic-
ate a violation of the chaos bound. Figure 8 elucidates the
relationship between the LE characterized chaos for the
massless particle and the horizon radius. As can be dis-
cerned from the figure, when the radius is less than r,, a

Y
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0.5

0.0

-0.5

-1.0
(a) @ = 0.12

Fig. 8.

violation of the chaos bound occurs, indicating that the
violation manifests in the spacetime of the stable small
BH phase. Figure 8(b) illustrates the scenario where
0 =0.2> Q.. In this case, the NLED BH does not under-
go a phase transition, yet we still observe a violation of
the chaos bound. Moreover, by comparing it with Figure
8(a), we find that an increase in the BH's charge enlarges
the threshold radius corresponding to the occurrence of
the violation.

Figure 9 reveals the relationship between the LE char-
acterized chaos for the charged particle and the horizon
radius. In Figure 9(a),as the particle's angular mo-
mentum increases, the violation region of the chaos
bound also expands: It is noteworthy that, similar to Fig-
ure 8(a), the violation occurs solely in the spacetime of
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(color online) The variation of the LE of chaos for the massless particle with respect to the horizon radius of the NLED BH. In

Figure 8a, the solid line corresponds to the case of the small BH branch, while the dashed line corresponds to the case of the non-small

BH (intermediate and large BHs) branch.
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(color online) The variation of the LE of chaos for the charged particle with respect to the horizon radius of the NLED BH. In

Figure 9a, the solid line corresponds to the case of the small BH branch, while the dashed line corresponds to the case of the non-small

BH (intermediate and large BHs) branch.
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the stable small BH phase, and the violation region al-
ways remains below the critical value r, at which the
small BH phase transits to other phases. Figure 9(b)
presents the situation where the BH does not experience a
phase transition. We discover that an increase in the an-
gular momentum also enlarges the region of the violation.
Furthermore, by comparing it with Figure 9(a), we find
that an increase in the BH's charge increases the threshold
radius corresponding to the violation.

Figures 8 and 9 collectively demonstrate that the viol-
ation of the chaos bound occurs regardless of whether the
BH undergoes a phase transition. However, it is import-
ant to note that such a violation occurs only in the space-
time of small BHs with a thermodynamically stable
phase.

V. CONCLUSIONS

In this paper, we studied the LEs of chaotic motion
for both massless and charged particles orbiting around
the NLED BH, and discussed their connections with the
phase transition and the chaos bound of this BH. The
findings demonstrate that these exponents can effectively
detect the phase transition.

In [76], the authors have discovered that the violation
of the chaos bound occurs within the stable phase of the
BH. Our study further reveals that when a phase trans-
ition takes place, the violation occurs in the stable branch
of the small BH. Moreover, regardless of whether a phase
transition occurs, the phenomenon of the violation mani-
fest itself. Simultaneously, during the phase transition
process, there exists a critical value for the horizon. Only
when the horizon is smaller than this critical value the vi-
olation of the chaos bound occur. Additionally, an in-
crease in the angular momentum of the charged particle
expands the region where the chaos bound is violated.

A. Lyapunov exponent of massless particles

When a test particle moves in a circle around the
equator of the black hole, the Lagrangian is

1
L=

: (34)

(—Ft'2 + e + r2¢'52)
F b

Using 7, = we get the generalized momentum as fol-

ox’
lows:
oL . oL 7
ﬂ[—g——Ft——E, ﬂr_ﬁ_ﬁ’
oL .
Ty = i ro=L. (35)

There E and L denote the energy and angular momentum

of the particle. Thus the Hamiltonian of the particle is
1 -
H= ﬁ(—ﬂtz+ﬂ'3F2+ﬂ§r ’F). (36)

From the Hamiltonian, the motion equations of the
particle are gotten, which are:

. O0H m OH 0H
f=—=——, :—720, = = rF’
or, T F T Tl "Tom
L OH _ [, mF
ﬂr:_E:_E 7TrF+ }72 _7T¢r (r) s
. oH Ty 0H
JOH _mi sl OH 37
67T¢ 2 4 a¢ ( )

Here, we again apply the normalization condition of the
particle's four-velocity, where n=0 corresponds to the
case of massless particles, yielding the constraint condi-
tion.

(38)

= \/F(n%N+7rér‘2).

Similarly, we derive the relationship between the radial
coordinate and time for the massless particle.

dr i . F?
d i m
, ) ;2.4 2y
dn, T 1 n*FF Jr7rtF _mgr ' ()'F 39
a2 b/ F b

For massless particle, Eq. (39) is reformulated by using
constraint Eq. (38) and becomes

. F?
Fl=————,
\/F(m?F +m3r=?)
2 FZ ’ 7T2 r—2F ’
Fy= 7 () o F) (40)

2\/F(m2F +myr=2) 2, /F(n'%F+7T§r‘2).

Considering the circular motion of the particle, its
constraint condition satisfies:

_dn,
T odt

(41)

T,

For a massless particle, when n =0, it naturally reduces
to the photon sphere case, and we determine its orbit by
F, =0. Using Eq. (22) and (40), derive the Jacobian mat-
rix in phase space (r,7,) and compute its eigenvalues to
obtain the Lyapunov exponent. The elements of the Jac-
obian matrix are as follows
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oF,

= = O’
"o
OF, F?
K, :67 =,
Tr ) F(m5r2)
o O mE [ FY)
21 — - >
O 2\ JFmr? 4[F@r)"”
OF
=22 2, (42)
on,

The chaos exponent of the massless particle can be

obtained by calculating the eigenvalues of the matrix,
which is:

., LFG2Fy 1F[02F)]
i R A )

ACKNOWLEDGMENTS

We sincerely thank the reviewers for their valuable
comments and constructive suggestions, which have
greatly improved this work.

