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λ ∼ m2/T 2Abstract: We perform the first computation of phase-transition parameters to cubic order in , where m is
the scalar mass and T is the temperature, in a simple model resembling the Higgs sector of the SMEFT. We use di-
mensional  reduction,  including  1-loop  matching  corrections  for  terms  of  dimension  6  (in  4-dimensional  units),  2-
loop contributions for dimension-4 ones and 3-loops for the squared mass. We precisely quantify the size of the dif-
ferent corrections, including renormalisation-group running as well as quantum effects from light fields in the effect-
ive theory provided by the Coleman-Weinberg potential, and discuss briefly the implications for gravitational waves.
Our  results  suggest  that,  for  strong  phase  transitions,  1-loop  corrections  from dimension-6  operators  can  compete
with 2-loop ones from quartic couplings, and largely surpass those from 3-loop thermal masses.
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I.  INTRODUCTION

mn ∼ πnT
m≪ T

The dimensional reduction (DR) formalism [1, 2] has
become a  cornerstone  in  the  study  of  equilibrium  phe-
nomena in quantum field theory at finite temperature (T).
By leveraging  the  hierarchy  of  scales  between  the  Mat-
subara  modes  [3],  with  masses ,  and  the  light
field masses, ,  DR recasts the dynamics of a 4-di-
mensional (4D) theory into a simpler static 3-dimension-
al (3D) effective field theory (EFT) [4, 5], resulting from
integrating out the non-zero Matsubara modes, whose ef-
fects are encoded in the Wilson coefficients (WC) of loc-
al  operators.  This  framework  offers  several  advantages
over direct 4D methods, including the possibility of simu-
lating  long-distance  non-perturbative physics  on  the  lat-
tice [6–17], as well as improved convergence of perturb-
ative expansions [18–21]. For these reasons, DR has been
widely  employed  in  studies  of  hot  QCD  [22–27]  and,
more recently, in the characterisation of phase transitions
(PT)  beyond  the  Standard  Model  (SM)  [17, 18, 28–55].
This effort  is  largely  motivated  by  the  prospect  of  ob-
serving stochastic gravitational waves (GW) from PTs in
the  early  universe  [56–60],  a  promising  probe  of  new
physics complementary to collider experiments.

While  most  existing  analyses  focus  on  leading-order

contributions in the 3-dimensional EFT, typically domin-
ated by dimension-4 interactions, there is mounting evid-
ence  that  higher-dimensional  operators  play  a  decisive
role  in  the  dynamics  of  very  strong  PTs  [50, 61, 62].
(Note that we quote energy dimensions in 4-dimensional
units.)  In  Ref.  [50],  it  was  first  proven,  within  a  simple
model  consisting  of  a  real  scalar  coupled  to  a  fermion
[46],  that  dimension-6  operators  generated  at  1  loop
through matching can modify the amplitude and peak fre-
quency of GW spectra by orders of magnitude. This res-
ult has been further strengthened in Refs. [61] and [62] in
the context  of  the Abelian Higgs model and the SMEFT
[63, 64], respectively, where it was also proven that high-
er-dimensional operators are relevant to obtain gauge-in-
dependent physical results.

m/T

However,  using  standard  power  counting  rules  [18],
1-loop dimension-6 matching corrections are parametric-
ally  of  the  same  order  as  3-loop  thermal  masses  and  2-
loop quartic couplings. Even though dimension-6 operat-
ors  can  be  expected  to  become  more  relevant  at  larger
values  of , where  PTs  occur,  a  quantitative  assess-
ment of the relative size of these corrections remains im-
portant.  We  address  this  quantitative  analysis  in  the
present  work.  To  this  end,  we  consider  a  toy  version  of
the  SMEFT,  consisting  of  a  complex  scalar ϕ together
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ϕ6with left- and right-handed fermions, including  correc-
tions  that  generate  a  potential  barrier  at  tree  level.  All
sum-integrals  arising  in  the  matching  up  to  3  loops  are
known. We also briefly comment on the relative import-
ance of  different  loop corrections in  a  model  with a  real
scalar and a fermion in which the barrier is provided by a
trilinear  coupling  [46, 50],  but  in  which  3-loop  sum-in-
tegrals are not known.

The article is organized as follows. We introduce the
main model in section 2, with a discussion of the match-
ing, cancellation of UV and IR divergences and renormal-
isation-scale dependence.  We  explore  the  impact  of  dif-
ferent  loop  corrections  on  PT  parameters  in  section  3,
mentioning briefly the impact on GWs as well.  We con-
clude in section 4, where we also comment on the implic-
ations for  the model  with a  real  scalar.  Technical  details
on sum-integrals, matching, running, the effective poten-
tial and the real scalar model are given in appendices A,
B, C, D and E, respectively. 

II.  THEORETICAL FRAMEWORK

U(1)X X = 1 N = 3
ψL ψR X = 1 X = 0

We consider a model consisting of a complex scalar field
ϕ with  global  charge  and  fermions

 and  with  charges  and ,  respectively,
with  the  following  Lagrangian  in  Minkowski  space-
time: 

L4 = ∂µϕ
†∂µϕ−m2ϕ†ϕ−λ(ϕ†ϕ)2− cϕ6

Λ2
(ϕ†ϕ)3

+ iψL ̸ ∂ψL + iψR ̸ ∂ψR− y(ϕψLψR+h.c.) , (1)

Λ = 1
where  Λ  is  some  energy  cut-off.  We  will  work  in  TeV
units throughout, and assume that  TeV without loss
of generality.

ABC4EFT

The high-temperature limit of this theory is described
by  a  3D EFT involving  only  the  (loop-corrected)  zeroth
mode  of ϕ,  which  we  call φ.  The  most  general  off-shell
parametrisation of the corresponding Lagrangian up to di-
mension-6  operators  (in  4D  units),  that  we  build  using

 [65], reads as follows in Euclidean space: 

LEFT =K3∂µφ
†∂µφ+m2

3φ
†φ+λ3(φ†φ)2

+ cφ6 (φ†φ)3+ c(1)
∂2φ4 (φ†φ)(∂µφ†∂µφ)

+ r(2)
∂2φ4

[
(φ†φ)(∂2φ†φ)+h.c.

]
+ r(3)

∂2φ4

[
i(φ†φ)(∂2φ†φ)+h.c.

]
+ r∂4φ2φ†∂4φ. (2)

LEFT K3 = 1

The  WCs  named  with r are  redundant  on-shell;  that
is, they can be removed via field redefinitions. Upon ca-
nonically normalising  (so that ), the equation

of motion of φ up to dimension 4 is 

∂2φ = m2
3φ+2λ3(φ†φ)φ, (3)

from where the reduction of the redundant operators up to
dimension 6 can be deduced: 

R(2)
∂2φ4 = (φ†φ)(∂2φ†φ)+h.c.=2m2

3(φ†φ)2+4λ3(φ†φ)3 , (4)

 

R(3)
∂2φ4 = i(φ†φ)(∂2φ†φ)+h.c. = 0 , (5)

 

R∂4φ2 = (φ†∂4φ) = m4
3(φ†φ)+4λ3m2

3(φ†φ)2+4λ2
3(φ†φ)3 .

(6)

Hence, the physical Lagrangian reads 

Lphys
EFT =∂µφ

†∂µφ+m′3
2φ†φ+λ′3(φ†φ)2

+ c′φ6 (φ†φ)3+ c′∂2φ4 (φ†φ)(∂µφ†∂µφ) , (7)

and the above WCs are connected to those in Eq. (2) by 

m′3
2 = m2

3+m4
3r∂4φ2 , λ′3 = λ3+2m2

3r(2)
∂2φ4 +4λ3m2

3r∂4φ2 ,

c′φ6 = cφ6 +4λ3r(2)
∂2φ4 +4λ2

3r∂4φ2 , c′∂2φ4 = c∂2φ4 . (8)

Z2 φ→−φ

This model is appealing in the following respects: (i)
it  very much resembles  the  Higgs sector  of  the  SMEFT,
while  being  significantly  simpler;  (ii)  it  is  not  as  simple
as the real scalar model [50], which presents no physical
derivative interactions beyond the kinetic term; (iii) it can
deliver two minima separated by a barrier while keeping
a  symmetry , thus avoiding tadpole terms; see
e.g. Fig. 1.

