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Corrected first law of thermodynamics for dynamical regular black holes”
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Abstract: In this study, we establish the corrected first law of thermodynamics for dynamical regular black holes

on both the event and apparent horizons. We found that the temperature of dynamical regular black holes derived

from the traditional first law differs from that obtained through other approaches. This indicates that, similar to stat-

ic cases, the first law of thermodynamics requires correction. We derived the corrected first law of thermodynamics

from the Einstein field equations. Our analysis reveals that the corrected factor originates from the fact that the T,

component of the energy-momentum tensor depends on the black hole mass. This dependence implies that the mass

of a regular black hole can no longer be directly identified as the internal energy, leading to corrections of the first

law of thermodynamics.
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I. INTRODUCTION

In 1973, Bekenstein first noticed the striking thermo-
dynamic analogy of black holes. He then pioneered the
concept of black hole entropy as a measure of the inform-
ation inside a black hole and pointed out that the black
hole entropy is proportional to the horizon area: § = A/4
[1]. Subsequently, Hawking used the semi-classical
quantum field theory to prove that black holes indeed
possess a temperature, T = k/(2r), where « is the surface
gravity [2]. The discovery of Hawking radiation estab-
lished a solid foundation for the four laws of black hole
thermodynamics. In particular, for a Schwarzschild black
hole, the first law of thermodynamics can be written as

dM =TdS, (1

where M denotes the mass of the black hole. Studies on
other black holes such as Reissner-Nordstrom and Kerr-
Newmann black holes revealed that they also satisfy the
first law of thermodynamics.

However, when applying the first law of thermody-
namics to calculate the entropy of regular black holes,
one does not obtain an entropy proportional to the hori-
zon area [3]. These black holes are characterized by hav-
ing a regular core instead of a space-time singularity.
Common examples of regular black holes include the
Bardeen, Hayward, non-commutative, and vacuum non-
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singular black holes, among others; [4] and references
therein provide a comprehensive overview of the thermo-
dynamics of regular black holes. In [3], the authors poin-
ted out that the reason why regular black holes do not sat-
isfy the first law of thermodynamics is that the black hole
mass cannot be regarded as internal energy. Based on
this, the authors derived a corrected version of the first
law of thermodynamics. By leveraging the corrected first
law of thermodynamics, one can obtain an entropy that
satisfies the Bekenstein-Hawking area law in regular
black holes. In subsequent studies on the thermodynam-
ics of regular black holes, the corrected first law of ther-
modynamics has been widely applied to static black holes
[5—14]. These examples include common regular black
holes such as the Bardeen, Hayward, vacuum non-singu-
lar, and non-commutative black holes. In addition, we in-
clude recently proposed non-singular black holes. The
space-times of these black holes are all characterized by
the absence of singularities.

It is known that black holes are all evolving, so it is
necessary to investigate whether the first law of thermo-
dynamics for dynamical regular black holes also requires
correction. However, for dynamical black holes, the ap-
parent and event horizons do not coincide, leading to dif-
ferent viewpoints on which horizon the thermodynamics
should be based on. For example, in [15—17], the authors
studied the entropy of a dynamical black hole using a
thin-film model. By constructing the thin film outside the
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event horizon, they obtained an entropy proportional to
the area of the event horizon. Similarly, [18—20] investig-
ated Hawking radiation from the event horizon. By con-
trast, [21] suggested that thermodynamics should be es-
tablished on the apparent horizon, as it serves as the
boundary of negative energy states. Considering the col-
lapse of a spherical shell, Hiscock proposed that one-
quarter of the apparent horizon area must be deemed as
the entropy of the black hole [22]. In [23] and [24], the
authors demonstrated that the first law of thermodynam-
ics can be successfully built on the apparent horizon.
They treated the event horizon as a time-dependent per-
turbative hyper-surface of the apparent horizon and suc-
cessfully established thermodynamics on the event hori-
zon. In this study, we examined the corrected first law of
thermodynamics on both horizons.