References

(8]
(]
[10]

[11]
[12]

[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
21]
[22]

(23]
[24]

(23]

S.W. Hawking and D.N. Page, Commun. Math. Phys. 87,
577 (1983)

D. Kastor, S. Ray and J. Traschen, Class. Quant. Grav. 26,
195011 (2009)

D. Kastor, S. Ray and J. Traschen, Class. Quant. Grav. 27,
235014 (2010)

D. Kubiznak and R.B. Mann, JHEP 1207, 033 (2012)

R.G. Cai, L.M. Cao, L. Li and R.Q. Yang, JHEP 09, 005
(2013)

S.W. Wei and Y.X. Liu, Phys. Rev. Lett-115, 111302
(2015)

S.W. Wei, Y.X. Liu and R.B. Mann, Phys. Rev. Lett 123,
071103 (2019)

S.W. Wei and Y.X. Liu, Phys. Rev. D 87, 044104 (2013)
S.W. Wei and Y.X. Liu, Phys. Rev. D 90, 044057 (2014)

S. Gunasekaran, R.B. Mann and D. Kubiznak, JHEP 11,
110 (2012)

W. Xu and L. Zhao, Phys. Lett. B 736, 214 (2014)

A M. Frassino, D.Kubiznak, R.B. Mann and F. Simovic,
JHEP 1409, 080 (2014)

N. Altamirano, D. Kubiznak and R.B. Mann, Phys. Rev. D
88, 101502 (2013)

N. Altamirano, D. Kubiznak, R.B. Mann and Z.
Sherkatghanad, Class. Quant. Grav. 31, 042001 (2014)
M.H. Dehghani, S. Kamrani and A. Sheykhi, Phys. Rev. D
90, 104020 (2014)

B.P. Dolan, A. Kostouki, D.Kubiznak and R.B. Mann,
Class. Quant. Grav. 31, 242001 (2014)

E. Caceres, P.H. Nguyen and J.F. Pedraza, JHEP 09, 184
(2015)

S. Chakraborty and T.Padmanabhan, Phys. Rev. D 92,
104011 (2015)

R.A. Hennigar, R.B. Mann and E. Tjoa, Phys. Rev. Lett.
118, 021301 (2017)

D. Momeni, M. Faizal, K. Myrzakulov and R. Myrzakulov,
Phys. Lett. B 765, 154 (2017)

J.P.S. Lemos and O.B. Zaslavskii, Phys. Lett. B 786, 296
(2018)

J.F. Pedraza, W. Sybesma and M.R. Visser, Class. Quant.
Grav. 36, 054002 (2019)

P. Wang, H. Wu and H. Yang, JCAP 04, 052 (2019)

M. Zhang, S.Z. Han, J. Jiang and W.B. Liu, Phys. Rev. D
99, 065016 (2019)

S.W. Wei and Y .X. Liu, Phys. Rev. D 97, 104027 (2018)

[26] S.W. Wei, Y.X. Liu and Y.Q. Wang, Phys. Rev. D 99,
044013 (2019)

[27] M. Zhang and M. Guo, Eur. Phys. J. C 80, 790 (2020)

[28] | A. Belhaj, L. Chakhchi, H. E1 Moumni, J. Khalloufi and K.
Masmar, Int. J. Mod. Phys. A 35, 2050170 (2020)

[29] Y.Liu, D.C. Zou and B. Wang, JHEP 09, 179 (2014)

[30] " S. Mahapatra, JHEP 04, 142 (2016)

[31] M. Chabab, H. El Moumni, S. Iraoui and K. Masmar, Eur.
Phys. J. C 76, 676 (2016)

[32] M. Zhang, C.M. Zhang, D.C. Zou and R.H. Yue, Chin.
Phys. C 45, 045105 (2021)

[33] Y. Sota, S. Suzuki and K.i. Maeda, Class. Quant. Grav. 13,
1241 (1996)

[34] N.Kan and B. Gwak, Phys. Rev. D 105, 026006 (2022)

[35] B. Gwak, N. Kan, B.H. Lee and H. Lee, JHEP 09, 026
(2022)

[36] W. Hanan and E. Radu, Mod. Phys. Lett. A 22, 399 (2007)

[37] J.R. Gair, C. Li and 1. Mandel, Phys. Rev. D 77, 024035
(2008)

[38] A.M. Al Zahrani, V.P. Frolov and A.A. Shoom, Phys. Rev.
D 87, 084043 (2013)

[39] L. Polcar and O. Semerak, Phys. Rev. D 100, 103013
(2019)

[40] M. Wang, S. Chen and J. Jing, Eur. Phys. J. C 77, 208
(2017)

[41] S. Chen, M. Wang and J. Jing, JHEP 09, 082 (2016)

[42] F.Lu,J. Tao and P. Wang, JCAP 12, 036 (2018)

[43] K. Li, D.Z. Ma and ZM. Xu, Phys. Lett. B 860, 139164
(2025)

[44] V. Cardoso, A.S. Miranda, E. Beri, H. Witek and V.T.
Zanchin, Phys. Rev. D 79, 064016 (2009)

[45] X.Guo, Y. Lu, B. Mu and P. Wang, JHEP 08, 153 (2022)

[46] S.J. Yang, J. Tao, B.R. Mu and A.Y. He, JCAP 07, 045
(2023)

[47] X.Lyu,J. Tao and P. Wang, Eur. Phys. J. C 84, 974 (2023)

[48] A.N. Kumara, S. Punacha and M.S. Ali, JCAP 84, 061
(2024)

[49] Y.Z.Du, HF.Li, L.B. Ma and Q. Gu, e-Print: 2403.20083.