O(1)

m2
P

vP

We  assume  an  Yukawa  coupling.  For  fixed λ,
we characterise the parameter space of the model in terms
of  the  physical  squared  mass  ( ) and  vacuum expecta-
tion value ( ) of ϕ at zero temperature: 

m2 =
1
4

(−m2
P−2λv2

P) ,
cϕ6

Λ2
=

1
3v4

P
(m2

P−2λv2
P) . (9)

m2
P vP (m/T )2 ∼

y2 ∼ λ cϕ6 ∼ λ2

m2
P (m/T )2 ∼ y ∼ λ cϕ6 ∼ λ2

We take λ as  our  power  counting parameter.  The rest  of
the couplings obey different power counting rules in diffe-
rent regions of the parameter space where there are PTs 1).
For  SM-like  values  of  and ,  we  have 

,  [18, 53, 62]. However, for relatively large
values  of λ and ,  we  have , .

Mikael Chala, Luis Gil, Zhe Ren Chin. Phys. C 49, (2025)

m2
3 ∼ m2 +

1
4

y2T 2 , λ3 ∼ λT , cφ6 ∼ cϕ6 T 2

nm2 ,ny nc
ϕ6 (m2/π) ∼ (λ/π)nm2 (y/π) ∼ (λ/π)ny (cϕ6/π) ∼ (λ/π)

nc
ϕ6

1) We check this trivially as follows. First, we determine the 3D parameters in the roughest approximation, which gives:

.

Then, we compute the values of  and  that best fit the relations ,  and .
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λ3
Within  this  latter  parameter  space  region,  all  sum-integ-
rals needed for computing the 3D EFT WCs to order ,
including  3-loop  ones,  are  known 1);  see  Appendix  A.
Therefore, a fully consistent study of PTs at this order is
achievable, which  constitutes  one  further  major  advant-
age of this model.

Hence,  in  what  follows,  we consider  two benchmark
scenarios within this region of the parameter space: 

BP1 : (vP,m2
P) = (0.5TeV,0.2TeV2) ,

BP2 : (vP,m2
P) = (0.4TeV,0.1TeV2) , (10)

y = 0.9

−0.5 ≲ λ ≲ 0.3

Λ = 1

and  in both cases. (For relatively smaller values of
y, there is no PT within this regime; for larger ones, SM-
like  power  counting holds.)  The region of  the  parameter
space  where  a  PT  occurs  is  very  tight  (it  occurs  for

),  and  shrinks  for  larger  values  of  these
parameters, which  are  moreover  in  tension  with  the  as-
sumed EFT cut-off  TeV.

The 4D and 3D parameters run following the corres-
ponding  renormalisation  group  equations  (RGE),  which
depend in  turn on the counterterms (CT).  In  the 4D the-
ory, the latter are listed below: 

δKϕ = −
3

16π2ϵ
y2− 1

128π4ϵ
λ2, (11)

 

δm2 =
1

4π2ϵ
m2λ+

1
64π4

Å
−3
ϵ

m2λ2+
7
ϵ2

m2λ2
ã
, (12)

 

δλ=
1

8π2ϵ

Å
5λ2+

9
2

m2 cϕ6

Λ2

ã
+

1
64π4

Å
−1
ϵ

16λ3+
1
ϵ2

25λ3
ã
, (13)

 

δcϕ6 =
3
π2ϵ

λ
cϕ6

Λ2
, (14)

 

δKψ = −
3

32π2ϵ
y2, (15)

 

δy = 0 , (16)

Kϕ Kψ

δKψ δy

λ3

where  and  stand for the kinetic terms of the scalar
and  the  fermions,  respectively.  Here,  and  are
computed  only  up  to  1-loop  because  the  2-loop  CTs  of
the fermionic interactions are irrelevant for the matching
up to order . In the 3D theory, the CTs are as follows: 

δm2
3 =

1
8π2ϵ

λ2
3 , δλ3 =

9
8π2ϵ

λ3cφ6 . (17)

λ3All others vanish to order .

δλ δλ3

λcϕ6 λ3 m2 m2
3

−2 0 1 3

We refer to Appendix B for the relevant diagrams and
for  the  explicit  computation  of  and .  Note  that  1-
loop  integrals  are  not  divergent  in  3D,  and  that  the
squared mass does not renormalise at 3-loop either in 4D
or in 3D. This is so because 3-loop diagrams necessarily
scale  with  or  with ,  which,  contrary  to  ( ),
have energy dimensions  and  (  and ) in 4D (3D),
respectively.

The perturbative solution to the 4D RGEs reads: 

m2(µ) =m2
ï

1+
1

8π2
(4λ+3y2) log

µ

Λ

+
1

32π4
λ2
(

14log2 µ

Λ
−5log

µ

Λ

)ò
, (18)

 

 

Fig. 1.    Leading scalar potential for different values of the 3D parameters. With a little abuse of notation, φ here stands for the the real
component of the complex scalar.
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∑∫
{QRH}

Q ·R
Q2R2H2(Q−R)2(R+H)2(Q−R−H)2 ,

1) This contrasts with the SMEFT, where power counting requires diagrams producing sum-integrals like

among many others, which, to our knowledge, remain unsolved and are likely highly non-trivial.
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λ(µ) =λ
ï

1+
1

4π2
(5λ+3y2) log

µ

Λ
+

5
16π4

λ2

(
5log2 µ

Λ
−3log

µ

Λ

)]
+

9
8π2

m2 cϕ6

Λ2
log

µ

Λ
, (19)

 

y(µ) = y
ï

1+
3

8π2
y2 log

µ

Λ
+

1
256π4

λ2 log
µ

Λ

ò
, (20)

 

cϕ6 (µ) = cϕ6

ï
1+

6
π2
λ log

µ

Λ

ò
, (21)

δy = 0
PyR@TE3

where  the  couplings  on  the  right-hand side  of  the  equa-
tions are implicitly evaluated at Λ. We note that the run-
ning of the WCs above also encodes the running of ϕ and
ψ, as they have been canonically normalised by their cor-
responding RGEs —this  is  precisely  why y runs  despite

 in Eq. (16), before canonical normalisation. Some
of  these  results  can  be  cross-checked  against 
[66], with which we find full agreement.

P2 = (0,p2)
λ3

In order to determine the EFT WCs in terms of the 4D
couplings, we compute the hard region expansion of off-
shell correlators involving the zeroth mode of ϕ in the Eu-
clidean version of  Eq.  (1)  in  the static  limit, ,
at order . This includes 1-loop diagrams for dimension-
6 terms, up to 2-loop diagrams for the quartic and up to 3-

loop  diagrams  for  the  squared  mass.  Subsequently,  we
match  the  result  onto  the  tree-level  counterpart  in  the
EFT;  see  Appendix  C.  This  computation  comprises  the
most demanding part of this work.

In order to simplify the expressions below, we intro-
duce the following notation [5]: 

Lb = Lb(µ) ≡ 2log
eγEµ

4πT
, L f = L f (µ) ≡ 2log

eγEµ

πT
, (22)

where μ is  the  matching  scale.  All  numerical  constants
and special  functions that  appear  in  the solution to  sum-
integrals are defined in Appendix A.