For the calculation of the temperature at the event ho-
rizon, we applied the conformal flat method [25, 26].
This is because, for a dynamical black hole space-time,
there are no Killing vectors, and hence, it is difficult to
directly calculate the temperature at the event horizon us-
ing the surface gravity method. In addition to the con-
formal flat method, another approach to calculating the
temperature of a dynamical black hole is the radiation
back-reaction method [18]. This method first calculates
the expectation value of the renormalized energy-mo-
mentum tensor, (T,,) , in the Unruh vacuum state. Then,
it examines the ingoing negative flux into the black hole.
Finally, it determines the radiation temperature. However,
this approach for studying thermal radiation from dynam-
ical black holes is only applicable to asymptotically flat,
spherically symmetric black holes and yields results with
limited accuracy. Subsequently, Zhao et al. proposed the
conformal flat approach, which can precisely determine
the temperature and thermal spectrum of an evaporating
black hole [25]. In this study, we employed this approach
to investigate the temperature at the event horizon for a
general spherically symmetric dynamical regular black
hole. Regarding the apparent horizon, its surface gravity

can be defined using the Kodama vector [27]. Therefore,
we directly applied the surface gravity method to calcu-
late the temperature associated to the apparent horizon.

The structure of this paper is as follows. In Sec. II, we
briefly introduce the dynamical regular black holes con-
sidered in this study and demonstrate their singularity-
free nature by calculating their Kretschmann scalar. In
Sec. III, we calculate the special "surfaces" for a general
spherically symmetric dynamical regular black hole. In
Sec. IV and V, we derive the corrected first law of ther-
modynamics on the event and apparent horizons, respect-
ively. Finally, we summarize the main conclusions of this
study.

II. INTRODUCTION TO TWO COMMON TYPES
OF DYNAMICAL REGULAR BLACK HOLES

In this section, we briefly introduce the two dynamic-
al regular black holes used as specific examples in this
study, particularly by calculating their Kretschmann scal-
ars to clearly demonstrate that they do not possess
curvature singularities at the origin. The first example is
the dynamical Hayward black hole, whose line element is
given by [28]

2M (v) r?

ds?=—|1-—~
s r+2aM(v)

dV? +2dvdr + r2d&” + ¥ sin® Hdgoz,
(2)

where v is the advanced Eddington coordinate and achar-
acterizes quantum gravity effects, having the order of
squared Planck length. In the following, for brevity, we
sometimes abbreviate M(v) as M. The line element ex-
pressed by Eq. (2) is a Vaidya-type generalization of the
Hayward black hole using the advanced Eddington co-
ordinate. It can also be derived from the Vaidya black
hole with an effective Newton constant G’ =G/ (1+ap?),
which is inspired by the generalized uncertainty principle
[29]. After careful calculations, the representative geo-
metric invariants are given by

288> M* (Sr6 —4ar*M + 8(12M2)

_ 24aM? (—r3 +4aM)

. RaR” =
(3 +2aM)’ .

(3 +2aM)°

amM [rg +8(-10+ @) a*M> —8a (-2 + 3a) M?#? —4(2+3a/)Mr6]

)

R VTUR#VTU - _
. (3 +2aM)’

Here, R,,.»R*"™ is also known as the Kretschmann scal-
ar K, used to determine the existence of curvature singu-
larities. It is evident that the presence of « ensures the ab-
sence of a singularity at the origin of the dynamical Hay-
ward black hole. By setting @ =0, Eq. (3) reduces to the

: G3)
Kretschmann scalar of the Vaidya black hole,
4M (8M —r?)
Kviaga = " @)

7
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which diverges at the origin. In [30], a dynamical exten-
sion of the non-commutative Schwarzschild black hole
was proposed:

4M (v) 3 72
d‘2=_|:1_ (7,7):|d2
’ var Y\2 a9/

+2dvdr + r*d6* + r* sin® 6dy?, (5)

where the lower incomplete gamma function is defined
by

3 2 12/ 40
0

Here, ¢ is the non-commutative parameter with dimen-
sions of Planck length squared, representing the smeared
structure of space. In a non-commutative space, geomet-
ric points that describe positions are replaced by regions
with a minimum width on the order of the Planck length.
Therefore, the method of defining point mass density us-
ing the Dirac delta function is no longer applicable; in-
stead, a Gaussian distribution is used. The line element
given by Eq. (5) gradually approaches that of a Vaidya
black hole as r increases. For a dynamical non-commut-
ative black hole, we can also calculate the geometric in-
variants:

e M(r - 89)

2NEE
o5 M2 (r* — 8129 + 326°)
8 ’

R=—
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Fig. 1.
black hole. Here, we set M(v) =1.
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For small values of r, using the definition of the
gamma function, we have