[50] B. Shukla, P.P Das, D. Dudal and S. Mahapatra, Phys. Rev.
D 110, 024068 (2024)

[51] NJ. Gogoi, S. Acharjee and P. Phukon, Eur. Phys. J. C 84,
1144 (2024)

[52] Y.Z.Du, HF. Li, Y.B. Ma and Q. Gu, Eur. Phys. J. C 85, 1
(2025)

[53] N.Kan and B. Gwak, Phys. Rev. D 105, 026006 (2022)

[54] K. Hashimoto and N. Tanahashi, Phys. Rev. D 95, 024007


https://doi.org/10.1007/BF01208266
https://doi.org/10.1007/BF01208266
https://doi.org/10.1007/BF01208266
https://doi.org/10.1007/BF01208266
https://doi.org/10.1007/BF01208266
https://doi.org/10.1007/BF01208266
https://doi.org/10.1007/BF01208266
https://doi.org/10.1007/BF01208266
https://doi.org/10.1007/BF01208266
https://doi.org/10.1088/0264-9381/26/19/195011
https://doi.org/10.1088/0264-9381/26/19/195011
https://doi.org/10.1088/0264-9381/26/19/195011
https://doi.org/10.1088/0264-9381/26/19/195011
https://doi.org/10.1088/0264-9381/26/19/195011
https://doi.org/10.1088/0264-9381/26/19/195011
https://doi.org/10.1088/0264-9381/26/19/195011
https://doi.org/10.1088/0264-9381/26/19/195011
https://doi.org/10.1088/0264-9381/26/19/195011
https://doi.org/10.1088/0264-9381/27/23/235014
https://doi.org/10.1088/0264-9381/27/23/235014
https://doi.org/10.1088/0264-9381/27/23/235014
https://doi.org/10.1088/0264-9381/27/23/235014
https://doi.org/10.1088/0264-9381/27/23/235014
https://doi.org/10.1088/0264-9381/27/23/235014
https://doi.org/10.1088/0264-9381/27/23/235014
https://doi.org/10.1088/0264-9381/27/23/235014
https://doi.org/10.1088/0264-9381/27/23/235014
https://doi.org/10.1103/PhysRevLett.115.111302
https://doi.org/10.1103/PhysRevLett.115.111302
https://doi.org/10.1103/PhysRevLett.115.111302
https://doi.org/10.1103/PhysRevLett.115.111302
https://doi.org/10.1103/PhysRevLett.115.111302
https://doi.org/10.1103/PhysRevLett.115.111302
https://doi.org/10.1103/PhysRevLett.115.111302
https://doi.org/10.1103/PhysRevLett.115.111302
https://doi.org/10.1103/PhysRevLett.115.111302
https://doi.org/10.1103/PhysRevLett.123.071103
https://doi.org/10.1103/PhysRevLett.123.071103
https://doi.org/10.1103/PhysRevLett.123.071103
https://doi.org/10.1103/PhysRevLett.123.071103
https://doi.org/10.1103/PhysRevLett.123.071103
https://doi.org/10.1103/PhysRevLett.123.071103
https://doi.org/10.1103/PhysRevLett.123.071103
https://doi.org/10.1103/PhysRevLett.123.071103
https://doi.org/10.1103/PhysRevLett.123.071103
https://doi.org/10.1103/PhysRevD.90.044057
https://doi.org/10.1103/PhysRevD.90.044057
https://doi.org/10.1103/PhysRevD.90.044057
https://doi.org/10.1103/PhysRevD.90.044057
https://doi.org/10.1103/PhysRevD.90.044057
https://doi.org/10.1103/PhysRevD.90.044057
https://doi.org/10.1103/PhysRevD.90.044057
https://doi.org/10.1103/PhysRevD.90.044057
https://doi.org/10.1103/PhysRevD.90.044057
https://doi.org/10.1103/PhysRevD.90.044057
https://doi.org/10.1016/j.physletb.2014.07.019
https://doi.org/10.1016/j.physletb.2014.07.019
https://doi.org/10.1016/j.physletb.2014.07.019
https://doi.org/10.1016/j.physletb.2014.07.019
https://doi.org/10.1016/j.physletb.2014.07.019
https://doi.org/10.1016/j.physletb.2014.07.019
https://doi.org/10.1016/j.physletb.2014.07.019
https://doi.org/10.1016/j.physletb.2014.07.019
https://doi.org/10.1016/j.physletb.2014.07.019
https://doi.org/10.1016/j.physletb.2014.07.019
https://doi.org/10.1103/PhysRevD.88.101502
https://doi.org/10.1103/PhysRevD.88.101502
https://doi.org/10.1103/PhysRevD.88.101502
https://doi.org/10.1103/PhysRevD.88.101502
https://doi.org/10.1103/PhysRevD.88.101502
https://doi.org/10.1103/PhysRevD.88.101502
https://doi.org/10.1103/PhysRevD.88.101502
https://doi.org/10.1103/PhysRevD.88.101502
https://doi.org/10.1103/PhysRevD.88.101502
https://doi.org/10.1088/0264-9381/31/4/042001
https://doi.org/10.1088/0264-9381/31/4/042001
https://doi.org/10.1088/0264-9381/31/4/042001
https://doi.org/10.1088/0264-9381/31/4/042001
https://doi.org/10.1088/0264-9381/31/4/042001
https://doi.org/10.1088/0264-9381/31/4/042001
https://doi.org/10.1088/0264-9381/31/4/042001
https://doi.org/10.1088/0264-9381/31/4/042001