In  the  first  place,  we  determine  how  the  4D  zeroth
mode of ϕ is related to φ in the 3D EFT. This is given by
the kinetic-term-matching equation: 

K3 = 1+
3

16π2
y2L f +

1
768π4

λ2 (19+12Lb) . (23)

φ→ φ/
√

K3

Then,  we  canonically  normalise  the  3D  EFT  through
.  With  a  slight  abuse  of  notation,  we use  the

same names for the canonically normalised WCs and for
the unnormalised WCs shown in Eq. (2).  The rest of the
(normalised) matching equations read:

 

m2
3 =m2+λ

ï
1
3

T 2− 1
4π2

m2Lb+
ζ(3)

32π4T 2
m4
ò
+ y2
Å

1
4

T 2− 3
16π2

m2L f

ã
+

cϕ6

Λ2

Å
1
8

T 4− 3
16π2

m2T 2Lb

ã
− 1

32π2
λy2T 2

(
3Lb+L f

)
+

1
16π2

λ2
ï

T 2
Å

L f −
1
3

Lb+4logπ− 24ζ′(2)
π2

+
2
ϵ

ã
+

1
4π2

m2
Å

7L2
b +5Lb+

89
12
+

4ζ(3)
3

ãò
+

1
16π2

λ
cϕ6

Λ2
T 4
ï

3
2
(
Lb+L f

)
+

29
10
− 36ζ′(2)

π2
+360ζ′(−3)−3γ+6logπ+

3
ϵ

ò
+

1
128π4

λ3T 2
ï

2Cb−10Cs−
85
3

L2
b −5L2

f +Lb

Å
89
3
+

240ζ′(2)
π2

− 80γ
3
−20
ϵ

ã
−L f

Å
29
3
− 80γ

3
+40logπ

ã
− 1

9
(
313π2+509

)
+

4ζ(3)
3
+ (41−20γ)

8ζ′(2)
π2

−160ζ′′(−1)+8γ (19γ−2)+
992γ1

3
+

4
3
(
−29+80γ−60logπ

)
logπ
ò
, (24)

 

λ3 = λT +
cϕ6

Λ2

Å
3
4

T 3− 9
16π2

m2T Lb

ã
− 5

8π2
λ2
ï

T Lb−
ζ(3)
4π2T

m2
ò
− 3

8π2
λy2T L f

+
9

8π2
λ

cϕ6

Λ2
T 3
ï

2log2π− 12ζ′(2)
π2

+
1
ϵ

ò
+

λ3T
128π4

ï
50L2

b +60Lb+
269

3
+

20ζ(3)
3

ò
, (25)

 

cφ6 =
cϕ6

Λ2
T 2− 3

π2
λ

cϕ6

Λ2
T 2Lb+

7ζ(3)
24π4

λ3 ,

c(1)
∂2φ4 =r(2)

∂2φ4 = −
ζ(3)

48π4T
λ2 ; (26)

λ3while all others vanish at order .
λ3 cφ6Note that, upon replacing  and  in Eq. (17) with

their  matching  expressions  in  Eqs.  (25)  and  (26),  we
obtain: 

δm2
3 =

1
ϵ

ï
1

16π2

(
2λ2T 2+3λ

cϕ6

Λ2
T 4
)
− 5

32π4
λ3T 2Lb

ò
,

(27)
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δλ3 =
9

8π2ϵ
λ

cϕ6

Λ2
T 3 . (28)

1/ϵ2

These  are  precisely  the  leftover  divergences,  shown  in
blue,  in  Eqs.  (24)  and  (25);  all  others  are  UV poles  that
are  renormalised away.  We remark that  this  is  the  result
of  a  large  number  of  cancellations,  involving  different
loop  orders,  with  and  without  CTs;  see  Appendix  C.  It
therefore  constitutes  an  important  cross-check  for  the
matching. In particular, all double poles, of the form ,
vanish.

m2 cϕ6

λ3

m2
3

λ ∼ −0.5
λ3

cφ6

The  expressions  above  get  further  corrections  from
light loops, captured by the Coleman-Weinberg potential;
see Appendix D. Adding these to Eqs. (24) and (25), and
taking into account the dependence of , λ, y and  on
μ given in Eqs. (18)–(21), the potential becomes renorm-
alisation-scale  invariant  up to  order ;  see Fig.  2.  (This
is  not  exact  in  the  case  of  because  we neglect  the  3-
loop Coleman-Weinberg potential;  however, the depend-
ence  of  the  renormalisation  scale  is  tiny,  and  becomes
generally  imperceptible  in  numerical  results).  For

,  ignoring  both  4D  and  3D  running  introduces
renormalisation-scale  dependence  of  about  20  %  in 
and of  about  40 % in . The rest  of  the action is  trivi-
ally independent of μ.

λ3

O(λ4)

As  an  example,  let  us  show  how ,  as  determined
from Eq. (25), becomes scale-independent upon inserting
the running of the UV WCs in Eqs. (18)–(21) and the ef-
fective potential. Neglecting  corrections, we have: 

λ̇full
3 ≡ λ̇3+ λ̇

eff
3 = µ

d
dµï

λ3−
9

4π2

(
1+2logµ

)
cφ6λ3

ò
= λ̇T+

3
4

ċϕ6

Λ2
T 3− 9

8π2

cϕ6

Λ2
m2T

− 5
2π2

λ̇λT
Å

logµ+ log
eγ

4πT

ã
− 5

4π2
λ2T − 3

4π2
λy2T

+
1

16π4
λ3T
ï

50logµ+
Å

50log
eγ

4πT
+15
ãò
− 9

2π2

cϕ6

Λ2
λT 3

=

Å
5

4π2
λ2+

9
8π2

cϕ6

Λ2
m2+

3
4π2

λy2− 15
16π4

λ3
ã

T+
9

2π2

cϕ6

Λ2
λT 3

− 9
8π2

cϕ6

Λ2
m2T − 5

4π2
λ2T − 25

8π4
λ3T
Å

logµ+ log
eγ

4πT

ã
− 3

4π2
λy2T +

1
16π4

λ3T
ï

50logµ+
Å

50log
eγ

4πT
+15
ãò

− 9
2π2

cϕ6

Λ2
λT 3 = 0 ,

(29)

λeff3

µ
d

dµ

where  is  the  effective  potential  contribution  to  the
quartic  coupling,  which  can  be  directly  read  from  Eq.

(D10), and the dot stands for .
Non-local  terms  in  the  effective  potential  spoil  the

λ2 logµ/m3

λ0

power  counting  in λ.  In  what  follows,  we  include  the  1-
loop  effective  potential  in  the  and  count  as
order  for the 2-loop part. (These latter ones are in any
case negligible;  their  effect  is  mainly to  cancel  the  scale
dependence of physical parameters.) 

III.  PHASE-TRANSITION PARAMETERS

The fundamental quantity to determine in any PT-related
computation is the nucleation rate, which has the follow-
ing form: 

Γ = AstatAdyne−S 3[φc] , (30)

S 3[φc]
Astat

Adyn

Γ ≈ T 4e−S 3[φc]

where  is  the  effective  3D  action  evaluated  at  the
bounce  solution  [67],  of  which  it  is  an  extremal,  is
the  statistical  pre-factor  and  is  the  dynamical  pre-
factor  [68].  The  first  pre-factor  accounts  for  equilibrium
physics,  and  the  latter  captures  non-equilibrium  effects.
In  this  work,  we  shall  assume  the  high-temperature ap-
proximation .

φ = (φ1+ iφ2)/
√

2
φ1

Since  our  aim  is  to  quantify  the  effect  of  different
matching corrections on PT parameters, we will for sim-
plicity  restrict  to  PTs in  the real  direction of φ.  We take

 and  with  a  little  abuse  of  notation,  we
use φ to denote .

S 3[φc]We  compute  using  strict  perturbation  theory
[50]: 

S 3[φc] = S (0)
3 [φ(0)

c ]+S (1)
3 [φ(0)

c ] , (31)

S (0)
3 λ2 S (1)

3

O(λ3) φ(0)
c

where  is the 3D action up to order  and  stands
for  the  corrections.  Likewise,  is the  spheric-
ally-symmetric  solution  of  the  Euler-Lagrange  equation
[67] 

φ̈(0)
c +

2
r
φ̇(0)

c = V ′3(φ(0)
c ) (32)

φ̇c
(0)(0) = 0 V (0)′ (φ(0)

∞ ) = 0
φ(0)
∞ ≡ limr→∞φ

(0)(r)
with  boundary  conditions  and ,
where .

φ(0)
c FindBounce

P ∼ (MPl/T )4 e−S 3[φc]

∼ 1
S 3[φc] ∼ 140 T∗

We  compute  using  [69];  see  also
Refs. [70–74] for similar dedicated tools. We assume that
the  PT  takes  place  when  the  probability

 for a single bubble to nucleate within
a  Hubble  horizon  volume  is . Numerically,  this  oc-
curs  when  [75].  We  denote  by  the tem-
perature at which this holds.

Assuming that the Universe is radiation-dominated at
the time of the PT, we define the following PT paramet-
ers, relevant for the production of GWs [60].