2/ 49 3/2
‘)’(é ﬁ) z/ /Mtl/zdt: g(ﬁ) = L (8)
27 49 0 3\4¢ 12932’

which implies that the Kretschmann scalar is finite at the
origin. When r — 0, we have

_ 3/2
lim (RHVTU'R VT(T) = M (1OM 3 \/7_1-0 )

=0 o3 - O

which shows that the non-commutative factor ¢ ensures
the absence of a curvature singularity. Additionally, when
 — 0, we can similarly obtain the Kretschmann scalar
for the Vaidya black hole. Figure 1 shows the relation-
ship between the Kretschmann scalar and r for two types
of dynamical black holes. It can be seen that there is no
curvature singularity at the origin in both cases.

III. HORIZONS OF A SPHERICALLY SYMMET-
RIC DYNAMICAL BLACK HOLE

To calculate the horizon radius of a general spheric-
ally symmetric dynamical black hole, we assume its line
element to be
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Kretschmann scalar as a function of r: (a) for the dynamical Hayward black hole, and (b) for the dynamical non-commutative
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ds® = —f(v,)dv? + 2dvdr + r*d6? + P sin’6dg®,  (10)

where f(v,r)=1-2m(,r)/r. The determinant and non-
vanishing contravariant components of the metric are giv-
en, respectively, by

g=-r'sin®0, g =g"=1, g =f@r),
1 1
%= — W= 11
& 2 8 r2sin’@ (D

The line element described by Eq. (10) can also be re-
written as ds? = h,,dxdx? + r?dQ?, with x* = (v,r). In gen-
eral, a dynamical black hole is characterized by different
special “surfaces:” the time-like limit surface, trapped ho-
rizon, and apparent and event horizons. The definition of
the time-like limit surface of a dynamical black hole is
the same as that in a stationary black hole: g,, = 0. There-
fore, the radius of the time-like limit surface satisfies
S, rrrs) =0. According to the definition of the trapped
horizon, h*d,rd,r =0, we obtain that the radius of the
trapped horizon also satisfies f(v,rry) =0. The apparent
horizon is the outermost marginally trapped surface and
is defined as ® = I, —x =0, where © is the expansion of a
congruence of null geodesics and « =1,,n"I” reduces to
the surface gravity in the stationary case. Additionally, n*
and /" are null tetrads. For the spherically symmetric dy-
namical black hole described by the line element ex-
pressed by Eq. (10), we calculate the radius of its appar-
ent horizon in Appendix A. Here, we directly use the res-
ult. The radius satisfies f(v,ryy) =0, that is, ryy =
m(v,rag). Note that for an arbitrary spherically symmet-
ric dynamical black hole, the trapped and apparent hori-
zons coincide. Therefore, in this paper, we denote their
radii uniformly as r4y. Next, we proceed to calculate the
radius of the event horizon. The event horizon is defined
as a special hyper-surface where the norm of the normal
vector is zero (while the normal vector itself is non-zero).
It is also referred to as a null hyper-surface, which pre-
serves the symmetries of the space-time. For the spheric-
ally symmetric space-time described by Eq. (10), the
event horizon can be assumed to be of the form F(v,r),
with the normal vector defined as n, = 3,F (v,r). From the
condition that the normal vector is null, we obtain

nn' =g — =0. 12
" 4

Using the null surface equation F (v,r) = 0, we have that

droF OF _

Substituting Eq. (13) into Eq. (12), we find that the

event horizon radius ry satisfies

f,rg)=2iyg =0. (14)

In this paper, we denote the event horizon radius as
ry. Given that iy is a small quantity, it is easy to see that
the event and apparent horizons are very close to each
other.

IV. THERMODYNAMICS ON THE
EVENT HORIZON

A. Temperature

In this section, we use the so-called conformal flat ap-
proach to calculate the temperature of dynamical regular
black holes. The core idea of this approach is that, in a
general static or stationary space-time, one can employ
the tortoise coordinate transformation to render the space-
time explicitly conformal to Minkowski space near the
horizon. As a result, the dynamical equations describing
particles can be reduced to their traditional form near the
horizon. Zhao et al. applied the conformal flat approach
to a dynamical black hole to calculate the temperature,
yielding a more accurate result than the widely used radi-
ation back-reaction method [25].