https://doi.org/10.1088/0264-9381/31/4/042001
https://doi.org/10.1088/0264-9381/31/4/042001
https://doi.org/10.1103/PhysRevD.90.104020
https://doi.org/10.1103/PhysRevD.90.104020
https://doi.org/10.1103/PhysRevD.90.104020
https://doi.org/10.1103/PhysRevD.90.104020
https://doi.org/10.1103/PhysRevD.90.104020
https://doi.org/10.1103/PhysRevD.90.104020
https://doi.org/10.1103/PhysRevD.90.104020
https://doi.org/10.1103/PhysRevD.90.104020
https://doi.org/10.1103/PhysRevD.90.104020
https://doi.org/10.1088/0264-9381/31/24/242001
https://doi.org/10.1088/0264-9381/31/24/242001
https://doi.org/10.1088/0264-9381/31/24/242001
https://doi.org/10.1088/0264-9381/31/24/242001
https://doi.org/10.1088/0264-9381/31/24/242001
https://doi.org/10.1088/0264-9381/31/24/242001
https://doi.org/10.1088/0264-9381/31/24/242001
https://doi.org/10.1088/0264-9381/31/24/242001
https://doi.org/10.1088/0264-9381/31/24/242001
https://doi.org/10.1088/0264-9381/31/24/242001
https://doi.org/10.1103/PhysRevD.92.104011
https://doi.org/10.1103/PhysRevD.92.104011
https://doi.org/10.1103/PhysRevD.92.104011
https://doi.org/10.1103/PhysRevD.92.104011
https://doi.org/10.1103/PhysRevD.92.104011
https://doi.org/10.1103/PhysRevD.92.104011
https://doi.org/10.1103/PhysRevD.92.104011
https://doi.org/10.1103/PhysRevD.92.104011
https://doi.org/10.1103/PhysRevD.92.104011
https://doi.org/10.1103/PhysRevLett.118.021301
https://doi.org/10.1103/PhysRevLett.118.021301
https://doi.org/10.1103/PhysRevLett.118.021301
https://doi.org/10.1103/PhysRevLett.118.021301
https://doi.org/10.1103/PhysRevLett.118.021301
https://doi.org/10.1103/PhysRevLett.118.021301
https://doi.org/10.1103/PhysRevLett.118.021301
https://doi.org/10.1103/PhysRevLett.118.021301
https://doi.org/10.1103/PhysRevLett.118.021301
https://doi.org/10.1016/j.physletb.2016.12.006
https://doi.org/10.1016/j.physletb.2016.12.006
https://doi.org/10.1016/j.physletb.2016.12.006
https://doi.org/10.1016/j.physletb.2016.12.006
https://doi.org/10.1016/j.physletb.2016.12.006
https://doi.org/10.1016/j.physletb.2016.12.006
https://doi.org/10.1016/j.physletb.2016.12.006
https://doi.org/10.1016/j.physletb.2016.12.006
https://doi.org/10.1016/j.physletb.2016.12.006
https://doi.org/10.1016/j.physletb.2016.12.006
https://doi.org/10.1016/j.physletb.2018.08.075
https://doi.org/10.1016/j.physletb.2018.08.075
https://doi.org/10.1016/j.physletb.2018.08.075
https://doi.org/10.1016/j.physletb.2018.08.075
https://doi.org/10.1016/j.physletb.2018.08.075
https://doi.org/10.1016/j.physletb.2018.08.075
https://doi.org/10.1016/j.physletb.2018.08.075
https://doi.org/10.1016/j.physletb.2018.08.075
https://doi.org/10.1016/j.physletb.2018.08.075
https://doi.org/10.1088/1361-6382/ab0094
https://doi.org/10.1088/1361-6382/ab0094
https://doi.org/10.1088/1361-6382/ab0094
https://doi.org/10.1088/1361-6382/ab0094
https://doi.org/10.1088/1361-6382/ab0094
https://doi.org/10.1088/1361-6382/ab0094
https://doi.org/10.1088/1361-6382/ab0094
https://doi.org/10.1088/1361-6382/ab0094
https://doi.org/10.1088/1361-6382/ab0094
https://doi.org/10.1088/1361-6382/ab0094
https://doi.org/10.1088/1361-6382/ab0094
https://doi.org/10.1103/PhysRevD.99.065016
https://doi.org/10.1103/PhysRevD.99.065016
https://doi.org/10.1103/PhysRevD.99.065016
https://doi.org/10.1103/PhysRevD.99.065016
https://doi.org/10.1103/PhysRevD.99.065016
https://doi.org/10.1103/PhysRevD.99.065016
https://doi.org/10.1103/PhysRevD.99.065016
https://doi.org/10.1103/PhysRevD.99.065016
https://doi.org/10.1103/PhysRevD.99.065016
https://doi.org/10.1103/PhysRevD.97.104027
https://doi.org/10.1103/PhysRevD.97.104027
https://doi.org/10.1103/PhysRevD.97.104027
https://doi.org/10.1103/PhysRevD.97.104027
https://doi.org/10.1103/PhysRevD.97.104027
https://doi.org/10.1103/PhysRevD.97.104027
https://doi.org/10.1103/PhysRevD.97.104027
https://doi.org/10.1103/PhysRevD.97.104027
https://doi.org/10.1103/PhysRevD.97.104027
https://doi.org/10.1103/PhysRevD.97.104027
https://doi.org/10.1103/PhysRevD.99.044013
https://doi.org/10.1103/PhysRevD.99.044013