ρr(T ) = g(T )π2T 4/30

● Strength parameter (α). It is defined as the ratio of the
trace anomaly difference of the energy momentum tensor
between the  symmetric  and  broken phases  to  the  energy
density of the radiation bath  [76]: 
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α =
T∗

ρr(T∗)
∆

ï
V3(φ)− T

4
d

dT
V3(φ)

ò∣∣∣∣
T∗

, (33)

g(T )

g(T∗) = 106.75

with  being the number of relativistic degrees of free-
dom in the plasma at a given temperature. For the SM, at
the time of the transition  [77].

β/H∗● Inverse duration ( ). It is a characteristic timescale
of  the  PT,  corresponding  to  an  exponentially  growing

transition rate  as  the  temperature  decreases  (or  equival-
ently,  after  linearising  the  bounce  action  with  respect  to
the temperature) [60]: 

β

H∗
= T∗

dS 3[φc]
dT

∣∣∣∣
T∗

. (34)

vω●  Terminal  bubble  wall  velocity  ( ).  In  this  work,  we
use the approximate formula [78]

 

vw =


 

T∗∆V3

αρr
for

 
T∗∆V3

αρr
< vJ(α)

1 for
 

T∗∆V3

αρr
≥ vJ(α)

, vJ =
1√
3

1+
√

3α2+2α
1+α

, (35)

∆V3 = V3(φT )where  is  the  difference  in  the  potential
between the phases.

The  bubble  wall  velocity  is  determined  from  non-
equilibrium processes,  namely  the  interplay  between  the
pressure  between  the  scalar  phases  and  the  friction  and
back-reaction  from the  plasma.  The  precise  computation
of  this  parameter  is  a  matter  of  ongoing  study,  as  it  is
known to affect greatly the GW production from a FOPT;
see e.g. [79–86], and references therein.

λ2

β/H∗ T∗
∼ 0.3(0.2) 0.15(0.1)

O(λ3)

O(λ3)

To order , which in particular neglects effective in-
teractions, we show α and  in Fig. 3.  varies much
less, ranging from  to  for BP1 (BP2). 1)

Regarding  corrections, since our principal goal is to
clarify  the  relative  size  of  1-loop effects  of  3D effective
operators  versus  2-loop  and  3-loop  corrections  to  the
mass and quartic coupling, we compare in Fig. 4 only the

 contributions to the above PT parameters 2)

m2
3

O(λ3)
φ6

α ≳ 0.1
β/H∗ cφ6

λ3

T∗

O(λ3)

The spiky shape of the  curves is due to the corres-
ponding  corrections  changing sign.  From the  plot,
we infer that 1-loop corrections from  compete with the
2-loop quartic and far dominate over the 3-loop mass for
sufficiently  strong  PTs  (in  particular.  for  those  with

,  which are the ones that  lead to observable GWs
[60]).  Note  that  corrections  to  from  (and  from

)  are  negative.  This  can  be  understood  as  follows.  In
good  approximation,  and,  therefore,  the  leading
bounce  are  barely  modified  upon  the  introduction  of

 corrections. Consequently: 

β

H∗
= T∗

d
dT
(
S (0)

3 [φ(0)
c ]+S (1)

3 [φ(0)
c ]
)∣∣∣∣

T∗

≈
β(0)

H∗
+T∗

dS (1)
3 [φ(0)

c ]
dT

∣∣∣∣
T∗

, (36)

 

λ3 cφ6 T = Λ/π

µ ∈ [T/2,2T ] T = Λe−γE

Fig.  2.     (left)  and  (right)  for  as  a  function of λ in BP1, including both the running of 4D parameters and Coleman-
Weinberg  corrections  (solid  black),  only  the  former  (dashed  blue)  and  none  (dotted  orange).  The  bands  represent  variations  of  the
renormalization scale μ in the range , with .

Mikael Chala, Luis Gil, Zhe Ren Chin. Phys. C 49, (2025)

T∗/Λ cϕ61) Note that  is small enough to avoid including higher-dimensional operators in 4D; this contrasts with the SMEFT for positive  [87], though the issue is
mitigated for negative values of this parameter [39].

T∗ O(λ3) β/H∗2) We do so under the simplifying assumption that  is not drastically modified by  corrections. This fails only when the overall correction to  is so
negatively large that no PT occurs, as we discuss further below.
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β(0)/H∗ β/H∗
O(λ3)

T∗ φ(0)
c

cφ6

where  is  the  value  of  computed  without
 corrections and the remainder is  the correction we

are interested in. Now, since  and  are fixed, all the
dependence on T is encoded in the WCs. For the case of

, we have:
 

∆
β

H∗
= T∗

dS (1)
3 [φ(0)

c ]
dT

∣∣∣∣
T∗

≈ 4πT∗

∫
drr2[φ(0)

c (r)]6 1
8

dcφ6

dT

∣∣∣∣
T∗

,

(37)

which is negative for
 

dcφ6

dT

∣∣∣∣
T∗

=
d

dT

ï
6
π2

Å
log

4πT
Λ
−γE

ã
λcϕ6 T 2+

7ζ(3)
24π4

λ3
ò

=
6
π2

Å
1−2γE +2log

4πT
Λ

ã
λcϕ6 T < 0

⇒ T >
eγE− 1

2

4π
Λ < 0.1 TeV (38)

Λ = 1

λ ≳ 0.5
β/H∗

for  TeV,  and  therefore  this  correction  is  negative
for  all  temperatures  of  interest.  This  implies  that,  for

, there  is  no  PT  within  BP1,  because  the  correc-
tion to  makes it negative.

 

β/H∗Fig. 3.    α (left) and  (right) for BP1 (dashed blue) and BP2 (solid orange). The minimum and maximum values of λ where there is
a PT are marked.

 

O(λ3)

µ ∈ [T/2,2T ] T = Λe−γE

Fig. 4.     contributions from all 3D physical operators to the strength parameter (left) and inverse duration (right) in BP1 (top) and
BP2 (bottom). The bands represent variations of the renormalisation scale , with .
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O(λ3)

PTPlot

To  conclude  this  analysis,  we  show  the  impact  of
 corrections  in  the  GW  spectrum  of  two  different

parameter  space points  in  BP1 and BP2 computed using
 [60, 88]; see Fig. 5. It is apparent that 1-loop di-

mension-6 corrections can significantly dominate over 2-
loop  and  3-loop  corrections  on  lower-dimensional inter-
actions. 

IV.  CONCLUSIONS

ϕ6

We  have  studied  thermal-PT  parameters  within  a
model consisting of a complex scalar ϕ coupled to fermi-
ons, and  in  which  the  scalar  potential  exhibits  two  min-
ima at zero temperature due to a  interaction. We have
done so  within  the  framework of  dimensional  reduction,
computing matching corrections to the mass, quartic and
dimension-6  terms  up  to  3,  2  and  1  loops,  respectively.
This has been possible thanks to the quite unique charac-
teristics  of  this  model,  that  make  that  all  3-loop sum-in-
tegrals appearing in the process are known from hot QCD
studies.

This way, we have been able to compare, for the first
time,  the  relative  importance  of  the  different  matching
corrections, which, according to standard power counting,
are  in  principle  of  the  same  order.  We  have  found  that,

φ6
while 2-loop corrections to the quartic coupling compete
with 1-loop corrections to , the latter generally domin-
ate by a large margin over 3-loop corrections to the mass.

β/H∗

S 3[φc] ∼ 140
∼ 100

In order to further demonstrate the relevance of high-
er-order-operator corrections on PT parameters, we com-
pute α and ,  as  well  as  the  corresponding  spectrum
of  GWs,  within  the  model  of  Appendix  E,  involving  a
real  scalar  singlet,  a  fermion  and  no  dimension-6  terms.
We include matching corrections up to 2-loops. (Unfortu-
nately,  3-loop  sum-integrals within  this  model  are  un-
known.) The results are depicted in Fig. 6. (Note that, un-
like  in  Ref.  [50],  here  we  use ,  instead
of ,  as  the  nucleation  criterion.)  They  show  even
more  clearly  the  dominance  of  1-loop  corrections  from
dimension-6 terms. We find no reason to expect qualitat-
ively different behaviour in other models of new physics.