We start with the Klein-Gordon equation describing
the motion of a scalar field with mass m,

1
—0 —gg" o) —miy = 0. (15)
‘/_—g H ( \/_ ) 0
In conjunction with the line element described by Eq.

(10), the Klein-Gordon equation can be explicitly written
as

oy 0Py 20y (2 f ) oy
Y 19 s (L)
or? * ovor * r ov * r *f or

171 4 < &p) 1 a%p} 5
1L 0 (o 9% IV 2w =0. (1
= Lin@ﬁ@ Snb g )+ g agr) ~ MV =0 (16)

In the dynamical regular black hole space-time, we
separate the variables of the wave function as

1
WZ;R(Vsr)Ylm(H’QD)' (17)

Substituting separated wave function ¢ into Eq. (16),
we obtain the radical and angular components of the field
equations as

R _ R

or * 26v8r

+f,6£_ L—l(l+1)+m2
or

0
r r?

R=0,

125104-4



Corrected first law of thermodynamics for dynamical regular black holes

Chin. Phys. C 49, 125104 (2025)

1 0 ( ) a) 1 & )
Lin@ 00 Sll’l@ae + Sin20 6902 _l(l+ 1) Y]m =0.
(18)

Here, [ is the angular quantum number of the particle.
Given that the angular equation is not relevant to our dis-
cussion, the following analysis focuses on the radial part.
Next, consider the coordinate transformation

1
" 2k(vp)

r—ry(v)
ra (Vo)

5 Ve =V—1Vp, (19)

Iy

where v, represents the moment of a particle when it es-
capes from the horizon and «(vy) is a function to be de-
termined. Both r(vg) and «(vy) represent the values of the
corresponding quantities at the moment the particle
leaves the horizon. Therefore, they can be treated as con-
stants under the coordinate transformation. Differentiat-
ing Eq. (19), we obtain

1 iy
= dr— dv,
2k(r—ry) d 2k(r—ry) v

dv, = dv. (20)

dr,

Then, the transformation of the differential operator
under the tortoise coordinate transformation can be fur-
ther obtained as

o 199 4 iy 0
I 2k(r—ry)0r. v dv. 2k(r—ry)or.
iz_{Lriz 4
o2 L2k(r—ry)l 0rr  2k(r—ry)* or.’
& 1 & Fy 0

0rdv ~ 2k(r—ry) 0r.0v.  [2k(r—ry)]’ 02
Py 0
s 21
2k(r —ry)* Or. @h
Using this transformation of the differential operator,

the radial equation of motion for the particle can be re-
written as

f-2iy 0°R <_f—2fH +f’) OR ) 0*R

J—em R +
2k(r—ry) 012 r—ry or.  Or.dv,

G
p

-2k (r—ry) { 2 + mo} R=0. (22)

According to the spirit of the conformal flat approach,
the coefficient of 9°R/dr? should be equal to 1 near the
event horizon at the moment v, when the particle escapes
from the event horizon. At the same time, note that

lim [f(v,r)=2¢y] =0, (23)
e

where we have used the relation satisfied by the horizon
radius, that is, Eq. (14). Therefore, we can apply L’
Hopital’s rule to evaluate the coefficient of 8*R/ 9r?

fv,r) =2y o

~—2 - —— | = lim
r—ri(vo) {ZK (o) (r—ry) } r—r(vo) { 2k (vp)
Vo) VoV

} =1. (24

Using the above expression, we can finally determine
k(v) at any given advanced Eddington time:

1
k() = Ef, v,ry). (25)

Meanwhile, using L’Hépital’s role, we can also prove
that

—2j
lim {_M} =— lim f' (7). (26)
CZC‘;’(VO) r—ry C:Cgl(vo)

As a result, the coefficient of dR/dr, vanishes in the
above limit. It is not difficult to show that the coefficient
of R also breaks down near the horizon. Therefore, the ra-
dial equation of motion reduces to the traditional form:

O’R O’R
—+2 =0. 27
or? - ov.or, @7)

The two linearly independent solutions of Eq. (27) are
Rz’j — e—iwv*’

t _ —lwve+2iwr,
RZ)M =e 1WV. 1T . (28)

Following the approach of Damour and Ruffini [31]
and Sannan [32], we can obtain the spectral distribution
of the outgoing wave:

L'y
w= m» (29)
with
K
Ty=—. 30
= (30)
Here, "+" corresponds to fermions, "—" represents bo-

sons, and I',, is the transmission coefficient associated to
the gravitational field barrier outside the horizon. From
Egs. (29) and (30), we conclude that « should be identi-
fied as the surface gravity at the horizon. Substituting Eq.
(25) into Eq. (30), we can express the temperature at the
event horizon as
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T _k _frg) 12 m'(v,ry)
H=0or ™ 4n drry 2nry

1)

Next, we specifically calculate the temperature at the
event horizon of the two dynamically regular black holes
introduced in Sec. II. For the dynamical Hayward black
hole, using Eq. (14), we obtain that its event horizon radi-
us satisfies

2M
ri,—(l_sz)r,Z,+2aM=0, (32)

which provides the relationship between the black hole
mass and event horizon radius:

(1=2ig)r,

T2+ Q- al’

(33)

In conjunction with Eq. (31), we obtain the temperat-
ure at the event horizon as

1-2i 2 +3Q2iy—1
T, = X - (1=2F) [ 3( iy = Da] (34)
2n 4nry,

Similarly, the event horizon radius of the dynamical
non-commutative black hole satisfies

4M (3 ry

M (2.5~ =0,
Nara 2’40) =0 (335)

The temperature is expressed as

K 1
TH=E=Ef/(V7rH)
Qig—1) 3 a3 i _1<3 I‘%)}
ST D gty (2 ) (36
Wrry L 7Y €Y 204 (36)

By contrast, the corresponding temperatures of the
dynamical Hayward black hole and dynamical non-com-
mutative black hole given by the first law of black hole
thermodynamics are respectively

H_ﬁSH_aS,.l@rH
(1=2iy) |1 +3Q2ig—Dalr
_ H EH . H 2] L4 (37)
4r [rH + 2y — l)a]
LM
oSy
2y —1 {3 3 <3 r%,)} _2<3 rf_,)
= D =4y =, = = .
32 U707 4] 24
(3%)

The relation S ; = 7%, [23, 24] was used in the deriva-
tion above. It can be clearly seen that the temperature ob-
tained from the first law of thermodynamics is different
from that obtained using the conformal flat method. Sim-
ilar to the case of static black holes [3, 5—14], this in-
spired us to search for the corrected first law of thermo-
dynamics for dynamical black holes.

B. Corrected first law of thermodynamics
on event horizon

From the above calculations, we conclude that, simil-
ar to static regular black holes, dynamical regular black
holes do not satisfy the first law of thermodynamics. In
the following, we aim to find a corrected version of the
first law of thermodynamics. To this end, we rewrite the
relation satisfied by the event horizon as

mv, 1) = %”(1 —i). (39)

The Einstein field equations corresponding to the line
element expressed by Eq. (10) are

om(v,r)

. 4nr*T!.
6 s
0D e, (40)
or

Using Eq. (40), we can rewrite the temperature as

T=—"" or,T" (41)

Integrating Eq. (40), we obtain

mv,r)=M®W)+ 471/00 r T, dr. (42)

r

At the event horizon, Eq. (42) gives

M) =m,ry)— 47r/ rzT:,’dr. (43)

'H

Differentiating Eq. (43), one can obtain
'n . ” 2y
dM() =d [3 (1- ZrH)} _4nd ( / 7 T‘,dr> L 44

For regular black holes, 7} is a function of M (v).
Therefore, the differential of the second term on the right-
hand side of the above equation becomes
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—4nd (/ rzTLV,dr>

H

(o) Tv
= — 42T dry —4n { / ” ai«v )dr} dM@v).  (45)
\%

TH

We can rearrange Eq. (44) as

© T }
2 v
{1+4n/m P (v)dr dM()

1-2iy } (AH)
= 2T’ d| — ). 46
{ drtry Tty 4 (46)

In conjunction with the temperature expression given
by Eq. (41), the above equation can be simplified to

o0 BT‘;
{1+4n /rH r i (‘v)dr} dM(v) = TydS . (47)

This is the corrected first law of thermodynamics
for the dynamical regular black hole, and its form is
the same as that in the case of a static black hole. The
correction factor in the above expression is 1+

4r / r*dT,/dM(v)dr. For application convenience, we

use rﬁq. (42) to rewrite the corrected first law of black
hole thermodynamics as

om(v,r)
oM (v)