https://doi.org/10.1103/PhysRevD.99.044013
https://doi.org/10.1103/PhysRevD.99.044013
https://doi.org/10.1103/PhysRevD.99.044013
https://doi.org/10.1103/PhysRevD.99.044013
https://doi.org/10.1103/PhysRevD.99.044013
https://doi.org/10.1103/PhysRevD.99.044013
https://doi.org/10.1103/PhysRevD.99.044013
https://doi.org/10.1140/epjc/s10052-020-8389-5
https://doi.org/10.1140/epjc/s10052-020-8389-5
https://doi.org/10.1140/epjc/s10052-020-8389-5
https://doi.org/10.1140/epjc/s10052-020-8389-5
https://doi.org/10.1140/epjc/s10052-020-8389-5
https://doi.org/10.1140/epjc/s10052-020-8389-5
https://doi.org/10.1140/epjc/s10052-020-8389-5
https://doi.org/10.1140/epjc/s10052-020-8389-5
https://doi.org/10.1140/epjc/s10052-020-8389-5
https://doi.org/10.1140/epjc/s10052-020-8389-5
https://doi.org/10.1142/S0217751X20501705
https://doi.org/10.1142/S0217751X20501705
https://doi.org/10.1142/S0217751X20501705
https://doi.org/10.1142/S0217751X20501705
https://doi.org/10.1142/S0217751X20501705
https://doi.org/10.1142/S0217751X20501705
https://doi.org/10.1142/S0217751X20501705
https://doi.org/10.1142/S0217751X20501705
https://doi.org/10.1142/S0217751X20501705
https://doi.org/10.1142/S0217751X20501705
https://doi.org/10.1140/epjc/s10052-016-4518-6
https://doi.org/10.1140/epjc/s10052-016-4518-6
https://doi.org/10.1140/epjc/s10052-016-4518-6
https://doi.org/10.1140/epjc/s10052-016-4518-6
https://doi.org/10.1140/epjc/s10052-016-4518-6
https://doi.org/10.1140/epjc/s10052-016-4518-6
https://doi.org/10.1140/epjc/s10052-016-4518-6
https://doi.org/10.1140/epjc/s10052-016-4518-6
https://doi.org/10.1140/epjc/s10052-016-4518-6
https://doi.org/10.1140/epjc/s10052-016-4518-6
https://doi.org/10.1140/epjc/s10052-016-4518-6
https://doi.org/10.1088/1674-1137/abe19a
https://doi.org/10.1088/1674-1137/abe19a
https://doi.org/10.1088/1674-1137/abe19a
https://doi.org/10.1088/1674-1137/abe19a
https://doi.org/10.1088/1674-1137/abe19a
https://doi.org/10.1088/1674-1137/abe19a
https://doi.org/10.1088/1674-1137/abe19a
https://doi.org/10.1088/1674-1137/abe19a
https://doi.org/10.1088/1674-1137/abe19a
https://doi.org/10.1088/1674-1137/abe19a
https://doi.org/10.1088/1674-1137/abe19a
https://doi.org/10.1088/0264-9381/13/5/034
https://doi.org/10.1088/0264-9381/13/5/034
https://doi.org/10.1088/0264-9381/13/5/034
https://doi.org/10.1088/0264-9381/13/5/034
https://doi.org/10.1088/0264-9381/13/5/034
https://doi.org/10.1088/0264-9381/13/5/034
https://doi.org/10.1088/0264-9381/13/5/034
https://doi.org/10.1088/0264-9381/13/5/034
https://doi.org/10.1088/0264-9381/13/5/034
https://doi.org/10.1103/PhysRevD.105.026006
https://doi.org/10.1103/PhysRevD.105.026006
https://doi.org/10.1103/PhysRevD.105.026006
https://doi.org/10.1103/PhysRevD.105.026006
https://doi.org/10.1103/PhysRevD.105.026006
https://doi.org/10.1103/PhysRevD.105.026006
https://doi.org/10.1103/PhysRevD.105.026006
https://doi.org/10.1103/PhysRevD.105.026006
https://doi.org/10.1103/PhysRevD.105.026006
https://doi.org/10.1103/PhysRevD.105.026006
https://doi.org/10.1142/S0217732307022815
https://doi.org/10.1142/S0217732307022815
https://doi.org/10.1142/S0217732307022815
https://doi.org/10.1142/S0217732307022815
https://doi.org/10.1142/S0217732307022815
https://doi.org/10.1142/S0217732307022815
https://doi.org/10.1142/S0217732307022815
https://doi.org/10.1142/S0217732307022815
https://doi.org/10.1142/S0217732307022815
https://doi.org/10.1142/S0217732307022815
https://doi.org/10.1103/PhysRevD.77.024035
https://doi.org/10.1103/PhysRevD.77.024035
https://doi.org/10.1103/PhysRevD.77.024035
https://doi.org/10.1103/PhysRevD.77.024035
https://doi.org/10.1103/PhysRevD.77.024035
https://doi.org/10.1103/PhysRevD.77.024035
https://doi.org/10.1103/PhysRevD.77.024035
https://doi.org/10.1103/PhysRevD.77.024035
https://doi.org/10.1103/PhysRevD.77.024035
https://doi.org/10.1103/PhysRevD.87.084043
https://doi.org/10.1103/PhysRevD.87.084043
https://doi.org/10.1103/PhysRevD.87.084043
https://doi.org/10.1103/PhysRevD.87.084043