Altogether,  our  results  constitute  the  most  robust
evidence  for  the  importance  of  dimension-6  operators
compared to higher-loop corrections on lower-dimension-
al interactions in the 3D EFT for the study of strong PTs,
particularly those detectable  at  current  and future facilit-
ies. This does not necessarily imply that the high-temper-
ature expansion  is  called  into  question,  provided  dimen-
sion-8-operator effects are sub-leading, which can be as-
sessed  following  the  methods  of  Ref.  [50],  and  as  we

 

λ2Fig. 5.    GW stochastic background generated during a PT computed at order  (dashed red), including 2-loop and 3-loop corrections
from the mass and the quartic (dashed blue) and with 1-loop effective-operator corrections (solid black) in BP1 (left) and BP2 (right).

 

(m2, κ,λ) = (0.02TeV2,−0.04TeV,0.1)

y4 y6

µ ∈ [T/2,2T ] T = Λe−γE

Fig. 6.    Strength parameter (left), inverse duration time (middle) and corresponding GW spectrum (right) in the model of Appendix E,
which extends Ref. [50] with 2-loop matching corrections and running, for a benchmark point with .
Renormalisation-scale  independent  holds  up  to  order  ( )  for  the  mass  (quartic  coupling  and  higher-dimensional  operators).  The
bands represent variations of the renormalisation scale , with .

Mikael Chala, Luis Gil, Zhe Ren Chin. Phys. C 49, (2025)
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have ensured in all our results. 
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APPENDIX A: SUM-INTEGRALS

MS
d = 3−2ϵ

In what follows, we use a notation similar to that in Ref.
[89], and we present all our results in the  scheme in
dimensional regularisation, with . We adopt the
usual notation for sum-integrals: 

∑∫
Q or {Q}

≡ T
∞∑

n=−∞

∫
q
, (A1)

Q = (Q0,q) = (mn,q)

mn = 2π
Å

n+
1
2

ã
T

mn = 2πnT

where  is  a  loop  4-momentum and n
labels  the  Matsubara  modes  running  in  the  loop.  The
brackets denote a sum over fermionic modes —for which

we have —, while their absence means
we sum over bosonic modes — —.

Furthermore, ∫
q
≡ µ̃2ϵ

∫
d3−2ϵq

(2π)3−2ϵ
, (A2)

µ̃2 ≡ eγEµ2/(4π) MS γEwhere , μ being  the  scale  and  the
Euler-Mascheroni constant. 

A.1.    1-loop sum-integrals
At  1-loop  order,  all  bosonic  sum-integrals,  massive  or
massless,  are known analytically.  Since we expand sum-
integrals  in  the  scalar  mass,  we  only  need  the  massless
cases, which read: 

Îr
α ≡
∑∫

Q

Qr
0

Q2α
= µ̃2ϵ (1+ (−1)r)T

(2πT )2α−r−d

Γ (α−d/2)
(4π)d/2Γ (α)

ζ (2α− r−d) ,

(A3)

Γ(x) ζ(x)where  is  the  Euler  gamma  function  and  is  the
Riemann zeta function.

q→ 2q

In the fermionic case, when the mass is non-zero, no
analytic  expressions  are  available.  In  the  massless  case,
however, one can derive a  simple relation with their  bo-
sonic  counterpart.  Scaling  the  spatial  loop  momentum

 and  splitting  the  regularised  infinite  sum  in  odd
and even integers, yields 

Ir
α ≡
∑∫
{Q}

Qr
0

Q2α
=
(
22α−r−d −1

)
Îr
α . (A4)

 

A.2.    2-loop sum-integrals
All 2-loop sum-integrals in the matching can be written in
terms  of  two  bosonic  or  two  fermionic  loop  momenta.
The most general 2-loop bosonic sum-integral reads: 

Îrs
αβγ ≡

∑∫
QR

Qr
0Rs

0

Q2αR2β(Q−R)2γ
. (A5)

To  solve  these,  we  use  a  recently  developed  algorithm
[90]  that  fully  reduces  any  such  structure  to  the  1-loop
masters above.

Similarly,  the most  general  2-loop fermionic sum-in-
tegral reads: 

Irs
αβγ ≡

∑∫
{QR}

Qr
0Rs

0

Q2αR2β(Q−R)2γ
. (A6)

These  are  also  known  to  factorize  into  1-loop  masters,
however, in this case there exists no closed formula in the
literature.  Instead,  these  sum-integrals  must  be  reduced
on a case-by-case basis by means of symmetries induced
by  4-momentum shifts  and  integration-by-parts  relations
involving spatial momenta [91].

I00
αβγ ≡ Iαβγ Î00

αβγ ≡ ÎαβγBy  denoting  (resp. ),  we  present
below  the  specific  2-loop  fermionic  sum-integrals  we
need and their corresponding reductions: 

I111 = 0 , (A7)
 

I112 =
1

(d−2)(d−5)
(I220−2I022) , (A8)

 

I121 = I211 = −
1

(d−2)(d−5)
I220 , (A9)

 

I02
113 = I20

113 =
(d−3)(d−4)

2(d−2)(d−5)(d−7)
I022+

d−4
d−7

I013 , (A10)

 

I02
131 = I20

311 =
d−4

2(d−2)(d−7)

Å
I220+

d−3
d−5

I022

ã
, (A11)

 

I11
113 = −

d−4
2(d−2)(d−5)(d−7)

(I220−2I022)+
d−4
d−7

I013 ,

(A12)
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I02
122 = I20

212 = −
d−4

2(d−2)(d−7)

Å
I220+

4
d−5

I022

ã
, (A13)

 

I02
212= I20

122=
(d−4)(d2−8d+13)
(d−2)(d−5)(d−7)

I022+
1

d−7
(I031− I130) ,

(A14)
 

I11
122= I11

212=
d−4

(d−2)(d−5)(d−7)

Å
I220+

d2−8d+11
2

I022

ã
.

(A15)

Finally,  these  can  be  straightforwardly  reduced  to  1-
loop master integrals through: 

Iαβ0 = IαIβ , Iα0β = I0αβ = Iα Îβ ,

R→ R−Q R→−R
R→ R−Q

where  in  the  second  line  we  have  used  the  shifts
 and . Note that if Q and R are fermion-

ic, shifting  changes the nature of R to bosonic. 

A.3.    3-loop sum-integrals
The  evaluation  of  general  3-loop  vacuum  sum-integrals
(bosonic, fermionic or mixed) is currently an open prob-
lem.  For  our  present  purpose,  however,  all  cases  have
been conveniently solved in the context of hot QCD.

The first subset that we find are trivial products of 1-
loop masters: ∑∫

QRH

1
Q2αR2βH2γ

= Îα Îβ Îγ . (A16)

Others  factorise  into  products  of  1-loop  masters  and  2-
loop  sum-integrals,  that  we  know  how  to  further  reduce
to 1-loop masters. An example would be: ∑∫

QRH

1
Q2αR2βH2γ(R−H)2δ

= Îα Îβγδ . (A17)

Finally, we also find non-trivial cases that are known ana-
lytically in the literature. In Eq. (25) in Ref. [92], we find: 

∑∫
QRH

1
Q4H2(Q−R)2(R−H)2

= µ̃6ϵ
ß

T 2(4πT 2)−3ϵ

8(4π)4ϵ2

[
1+b21ϵ +b22ϵ

2+O(ϵ3)
]™

b21 =
17
6
+γE +2

ζ′(−1)
ζ(−1)

b22 =
131
12
+

31π2

36
+8log2π− 9γE

2

− 15γ2
E

2
+ (5+2γE)

ζ′(−1)
ζ(−1)

+2
ζ′′(−1)
ζ(−1)

−16γ1

+
4ζ(3)

9
+Cb , (A18)

γ1 ζ(1+ ϵ) = 1/ϵ+where  is one of the Stieltjes constants: 

∞∑
n=0

(−1)nγnϵ
n/n! Cb = −0.145652981107

(4)

;  and  the  constant 
 is  a  sum of several  dimensionless integrals  that  have

been evaluated numerically. We have manually added the
scale  factor  according  to  our  definition  of  the  integral
measure.