AMO)-y, = {

} M) =TydSy.  (48)

r=ry

We can clearly see that the relationship between Ty
and Ty is given by

| Om(v,r)
=1 oM )

} T (49)

When additional variables appear in the expression
for T)(r,M(v),a,B,...), that is, in the presence of other
fields, we can readily express the modified first law of
thermodynamics as

a s
MO, = | o }dM(v)
=TydS y+ O%da+VydB+---.  (50)

For dynamical Hayward black holes, the correction
factor to the first law of thermodynamics can be ex-
pressed as

om(,r,a)

FQ,rg,a) = M)

r=ry

- Lanj ) (r3 Tz(;;j(v) ﬂ

r=ryg

- rl 72+ @iy - Dal’. (51)

4
H

The product of Ty, and the correction factor
F(v,ry,a) exactly gives Ty. Similarly, for dynamical
non-commutative black holes, the correction factor is giv-
en by

om(v,r,9)

F,ry,9) = )

r=rg

- {(’M/f(v) PM\/‘;V)V(;’ZFI*)” -

(33

A direct calculation can also verify that Ty =
F (v,ry,9) Ty, which demonstrates the validity of the cor-
rected first law of thermodynamics.

V. CORRECTED FIRST LAW OF THERMODY-
NAMICS ON APPARENT HORIZON AND
SOME REMARKS

A. Corrected first law of thermodynamics

on apparent horizon

In a dynamical spherically symmetric space-time, the
Kodama vector can be used to describe the symmetry of
the space-time. When the dynamical space-time reduces
to a static one, the Kodama vector also reduces to the
Killing vector. The Kodama vector is defined as
K* = —e*V,r, where €® denotes the volume form [27].
For the metric given by Eq. (2), the Kodama vector is ex-
pressed as K = (d,)". Given that the Kodama vector is di-
vergence free, that is, V,K“ =0, there exists a conserved
current J*=T¢K’, and the conserved charge is E =

- / J%do,, which is equal to the Misner-Sharp energy.
Usi‘ﬁg the Kodama vector, Hayward defined the surface

1
gravity on the apparent horizon as « = EV“VaF . Therefore,

we can directly use the surface gravity method to calcu-
late the temperature at the apparent horizon. In combina-
tion with the line element expressed by Eq. (2), we ob-
tain the surface gravity associated to the apparent hori-
zon as
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1 { 1 g
k= =V'V,r = 0; V=hhiior }
2 I'=TaH 2\/__/1 ( ) r=rag
1
= | = (Vo)
{2 —h ( r=raH
1
= Ef/ WV, 7am). (53)

Here, i and j range from 0 to 1. The temperature derived
from the surface gravity method is given by

K _f/(v’rAH)_ 1

T - - - — _m/(v7rAH)
A= on Vg 47T apy

ZﬂrAH

(54)

The last step for Eq. (54) makes use of the condition
satisfied by the radius of the apparent horizon:
rag =2m(v,ray). Next, we address the calculations re-
lated to the dynamical regular black holes discussed in
this paper. For dynamical Hayward black holes, the rela-
tion between M(v) and ruy 1s

_ rf\H
M®y)= . —a) (Viy —a/) . (55)

In conjunction with Eq. (54), we can obtain the tem-
perature at the apparent horizon:

2
Tan = ) (56)

Following the same approach, the temperature at the
apparent horizon for the dynamical non-commutative
black hole is given by

T =
AH 167TI"AH

_3 ,’iﬂ (3 r
bor iy 1<§,4A7§>] 57)

Next, we use the first law of thermodynamics [23,24]
to obtain the temperature at the apparent horizons for
both black holes:

~ 6M _ 6}’,4].[ 6M _ r'aH (riH—3a)

= = = s 58
M 8San O an Oran 47r(r/2w—01)2 ©8)
Fap = {r3 0’%e’r§$
AH_SZ\/;T}"AH AH
3 3
Lees) e
249 )17 a9 (59)

Note that, similar to the case at the event horizon, the
temperatures obtained from the surface gravity and the
first law of thermodynamics on the apparent horizon are
different. Next, we follow a procedure similar to that in

the previous section to derive the corrected first law of
thermodynamics on the apparent horizon. First, using Eq.
(40), the temperature can be expressed as