https://doi.org/10.1103/PhysRevD.87.084043
https://doi.org/10.1103/PhysRevD.87.084043
https://doi.org/10.1103/PhysRevD.87.084043
https://doi.org/10.1103/PhysRevD.87.084043
https://doi.org/10.1103/PhysRevD.87.084043
https://doi.org/10.1103/PhysRevD.87.084043
https://doi.org/10.1103/PhysRevD.87.084043
https://doi.org/10.1103/PhysRevD.100.103013
https://doi.org/10.1103/PhysRevD.100.103013
https://doi.org/10.1103/PhysRevD.100.103013
https://doi.org/10.1103/PhysRevD.100.103013
https://doi.org/10.1103/PhysRevD.100.103013
https://doi.org/10.1103/PhysRevD.100.103013
https://doi.org/10.1103/PhysRevD.100.103013
https://doi.org/10.1103/PhysRevD.100.103013
https://doi.org/10.1103/PhysRevD.100.103013
https://doi.org/10.1140/epjc/s10052-017-4792-y
https://doi.org/10.1140/epjc/s10052-017-4792-y
https://doi.org/10.1140/epjc/s10052-017-4792-y
https://doi.org/10.1140/epjc/s10052-017-4792-y
https://doi.org/10.1140/epjc/s10052-017-4792-y
https://doi.org/10.1140/epjc/s10052-017-4792-y
https://doi.org/10.1140/epjc/s10052-017-4792-y
https://doi.org/10.1140/epjc/s10052-017-4792-y
https://doi.org/10.1140/epjc/s10052-017-4792-y
https://doi.org/10.1016/j.physletb.2024.139164
https://doi.org/10.1016/j.physletb.2024.139164
https://doi.org/10.1016/j.physletb.2024.139164
https://doi.org/10.1016/j.physletb.2024.139164
https://doi.org/10.1016/j.physletb.2024.139164
https://doi.org/10.1016/j.physletb.2024.139164
https://doi.org/10.1016/j.physletb.2024.139164
https://doi.org/10.1016/j.physletb.2024.139164
https://doi.org/10.1016/j.physletb.2024.139164
https://doi.org/10.1103/PhysRevD.79.064016
https://doi.org/10.1103/PhysRevD.79.064016
https://doi.org/10.1103/PhysRevD.79.064016
https://doi.org/10.1103/PhysRevD.79.064016
https://doi.org/10.1103/PhysRevD.79.064016
https://doi.org/10.1103/PhysRevD.79.064016
https://doi.org/10.1103/PhysRevD.79.064016
https://doi.org/10.1103/PhysRevD.79.064016
https://doi.org/10.1103/PhysRevD.79.064016
https://doi.org/10.1103/PhysRevD.79.064016
https://doi.org/10.1103/PhysRevD.110.024068
https://doi.org/10.1103/PhysRevD.110.024068
https://doi.org/10.1103/PhysRevD.110.024068
https://doi.org/10.1103/PhysRevD.110.024068
https://doi.org/10.1103/PhysRevD.110.024068
https://doi.org/10.1103/PhysRevD.110.024068
https://doi.org/10.1103/PhysRevD.110.024068
https://doi.org/10.1103/PhysRevD.110.024068
https://doi.org/10.1103/PhysRevD.110.024068
https://doi.org/10.1103/PhysRevD.110.024068
https://doi.org/10.1103/PhysRevD.110.024068
https://doi.org/10.1140/epjc/s10052-024-13520-z
https://doi.org/10.1140/epjc/s10052-024-13520-z
https://doi.org/10.1140/epjc/s10052-024-13520-z
https://doi.org/10.1140/epjc/s10052-024-13520-z
https://doi.org/10.1140/epjc/s10052-024-13520-z
https://doi.org/10.1140/epjc/s10052-024-13520-z
https://doi.org/10.1140/epjc/s10052-024-13520-z
https://doi.org/10.1140/epjc/s10052-024-13520-z
https://doi.org/10.1140/epjc/s10052-024-13520-z
https://doi.org/10.1140/epjc/s10052-024-13679-5
https://doi.org/10.1140/epjc/s10052-024-13679-5
https://doi.org/10.1140/epjc/s10052-024-13679-5
https://doi.org/10.1140/epjc/s10052-024-13679-5
https://doi.org/10.1140/epjc/s10052-024-13679-5
https://doi.org/10.1140/epjc/s10052-024-13679-5
https://doi.org/10.1140/epjc/s10052-024-13679-5
https://doi.org/10.1140/epjc/s10052-024-13679-5
https://doi.org/10.1140/epjc/s10052-024-13679-5
https://doi.org/10.1103/PhysRevD.105.026006
https://doi.org/10.1103/PhysRevD.105.026006
https://doi.org/10.1103/PhysRevD.105.026006
https://doi.org/10.1103/PhysRevD.105.026006
https://doi.org/10.1103/PhysRevD.105.026006
https://doi.org/10.1103/PhysRevD.105.026006
https://doi.org/10.1103/PhysRevD.105.026006
https://doi.org/10.1103/PhysRevD.105.026006
https://doi.org/10.1103/PhysRevD.105.026006
https://doi.org/10.1103/PhysRevD.105.026006
https://doi.org/10.1103/PhysRevD.95.024007
https://doi.org/10.1103/PhysRevD.95.024007
https://doi.org/10.1103/PhysRevD.95.024007
https://doi.org/10.1103/PhysRevD.95.024007
https://doi.org/10.1103/PhysRevD.95.024007
https://doi.org/10.1103/PhysRevD.95.024007