Also, in Eq. (2.36) in Ref. [93], we find: 

∑∫
QRH

1
Q2R2H2(Q+R+H)2

=
1

(4π)2

Å
T 2

12

ã2 ï6
ϵ
+36log

µ

4πT
−12

ζ′(−3)
ζ(−3)

+48
ζ′(−1)
ζ(−1)

+
182

5

ò
+O(ϵ) , (A19)

MS
µ̃

which  assumes  the  same  integral  measure  we  use.  Note
that  the  result  is  expressed  in  terms  of  the  scale μ,
and not in terms of .

Finally, from Eq. (2.15) in Ref. [94] we read: 

∑∫
QRH

1
Q2R2H2(Q−R)2(Q−H)2

= µ̃6ϵ
ß
−1

4
T 2

(4π)4

(4πeγE T 2)−3ϵ

ϵ2

[
1+ v1ϵ+v2ϵ

2+O(ϵ3)
]™

;

v1 =
4
3
+4γE +2

ζ′(−1)
ζ(−1)

,v2 =
1
3
[
46−16γ2

E

+
45π2

4
+24log2 2π−104γ1−8γE −24γE log2π

+16γE
ζ′(−1)
ζ(−1)

+24
ζ′(−1)
ζ(−1)

+2
ζ′′(−1)
ζ(−1)

ò
+Cs ,

(A20)

Cs = −38.5309where  the  constant  is  a  sum  of  several
dimensionless  integrals  that  have  been  evaluated
numerically. 

λ3APPENDIX B: RUNNING OF λ AND 

We start describing the CT Lagrangian in the 4D theory: 

L4,ct = δKϕ∂µϕ
†∂µϕ−δm2ϕ†ϕ−δλ(ϕ†ϕ)2− δcϕ6

Λ2
(ϕ†ϕ)3 ,

+ iδKψ

(
ψL ̸ ∂ψL + iψR ̸ ∂ψR

)
−δy(ϕψLψR+h.c.) ,

(B1)

as well as the counterpart in the 3D EFT: 

LEFT,ct = δZφ(∂µφ)†(∂µφ)+δm2
3φ
†φ+δλ3(φ†φ)2+δcφ6 (φ†φ)3

+δc(1)
∂2φ4 (φ†φ)(∂µφ†∂µφ)+δr(2)

∂2φ4

[
(φ†φ)(∂2φ†φ)+h.c.

]
+δr(3)

∂2φ4

[
i(φ†φ)(∂2φ†φ)+h.c.

]
+δr∂4φ2 (φ†∂4φ) .

(B2)
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δλ δλ3 λ3

δλ3

MS

As a  clarifying  example,  let  us  explicitly  derive  first
 and  then  to  order .  The  relevant  diagrams  are

shown in Fig. A1, among which only the sunset diagram,
that is, the 8th diagram in Fig. A1, contributes to . We
work in the -scheme in dimensional regularisation.

In  the  4D  theory,  we  split  the  4-point  function  with
the scalar in the external legs in loop orders as 

Γϕϕϕϕ = Γ
(0)
ϕϕϕϕ+Γ

(1)
ϕϕϕϕ+Γ

(2)
ϕϕϕϕ , (B3)

Γ
(ℓ)
ϕϕϕϕ,ct

K

and  we  present  each  piece  separately,  after  simplifying
the traces of gamma matrices and removing higher order
terms. We do the same for the CT correlators, which we
denote . For convenience, let us also define a pole-
subtracting operator  with the property that 

K
(

a0+

n∑
k=1

ak

ϵk

)
=

n∑
k=1

ak

ϵk
, (B4)

ak ∈ C,k = 0,1,2, . . . ϵwith  being -independent.
Since  the  tree-level  part  is  not  divergent,  let  us  start

with the 1-loop, that reads: 

Γ
(1)
ϕϕϕϕ = 40λ2

∫
q

1
(q2−m2)2

+36
cϕ6

Λ2

∫
q

1
q2−m2

, (B5)

d = 4−2ϵ
where  we  use  the  same  notation  as  in  Eq.  (A2)  but  in

.
The evaluation of these 1-loop integrals in dimension-

al regularization is straightforward, and it can be found in
any standard QFT textbook (see e.g. Appendix B in Ref.
[95]). The result is: 

K
(
Γ

(1)
ϕϕϕϕ

)
=

i
4π2ϵ

(
10λ2+9m2 cϕ6

Λ2

)
. (B6)

The corresponding CT diagram is 

Γ
(1)
ϕϕϕϕ,ct = −4iδλ(1) , (B7)

so, by definition,
 

δλ(1) =
1

8π2

Å
5λ2+

9
2

m2 cϕ6

Λ2

ã
. (B8)

At 2-loop level, we have:
 

Γ
(2)
ϕϕϕϕ =288iλ

cϕ6

Λ2

∫
q,k

1
(q2−m2)(k2−m2)[(q+ k)2−m2]

+144iλ
cϕ6

Λ2

∫
q,k

1
(q2−m2)(k2−m2)2

+720iλ
cϕ6

Λ2

∫
q,k

1
(q2−m2)2(k2−m2)

+512iλ3
∫

q,k

1
(q2−m2)(k2−m2)[(q+ k)2−m2]2

+144iλ3
∫

q,k

1
(q2−m2)2(k2−m2)2

+320iλ3
∫

q,k

1
(q2−m2)3(k2−m2)

. (B9)

Using the known formulae for 2-loop tadpole integrals in
Ref.  [96],  we  find  that  the  divergent  part  is,  neglecting
higher orders:
 

K
(
Γ

(2)
ϕϕϕϕ

)
=

iλ3

16π4

ï(
−6−100log

µ

m

) 1
ϵ
− 25
ϵ2

ò
. (B10)

δλ(1)

m f

Now, for the sake of simplicity, let us assume that we
already know the rest of the 1-loop CTs, that can be eas-
ily obtained as we just did for .  Though they do not
appear explicitly in this example, let us however note that
loops  with  massless  fermions  must  be  computed  with
care, as  they  can  cause  the  mixing  of  UV and  IR  diver-
gences.  In  order  to  avoid  this,  we  introduce  a  spurious
mass  that we take to zero once all integrals have been
evaluated.

O(λ3)From the CT diagrams, the only terms to  are:
 

 

Fig. A1.    Relevant 1-loop and 2-loop diagrams for the running of the 4-point functions in the 4D theory and the 3D EFT. The cross
with one circle denotes the 1-loop CT.
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Γ
(2)
ϕϕϕϕ,ct = 80δλ(1)λ

∫
q

1
(q2−m2)2

−4iδλ(2) , (B11)

which yields, 

K
(
Γ

(2)
ϕϕϕϕ,ct

)
=

iλ3

16π4

ï(
−10+100log

µ

m

) 1
ϵ
+

50
ϵ2

ò
−4iδλ(2) .

(B12)

Summing Eqs. (69) and (70), we find 

δλ(2) =
λ3

64π4

Å
−16
ϵ
+

25
ϵ2

ã
. (B13)

Thus,  we recover  the  CT shown in  Eq.  (13)  in  the  main
text.

δλ3For the computation of , the process is analogous,
but  simpler.  We split  the 4-point  function in loop orders
as 

Γφφφφ = Γ
(0)
φφφφ+Γ

(1)
φφφφ+Γ

(2)
φφφφ . (B14)

and we shall present all results in Euclidean space.
Γ(1)
φφφφ

d = 3
We know that  cannot be divergent, as there are

no  divergent  tadpole  integrals  at  1-loop  order  in .
Therefore, 

δλ(1)
3 = 0 . (B15)

At 2-loop order, we also know that the only divergent
tadpole integral  is  the  one  associated  to  the  sunset  dia-
gram. Therefore, focusing on this type only, we have: 

Γ(2)
φφφφ = −288λ3cφ6

∫
q,r

1
(q2+m2

3)(r2+m2
3)[(q+ r)2+m2

3]
+ . . .

(B16)

where the ellipses include all other non-divergent contri-
butions. Again, using the known formulae for massive 2-
loop integrals, we obtain: 

K
(
Γ(2)
φφφφ

)
=

9
2π2

λ3cφ6 . (B17)

Since  there  are  no  1-loop CTs,  we  must  only  com-
pute the tree-level insertion of 2-loop CTs, which yields: 

Γ(2)
φφφφ,ct = −4δλ(2)

3 + . . . (B18)

We therefore obtain: 

δλ(2)
3 =

9
8π2

λ3cφ6 , (B19)

as shown in Eq. (17) in the main text. 