TAH = +2VAHT:,). (60)

TV AH

On the apparent horizon, Eq. (42) gives

M©)=m,rsg) —47r/ rzT]fdr. (61)

TAH

Substituting m (v,ryy) = ray/2 and differentiating Eq.
(61), we obtain

dM(v)=d (%rAH) —4nd (/“ rvavdr> . (62)

TAH

Eq. (62) finally leads to the following result:

< 0Ty
1+4 2 v } M
{ + n/rAHr (’)M(v)dr dM(®v)

+2rAHT$} d (@> . (63)

- LnrAH 4

In conjunction with the temperature expression given
by Eq. (60), Eq. (63) can be simplified to

« oTY
{1 +47r/H r (9M€V) dr] AM©V) = TapdS 4n. (64)

TA,

Using Eq. (42), we finally obtain the corrected first
law of thermodynamics on the apparent horizon as

om(,r)
oM (v)

AMO)leyy, = {

} dM®©) = TypdSsy.  (65)

F=FAH

When other fields are present, Eq. (65) can be gener-
alized as

a ’
AMW),,, = { e }dM(v)
= T4ndS 4 + O da+ D, dB+--- . (66)

At the apparent horizon, T,y and T, are also related
by the corrected factor:

| Om(v,r)
AT oM (v)

} Tan. (67)

For the dynamical Hayward and dynamical non-com-
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mutative black holes, the correction factors are respect-
ively given by

om(v,r,a)
oM©v) |,

- L?Ma ) (r3 Tz(;;;(v))}

1
= (Py—-a)’, (68)

AH

F(v’rAH’a)

r=ran

om,r,9)
oM®) |,

-l 2w G5l

_ 2z (iiH)
SV \2 a9 )

F(v’rAH’ﬁ) =

r=ran

(69)

The product of T,y and the correction factor exactly
gives Tuy, which satisfies Eq. (67). This verifies the
validity of the corrected first law of thermodynamics on
the apparent horizon.

B. Some remarks

In this subsection, we provide some remarks regard-
ing the corrected first law of thermodynamics. From the
differential form of the field equation (Eq. (40)) or its in-
tegral form (Eq. (42)), it is not difficult to find that m (v, r)
appearing in the correction factor is given by

m(,r) = —4n / PTdr. (70)
0

This form suggests that it is likely related to the en-
ergy enclosed within a sphere of radius r. In fact, we can
verify that the Misner-Sharp energy within a sphere of ra-
dius r is exactly equal to m(v,r). This can be verified us-
ing the definition of Misner-Sharp energy:

Eys (0,r) = = (1=h"8,r,r) = % (1= £, 1] =m@v,r).
(71)
Therefore, the corrected first law of thermodynamics

for spherically symmetric dynamical regular black hole
can be written as

NN

O0Eys (v,r)
et LRSS AR dM(v)
M) |y
=T, w0 o + Oy pda + @y B+ (72)

For static spherically symmetric black holes, the cor-

rection factor can also be expressed in the same form.
Here, the reason why we chose the Misner-Sharp energy
is that it is a conserved charge associated with the
Kodama vector. However, a more physically intuitive ex-
planation for why the corrected factor of spherically sym-
metric regular black holes is related to the Misner-Sharp
energy still remains to be developed.

Additionally, by examining the forms of Egs. (50)
and (66), we conclude that, in general, dM(v) is not an
exact differential form. Only when 47T} / oM (v) =0, that
is, when dM(v) = dM (v), does it become an exact differ-
ential form. In this way, the corrected first law of thermo-
dynamics reduces to the traditional first law of thermody-
namics for singular black holes.