Chuanhong Gao, Chuang Yang, Tetvui Chong ef al.

Chin. Phys. C 50, (2026)

[55]
[56]

[57]

[58]
[59]

[60]
[61]
[62]
[63]
[64]

[65]

(2017)

Q.Q. Zhao, Y.Z. Li and H. Lu, Phys. Rev. D 98, 12 (2018)
B. Gwak, N. Kan, B.H. Lee and H. Lee, JHEP 09, 026
(2022)

Y.Q. Lei, X.H. Ge and C. Ran, Phys. Rev. D 104, 046020
(2021)

Y.Q. Lei and X.H. Ge, Phys. Rev. D 105, 084011 (2022)
C.S. Camara, M.R. de Garcia Maia, J.C. Carvalho and
J.A.S. Lima, Phys. Rev. D 69, 123504 (2004)

E. Elizalde, J.E. Lidsey, S. Nojiri, and S.D. Odintsov, Phys,
Lett. B 574, 1 (2003)

J.M. Bardeen, in Conference Proceedings fo GR5(Tbilisi,
URSS, 1968), p.174

K.A. Bronnikov, Phys. Rev. D 63, 044005 (2001)

S.A. Hayward, Phys. Rev. Lett 96, 031103 (2006)

L. Balart and E.C. Vagenas, Phys. Rev. D 90, 124045
(2014)

S. Yu and CJ. Gao, Int. J. Mod. Phys. D 29, 2050032
(2020)

[66]
[67]

[68]
[69]

[70]
(71]

[72]

(73]
[74]

[75]

[76]

Z.Y. Fan and X. Wang, Phys. Rev. D 94, 124027 (2016)

A. Jawad, S. Chaudhary, K. Jusufi, Eur. Phys. J. C 82, 655
(2022)

J. Maldacena, S.H. Shenker and D. Stanford, JHEP 08, 106
(2016)

C.H. Gao, D.Y. Chen, C.Y. Yu and P. Wang, Phys. Lett. B
833, 137343 (2022)

D.Y. Chen and C.H. Gao, New J. Phys. 24, 123014 (2022)
S. Dalui, B.R. Majhi and P. Mishra, Phys. Lett. B 788, 486
(2019)

S. Dalui, B.. Majhi and P. Mishra, Int. J. Mod. Phys. A 35,
2050081 (2020)

J. Park and B. Gwak, JHEP 04, 023 (2024)

S. Jeong, B.H. Lee and W. Lee, Phys. Rev. D 107, 104037
(2023)

J. Xie, J. Wang and B. Tang, Phys. Dark. Univ 42, 101271
(2023)

Y.Q. Lei, X.H. Ge and S. Dalui, Phys. Lett. B 856, 138929
(2024)