APPENDIX C: MATCHING

As stated in the main text,  we have the following power
counting in the 4D theory: 

y ∼ m2

T 2
∼ |p|

2

T 2
∼ λ, cϕ6

Λ2
∼ λ2 . (C1)

|p|2/T 2 m2/T 2
In order to perform the hard region expansion of 4D cor-
relators, we expand in powers of  and  by it-
erating the following identity: 

1
(Q+P)2+m2

=
1

Q2+m2

ï
1− P2+2(Q ·P)+m2

(Q+P)2+m2

ò
, (C2)

m2/Q2and Taylor-expanding in  up to the needed order in
λ.

We  use  the  following  tensor  reduction  formulae  to
simplify different tensor structures to scalar integrals:

 

qir j =
q · r

d
δi j ,

qir jrkrl =
|r|2 (q · r)
d2+2d

(
δi jδkl+δikδ jl+δilδ jk

)
,

qiq jrkrl =

(
δikδ jl+δilδ jk

)[
d (q · r)2− |q|2|r|2

]
+δi jδkl

[
(d+1)|q|2|r|2−2(q · r)2]

d(d−1)(d+2)
, (C3)

qi ri

qi = ri

where  and  are spatial  3-momenta. The same reduc-
tions in  the  case  of  one  single  independent  loop  mo-
mentum can be read from the ones above by simply set-
ting .

Finally, we  apply  specific  linear  shifts  of  loop  mo-

menta and  algebraic  identities  to  rewrite  all  scalar  vacu-
um sum-integrals  as  master  sum-integrals  that  are left  to
evaluate; see Appendix A. As an explicit example of the
procedure above, we show here how to obtain the match-
ing equation for the kinetic term of the scalar in the EFT
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λ3up to order , that is, the result in Eq. (23). The relevant
diagrams for  the  2-point  function are  shown in Figs.  A2
and A3.

λ3

|p|2 O(λ4)

Let us first  note that,  while  the 3-loop diagrams rep-
resented in Fig.  A3 contribute to the matching of the ef-
fective mass, they do not contribute to the kinetic term up
to order . This is because the vertex prefactor of all 3-
loop diagrams  already  add  up  to  this  order,  so  their  ex-
pansion in external momentum up to  is at least 
according to our power counting.

We  split  the  2-point  function  with  the  scalar  zero
mode in the external legs in loop orders as 

Γϕ0ϕ0 ≡ Γ
(0)
ϕ0ϕ0
+Γ

(1)
ϕ0ϕ0
+Γ

(2)
ϕ0ϕ0

, (C4)

and we present  each piece separately in Euclidean space
and after simplifying the traces of gamma matrices in fer-
mionic sum-integrals.

The tree-level trivially reads: 

Γ
(0)
ϕ0ϕ0
= −P2−m2 . (C5)

The 1-loop piece,  which corresponds  to  the  first  two
diagrams in Fig. A2 together with tree-level insertions of
1-loop CTs, is: 

Γ
(1)
ϕ0ϕ0
=−4λ

∑∫
Q

1
Q2+m2

+6y2
∑∫
{Q}

Q2− (P ·Q)
Q2(Q−P)2

−δK(1)
ϕ P2−δm2(1) . (C6)

O(λ3) P2

Since  we  only  want  to  determine  the  kinetic  term,  we
shall  only focus on the pieces  which depend on external
momentum.  Applying  the  hard  region  expansion  up  to

, we get terms proportional to , that contribute to
the  kinetic  term,  and  some  momentum-independent
terms. Removing odd terms in Q, that are vanishing, and
collecting  all  momentum-independent terms  in  the  el-
lipses, we obtain: 

Γ
(1)
ϕ0ϕ0
= 6y2

∑∫
{Q}

ï
2

(P ·Q)2

Q6
− P2

Q4

ò
−δK(1)

ϕ P2+ · · · (C7)

P = (0,p) P ·Q = p ·q

|q|2 = Q2−Q2
0

Now,  since ,  and  we  can  use  the
tensor  reduction  formulae  in  Eqs.  (80)  to  remove  the
mixed  scalar  product.  Then,  rewriting ,  we
finally express the result in terms of 1-loop vacuum sum-
integrals: 

Γ
(1)
ϕ0ϕ0
= 6y2|p|2

ï
2
d
(
I0

2 − I2
3

)
− I0

2

ò
−δK(1)

ϕ |p|2+ · · · (C8)

 

Fig. A2.    1-loop and 2-loop diagrams for the 2-point function. The crosses with one circle denote the 1-loop CTs.

 

Fig. A3.    3-loop diagrams for the 2-point function. The crosses with one circle denote the 1-loop CTs and the crosses with two circles
denote the 2-loop CTs.
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O(λ3)
Moving  on  to  the  2-loop  piece,  keeping  terms  up  to

,  and  again  including  all  momentum-independent
terms in the ellipses, we only have: 

Γ
(2)
ϕ0ϕ0
=8λ2

∑∫
QR

1
(Q2+m2)(R2+m2)[(Q+R+P)2+m2]

−δK(2)
ϕ P2+ . . .

(C9)

Again, after  expanding  in  external  momenta  and  apply-
ing the tensor reduction formulae, it is straightforward to
express the result in terms of the following 2-loop boson-
ic sum-integrals: 

Γ
(2)
ϕ0ϕ0
=8λ2|p|2

ï
4
d
(
Î00

112− Î02
113− Î20

113+2Î11
113

)
− Î00

112

ò
−δK(2)

ϕ |p|2+ . . . (C10)

K3Lastly, the matching equation for  is obtained from
the condition that the renormalised 2-point correlator we
just  obtained is  equal  to  the same in the 3D EFT. Using
the hard region expansion, and given that scaleless integ-
rals  vanish in dimensional  regularisation,  in  the 3D EFT
only tree-level diagrams remain. Thus: 

Γφ0φ0 = −K3|p|2−m2
3−δm2

3
(2) . (C11)

m2
3 λ3Since only  and  renormalise  in  the 3D EFT up

to 2-loops, the matching equation for the kinetic terms is
simply: 

K3 =1−6y2
ï

2
d
(
I0

2 − I2
3

)
− I0

2

ò
+δK(1)

ϕ

−8λ2
ï

4
d
(
Î00

112− Î02
113− Î20

113+2Î11
113

)
− Î00

112

ò
+δK(2)

ϕ .

(C12)

If  we  finally  introduce  the  expression  for  the  CT  in  Eq.
(11)  and  solve  the  sum-integrals  using  the  formulae  in
Appendix A, one reproduces the result in Eq. (23).

δKF cnF δcnF

nF

Let us briefly note that it  is also possible to compute
the matching  without  including  a  CT  for  the  wavefunc-
tion  of  the  fields.  In  this  method,  one  first  canonically
normalises  the  renormalised  4D  Lagrangian,  and  then
computes  the  matching  equations  with  normalised  CTs
for  each  WC.  For  instance,  let F be a  field  with  wave-
function CT denoted by , and  and  be the WC
of  an  operator  with  insertions  of  field F,  and  its  CT,
respectively.  Then  canonical  normalisation  amounts  to
taking 

cnF +δcnF → cnF +δc
′
nF
≡ cnF +δcnF

(1+δKF)nF/2
. (C13)

δc′F

δcF

Using  these  new ,  one  can  derive  a  set  of  matching
equations that will in principle be different from the ones
computed  when  using  the  unnormalised .  However,
upon canonical normalisation of the matched WCs in the
3D EFT, both matching results can be seen to be exactly
the same. 

APPENDIX D: EFFECTIVE POTENTIAL

The effective potential  up to 2 loops within the 3D EFT
can be expressed as follows: 

Veff = m2
3φ
†φ+λ3(φ†φ)2+ cφ6 (φ†φ)3+V1-loop

eff +V2-loop
eff , (D1)

where the 1-loop parts reads 

V1-loop
eff = − 1

12π
m3

eff , m2
eff = 2

[
m2

3+4λ3φ
†φ+9cφ6 (φ†φ)2

]
,

(D2)

and  we  compute  the  2-loop  contribution  following
Jackiw's  background-field  method  [97].  We  restrict  to
this  loop  order  because  it  suffices  to  remove  essentially
all renormalisation scale dependence and the finite pieces
barely contribute to our numerical estimations.