Another aspect to be discussed is that, given that we
can successfully establish a corrected first law of thermo-
dynamics on both the event and apparent horizons, a
question arises: which one should be considered more
fundamental? Refs. [23, 24] treated the event horizon as a
time-dependent perturbation of the apparent horizon and
showed that thermodynamics can also be established on
the event horizon. Therefore, the authors concluded that
the thermodynamics associated with the apparent horizon
should be regarded as more fundamental. However, if we
think reversely, the apparent horizon can also be viewed
as a time-dependent perturbation of the event horizon.
Hence, the explanation given in [23, 24] is mostly a
mathematical interpretation. Regarding this issue, we
would like to highlight the following two points. The first
concerns the definition of the event horizon itself, which
can only be defined in asymptotically flat space-times.
However, the universe may not be asymptotically flat, so
the existence of an event horizon is questionable. Even if
the universe were asymptotically flat, an observer with a
finite lifespan would not be able to verify such a global
property [33]. The second point is related to Ref. [21], in
which the author considered the collapse process of a
spherical shell and suggested that the Hawking effect is
associated with the apparent horizon rather than the event
horizon. The reason was that the apparent horizon consti-
tutes the boundary of the ergoregion, and if Hawking ra-
diation originates from regions near the ergoregion, then
the apparent horizon is associated with Hawking radi-
ation. Another conclusion reached in [21] is even more
significant: Hawking radiation survives even in the ab-
sence of an event horizon. Therefore, in this study, we are
inclined to believe that the corrected first law of thermo-
dynamics on the apparent horizon is more fundamental.

VI. SUMMARY

Inspired by the corrected first law of thermodynam-
ics for static spherically symmetric regular black holes,
we investigated the corrected first law of thermodynam-
ics for dynamical regular black holes. First, we calcu-
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lated the apparent and event horizon radii for an arbitrary
spherically symmetric dynamical regular black hole and
found that they are very close to each other. Then, for the
event and apparent horizons, we obtained the correspond-
ing temperatures using the conformal flat and surface
gravity methods, respectively. However, the temperature
derived from the first law of thermodynamics differs
from those obtained by the two methods mentioned
above. This indicates that, similar to the static case, the
first law of thermodynamics also needs to be corrected
for dynamical regular black holes. Following the idea
proposed in [23, 24], that thermodynamics can be built on
both horizons, we successfully established the corrected
first law of thermodynamics on both horizons using the
Einstein field equations. Moreover, we found that they
share the same form. Finally, we found that for both
spherically symmetric dynamical and static regular black
holes, the correction factor is related to the derivative of
the Misner-Sharp energy with respect to the mass M (v) .
A deeper physical meaning behind this relation requires
further investigation.

APPENDIX A

In this appendix, we explicitly calculate the apparent
horizon radius for the dynamical black hole described by
the line element expressed by Eq. (10). First, for compu-
tational convenience, we rewrite it in a metric signature
of (+,—, —, —) as

ds? = f(v, r)dv2 —2dvdr — r*d¢* - rzsinzé’d(pz. (A1)

The determinant and non-vanishing contravariant com-
ponents of the metric are given, respectively, by

g=-r'sin’0, g =g"=-1, g =-fr),
1 1
W=, g¥=- . A2
28 r2sin’0 (A2)

From the line element given by Eq. (A.1), we can ob-
tain the non-vanishing components of the affine connec-
tions as

)
oo = rsin“d,

v 1 ’ TV

Fvv: if ’r99:_r’r
r r 1 28 a'd 1 ¢ ’
r17r:F)'v:_5f ’Fvv: 5(_f+ff)9

Ty =—f-r.I,, =—frsin’6,

1
r‘,=r9 = ;’Fiw = —sinfcosé,
1
Dy =T% = LT =T, = cotd. (A9

Next, we choose the following null tetrad:

b= (g’_l,o’())’ n, = (1,0,0,0),

m, = %(0,0,l,isin@),
i, = %(0,0,1,—isin9), (A4)

and their contravariant forms are given by

l'u: (17g9070>7 n#=(09_170’0)9

1 .
mﬂ_i(()»Os_l» ;>7
2r siné
_ 1 i
m'=———10,0,-1,— ). (A5)
2 sind

One can verify that they satisfy the condition of the
null tetrad frame:

T T Ho— ik =

nnt' =" =mm' =m,m' =0,
M — _m it =

n ' = -m,m" =1,

nmt =, = l,m" =[,m" = 0. (A6)

Using the components of the affine connection and
null tetrads, we can calculate #, and « :

1 0

l’f:l = l’:l +F5_”l(r = ﬁ@ (\/—_gl’u)
b to — 9 ] rf+2f
- = g () e (| - L
(A7)
&= (L =T, 1) 0"l = 1,0l =T, L,n"I”
= (L'l + 1,0l =TI L'l = fE (A8)

Therefore, we obtain ©=F —«= f(v,r)/r. Setting
® =0, we finally obtain that the radius of the apparent
horizon satisfies f(v,ryy) = 0.
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