https://doi.org/10.1103/PhysRevD.95.024007
https://doi.org/10.1103/PhysRevD.95.024007
https://doi.org/10.1103/PhysRevD.95.024007
https://doi.org/10.1103/PhysRevD.104.046020
https://doi.org/10.1103/PhysRevD.104.046020
https://doi.org/10.1103/PhysRevD.104.046020
https://doi.org/10.1103/PhysRevD.104.046020
https://doi.org/10.1103/PhysRevD.104.046020
https://doi.org/10.1103/PhysRevD.104.046020
https://doi.org/10.1103/PhysRevD.104.046020
https://doi.org/10.1103/PhysRevD.104.046020
https://doi.org/10.1103/PhysRevD.104.046020
https://doi.org/10.1103/PhysRevD.105.084011
https://doi.org/10.1103/PhysRevD.105.084011
https://doi.org/10.1103/PhysRevD.105.084011
https://doi.org/10.1103/PhysRevD.105.084011
https://doi.org/10.1103/PhysRevD.105.084011
https://doi.org/10.1103/PhysRevD.105.084011
https://doi.org/10.1103/PhysRevD.105.084011
https://doi.org/10.1103/PhysRevD.105.084011
https://doi.org/10.1103/PhysRevD.105.084011
https://doi.org/10.1103/PhysRevD.105.084011
https://doi.org/10.1103/PhysRevD.69.123504
https://doi.org/10.1103/PhysRevD.69.123504
https://doi.org/10.1103/PhysRevD.69.123504
https://doi.org/10.1103/PhysRevD.69.123504
https://doi.org/10.1103/PhysRevD.69.123504
https://doi.org/10.1103/PhysRevD.69.123504
https://doi.org/10.1103/PhysRevD.69.123504
https://doi.org/10.1103/PhysRevD.69.123504
https://doi.org/10.1103/PhysRevD.69.123504
https://doi.org/10.1103/PhysRevD.69.123504
https://doi.org/10.1016/j.physletb.2003.08.074
https://doi.org/10.1016/j.physletb.2003.08.074
https://doi.org/10.1016/j.physletb.2003.08.074
https://doi.org/10.1016/j.physletb.2003.08.074
https://doi.org/10.1016/j.physletb.2003.08.074
https://doi.org/10.1016/j.physletb.2003.08.074
https://doi.org/10.1016/j.physletb.2003.08.074
https://doi.org/10.1016/j.physletb.2003.08.074
https://doi.org/10.1016/j.physletb.2003.08.074
https://doi.org/10.1016/j.physletb.2003.08.074
https://doi.org/10.1016/j.physletb.2003.08.074
https://doi.org/10.1103/PhysRevD.63.044005
https://doi.org/10.1103/PhysRevD.63.044005
https://doi.org/10.1103/PhysRevD.63.044005
https://doi.org/10.1103/PhysRevD.63.044005
https://doi.org/10.1103/PhysRevD.63.044005
https://doi.org/10.1103/PhysRevD.63.044005
https://doi.org/10.1103/PhysRevD.63.044005
https://doi.org/10.1103/PhysRevD.63.044005
https://doi.org/10.1103/PhysRevD.63.044005
https://doi.org/10.1103/PhysRevD.63.044005
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1103/PhysRevD.90.124045
https://doi.org/10.1103/PhysRevD.90.124045
https://doi.org/10.1103/PhysRevD.90.124045
https://doi.org/10.1103/PhysRevD.90.124045
https://doi.org/10.1103/PhysRevD.90.124045
https://doi.org/10.1103/PhysRevD.90.124045
https://doi.org/10.1103/PhysRevD.90.124045
https://doi.org/10.1103/PhysRevD.90.124045
https://doi.org/10.1103/PhysRevD.90.124045
https://doi.org/10.1103/PhysRevD.94.124027
https://doi.org/10.1103/PhysRevD.94.124027
https://doi.org/10.1103/PhysRevD.94.124027
https://doi.org/10.1103/PhysRevD.94.124027
https://doi.org/10.1103/PhysRevD.94.124027
https://doi.org/10.1103/PhysRevD.94.124027
https://doi.org/10.1103/PhysRevD.94.124027
https://doi.org/10.1103/PhysRevD.94.124027
https://doi.org/10.1103/PhysRevD.94.124027
https://doi.org/10.1103/PhysRevD.94.124027
https://doi.org/10.1140/epjc/s10052-022-10573-w
https://doi.org/10.1140/epjc/s10052-022-10573-w
https://doi.org/10.1140/epjc/s10052-022-10573-w
https://doi.org/10.1140/epjc/s10052-022-10573-w
https://doi.org/10.1140/epjc/s10052-022-10573-w
https://doi.org/10.1140/epjc/s10052-022-10573-w
https://doi.org/10.1140/epjc/s10052-022-10573-w
https://doi.org/10.1140/epjc/s10052-022-10573-w
https://doi.org/10.1140/epjc/s10052-022-10573-w
https://doi.org/10.1016/j.physletb.2022.137343
https://doi.org/10.1016/j.physletb.2022.137343
https://doi.org/10.1016/j.physletb.2022.137343
https://doi.org/10.1016/j.physletb.2022.137343
https://doi.org/10.1016/j.physletb.2022.137343
https://doi.org/10.1016/j.physletb.2022.137343
https://doi.org/10.1016/j.physletb.2022.137343
https://doi.org/10.1016/j.physletb.2022.137343
https://doi.org/10.1016/j.physletb.2022.137343
https://doi.org/10.1088/1367-2630/aca820
https://doi.org/10.1088/1367-2630/aca820
https://doi.org/10.1088/1367-2630/aca820
https://doi.org/10.1088/1367-2630/aca820
https://doi.org/10.1088/1367-2630/aca820
https://doi.org/10.1088/1367-2630/aca820
https://doi.org/10.1088/1367-2630/aca820
https://doi.org/10.1088/1367-2630/aca820
https://doi.org/10.1088/1367-2630/aca820
https://doi.org/10.1088/1367-2630/aca820
https://doi.org/10.1016/j.physletb.2018.11.050
https://doi.org/10.1016/j.physletb.2018.11.050
https://doi.org/10.1016/j.physletb.2018.11.050
https://doi.org/10.1016/j.physletb.2018.11.050
https://doi.org/10.1016/j.physletb.2018.11.050
https://doi.org/10.1016/j.physletb.2018.11.050
https://doi.org/10.1016/j.physletb.2018.11.050
https://doi.org/10.1016/j.physletb.2018.11.050
https://doi.org/10.1016/j.physletb.2018.11.050
https://doi.org/10.1142/S0217751X20500815
https://doi.org/10.1142/S0217751X20500815
https://doi.org/10.1142/S0217751X20500815
https://doi.org/10.1142/S0217751X20500815
https://doi.org/10.1142/S0217751X20500815
https://doi.org/10.1142/S0217751X20500815
https://doi.org/10.1142/S0217751X20500815
https://doi.org/10.1142/S0217751X20500815
https://doi.org/10.1142/S0217751X20500815
https://doi.org/10.1103/PhysRevD.107.104037
https://doi.org/10.1103/PhysRevD.107.104037
https://doi.org/10.1103/PhysRevD.107.104037
https://doi.org/10.1103/PhysRevD.107.104037
https://doi.org/10.1103/PhysRevD.107.104037
https://doi.org/10.1103/PhysRevD.107.104037
https://doi.org/10.1103/PhysRevD.107.104037
https://doi.org/10.1103/PhysRevD.107.104037
https://doi.org/10.1103/PhysRevD.107.104037
https://doi.org/10.1016/j.dark.2023.101271
https://doi.org/10.1016/j.dark.2023.101271
https://doi.org/10.1016/j.dark.2023.101271
https://doi.org/10.1016/j.dark.2023.101271
https://doi.org/10.1016/j.dark.2023.101271
https://doi.org/10.1016/j.dark.2023.101271
https://doi.org/10.1016/j.dark.2023.101271
https://doi.org/10.1016/j.dark.2023.101271
https://doi.org/10.1016/j.dark.2023.101271
https://doi.org/10.1016/j.physletb.2024.138929
https://doi.org/10.1016/j.physletb.2024.138929
https://doi.org/10.1016/j.physletb.2024.138929
https://doi.org/10.1016/j.physletb.2024.138929
https://doi.org/10.1016/j.physletb.2024.138929
https://doi.org/10.1016/j.physletb.2024.138929
https://doi.org/10.1016/j.physletb.2024.138929
https://doi.org/10.1016/j.physletb.2024.138929
https://doi.org/10.1016/j.physletb.2024.138929

	I INTRODUCTION
	II THERMODYNAMICS OF NLED BH
	III LEs AND PHASE TRANSITION OF NLED BH
	A LEs
	B Massless particle's case
	C Charged particle's case
	D Crtical exponents

	IV CHAOS BOUND
	V CONCLUSIONS
	A Lyapunov exponent of massless particles
	ACKNOWLEDGMENTS
	REFERENCES