φ = (φ1+ iφ2)/
√

2
φ1→ φ1+ φ̃

O(2) φ̃→
√

2φ

To  this  aim,  we  write  the  Lagrangian  in  Eq.  (2)  in
terms  of  the  real  components  of ,  and
make  the  shift .  (This  way  we  avoid  mass
mixing,  while  the  full  dependence  on φ can be  later  re-
trieved from  invariance upon replacing .)

φ̃
Neglecting the  dependence of  the  squared mass  with

 for simplicity, we obtain: 

LEFT =
1
2

m2
3φ

2
1+ κ1φ

3
1+λ1φ

4
1+

1
2

m2
3φ

2
2+λ2φ

4
2+

κ12φ1φ
2
2+λ12φ

2
1φ

2
2+ · · · , (D3)

with 

κ1 = λ3φ̃+
5
2

cφ6 φ̃3 , (D4)

 

κ12 = λ3φ̃+
3
2

cφ6 φ̃3 , (D5)

 

λ1 =
1
4
λ3+

15
8

cφ6 φ̃2 , (D6)

 

λ2 =
1
4
λ3+

3
8

cφ6 φ̃2 , (D7)
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λ12 =
1
2
λ3+

9
4

cφ6 φ̃2 . (D8)

V2-loop
effThus,  is  given  by  the  sum  of  the  2-loop  vacuum

diagrams computed with these field-dependent couplings;
see Fig. A4. We have: 

V2-loop
eff =(3λ1+3λ2+λ12)I2

bubble(m3)

− (3κ2
1 +3κ2

2 + κ
2
12)Isunset(m3) ,

where [98] 

Ibubble(m) =
1

(4π)2
m2 ,

Isunset(m) =
1

(4π)2

Å
1
4ϵ
+

1
2
+ log

µ

3m

ã
. (D9)

1/ϵAltogether,  and  after  removing  poles and  con-
stant terms, we obtain: 

V2-loop
eff =

1
4π2

ßï
9
2

m2
3cφ6 −

Å
1+2log

µ

3m3

ã
λ2

3

ò
φ†φ

−9
Å

1+2log
µ

3m3

ã
cφ6λ3(φ†φ)2

™
. (D10)

 

APPENDIX E: REAL SINGLET SCENARIO

We consider a second model consisting of a real scalar ϕ
and  a  massless  fermion ψ.  The  4D  Lagrangian  in
Minkowski space reads: 

L4 =
1
2

(∂ϕ)2− 1
2

m2ϕ2− κϕ3−λϕ4+ψi ̸ ∂ψ− yϕψψ. (E1)

Z2

O(y5)

As it was first studied in Ref. [46], this model allows
for  non-radiatively-induced  PTs,  thanks  to  the  presence
of  a  non-  symmetric  cubic  term  for  the  scalar  which
contributes at tree-level to the formation of a barrier with-
in the 3D effective potential. In the aforementioned work,
PTs up to  were studied, following the power count-
ing prescription 

m2

T 2
∼ |p|

2

T 2
∼ λ ∼ κ

T
∼ y2 , (E2)

where  we  have  omitted  numerical  factors.  This  amounts
to  2-loop  matching  for  the  effective  mass  and  1-loop

matching  for  the  rest  of  the  Wilson  coefficients  in  a  3D
EFT  only  including  renormalisable  interactions.  In  Ref.
[50], leading corrections in the form of 1-loop dimension-
6  and  dimension-8  operators  in  the  3D  EFT  were  also
considered.

O(y6)
Here, we take this computation, including only fermi-

on  loops,  to ,  except  for  the  3-loop  contribution  to
the matching of the 3D effective mass. This is due to the
current lack of knowledge about the evaluation of 3-loop,
mass  dimension  2,  fermionic  and  mixed  sum-integrals;
see  Appendix  A for  further  details.  This  leads  to  certain
renormalisation-scale dependence in the mass term.

The  scalar  3D  EFT  up  to  dimension-6  in  Euclidean
form reads [50]: 

LEFT =
1
2

K3(∂φ)2+
1
2

m2
3φ

2+ κ3φ
3+λ3φ

4

+ cφ6φ6+ r∂4φ2∂2φ∂2φ+ r∂2φ4φ3∂2φ. (E3)

Firstly,  the  3D  scalar  field φ is  related  to  the  zeroth
Matsubara mode of ϕ through the following matching to
the kinetic term 1): 

K3 = 1+
1

8π2
y2L f

− 1
3072π4

y4
(
36L2

f +60L f +93−64log2+70ζ(3)
)
.

(E4)

φ→ φ/
√

K3We  normalise  canonically  through .  Again,
we use  the  same  notation  for  normalised  and  unnormal-
ised WCs, and the normalised matching equations for the
first read as follows: 

m2
3 =m2+ y2

Å
1
6

T 2− 1
8π2

m2L f

ã
+

1
768π2

y2ß
8T 2

(
L f −8log2

)
+

1
4π2

m2
ï

12L2
f +12L f

(
1+48log2

)
+21+320log2+70ζ(3)

ò™
+

1
18432π4

y6ï
12L2

f +12L f
(
5+16log2

)
+93−64log2+70ζ(3)

ò
,

(E5)
 

 

Fig. A4.    2-loop vacuum diagrams.
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Î0
2

1) Here we have corrected an error in the 1-loop matching of the kinetic term of the scalar published in Ref. [50], which yielded a -independent contribution. The
origin of the error is due to taking  instead of  before expanding the result in , as this  hits a pole in the expansion of the divergent sum-integ-
ral .
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κ3 = κ
√

T − 3
16π2

κy2
√

T L f

+
1

2048π4
κy4
√

T
(
96L2

f +60L f +93−64log2+70ζ(3)
)
,

(E6)

 

λ3 =λT +
1

16π2
y4T L f −

1
4π2

λy2T L f

− 1
512π4

y6T
ï

14L2
f +16L f +24+7ζ(3)

ò
+

1
1536π4

λy4T
ï

108L2
f +60L f +93−64log2+70ζ(3)

ò
,

(E7)

 

cφ6 = − 7ζ(3)
192π4

y6 , (E8)

 

r∂4φ2 = − 7ζ(3)
384π4T 2

y2 , (E9)

 

r∂2φ4 =
35ζ(3)
576π4T

y4 . (E10)

The UV CT Lagrangian reads:
 

L4,ct =
1
2
δKϕ(∂ϕ)2− 1

2
δm2ϕ2−δκϕ3−δλϕ4

+δKψψi ̸ ∂ψ−δyϕψψ. (E11)

O(y6)We compute the CTs up to , involving only fermion
loops.  To  renormalise  the  matching  equations  we  need
the following up to 2-loops:
 

δKϕ = −
y2

8π2ϵ
+

y4

512π4

Å
5
ϵ
− 6
ϵ2

ã
, (E12)

 

δm2 =
1

128π4
y4m2

Å
1
ϵ
− 3
ϵ2

ã
, (E13)

 

δλ = − y4

16π2ϵ
+

y6

256π4

Å
4
ϵ
− 3
ϵ2

ã
, (E14)

while the rest are only needed up to 1-loop: 

δκ = 0 , δKψ = −
y2

32π2ϵ
, δy =

y3

16π2ϵ
. (E15)

On the  other  hand,  the  CT  Lagrangian  of  the  3D  Lag-
rangian reads, in Euclidean space: 

LEFT, ct =
1
2
δKφ(∂φ)2+

1
2
δm3

2φ2+δκ3φ
3+δλ3φ

4+δcφ6φ6

+δr∂4φ2∂2φ∂2φ+δr∂2φ4φ3∂2φ,

(E16)

O(y6)and the only non-vanishing CT up to  is: 

δm3
2 =

3
2π2ϵ

λ2
3 . (E17)

ϵ
O(y6)

In the  matching,  we see  that  the  UV CTs alone  can-
cel  all  poles,  and  no  temperature-dependent poles  re-
main. Indeed, up to , and without λ and κ insertions,
this  3D  CT  does  not  contribute  upon  the  substitution  of
the  matching  relations.  This  serves  as  a  cross-check  of
our matching computation.
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