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Rotating and non-linear magnetic-charged black hole with an anisotropic
matter field”
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Abstract: We present the solution of a non-linear magnetic-charged black hole with an anisotropic matter field and

further extend it to obtain the corresponding rotating black hole solution using the modified Newman-Janis al-

gorithm. The event horizon and ergosphere of the rotating black hole are studied in terms of the perspective of geo-

metric properties, revealing that the rotating black hole can have up to three horizons. The first law of thermodynam-

ics and the squared-mass formula for the rotating black hole are derived from a‘thermodynamic perspective, based

on which we obtain the thermodynamic quantities and study the thermodynamic stability of the rotating black hole.

Additionally, we calculate the Penrose process for the rotating black hole; indicating the influence of various black

hole parameters on the maximal efficiency of the Penrose process.
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I. INTRODUCTION

From the prediction of black holes by general relativ-
ity to the release of the first image of a black hole shad-
ow in Virgo A* galaxy (M87) by the Event Horizon Tele-
scope Collaboration in April 2019 [1], more than a hun-
dred years have passed. Although we have made signific-
ant advancements in both observation and black hole the-
ory, there still remains the unavoidable issue of singular-
ities in black hole theory. The singularity of a black hole
possesses a series of peculiar properties, with infinite
density and curvature, where the currently known physic-
al laws fail [2]. The black hole singularity problem ori-
ginates from general relativity, but general relativity is
not applicable at the singularity, revealing the incomplete
development of our current gravity theory. It is generally
believed that the solution to this problem can only be
achieved through a complete theory of quantum gravity,
where the black hole singularity can be fully resolved.
However, we have not yet discovered a complete theory
of quantum gravity, and therefore using semiclassical the-
ories to address the singularity problem becomes ex-
tremely valuable.

In 1968, Bardeen presented the first solution for a
regular black hole [3], which avoids the singularity by in-
corporating a de Sitter core that generates negative pres-
sure, thereby preventing a singular end-state of the gravit-
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ationally collapsed matter [4, 5]. Afterwards, Ayon-Beato
and Garcia considered the coupling between the gravita-
tional field and a non-linear electromagnetic field [6], and
then Bardeen black hole solution could be regained, in-
dicating that the Bardeen model can be explained as a
non-linear magnetic monopole in non-linear electro-
dynamics. Subsequently, more regular black holes were
obtained by coupling non-linear electrodynamics with
gravitational theory, such as Ayodn-Beato and Garcia
black hole [7], Hayward black hole [8], and Berej-Maty-
jasek-Trynieki-Wornowicz black hole [9].

In astrophysical research, the spherically symmetric
model is one of the simplest models and can be divided
into isotropic and anisotropic spherically symmetric ce-
lestial models based on whether the pressure is isotropic
or anisotropic. Currently, most research focuses on iso-
tropic fluids because astrophysical observations support
isotropy [10, 11]. For example, the perfect Pascalian-flu-
id (isotropic-fluid) assumption is supported by theory and
observation [12—14].

However, compared to isotropic models, studies on
anisotropic models are relatively limited. Increasing the-
oretical evidences suggest that various interesting physic-
al phenomena may occur within certain density ranges,
leading to local anisotropy [15]. This has led to an in-
crease in research on anisotropy. For instance, at the
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galactic level, dark force effects allow for an effective de-
scription in terms of general relativity sourced by an an-
isotropic fluid [16]. Local anisotropy in self-gravitating
systems affects the physical properties, stability, and
structure of stellar matter [17—-19].

The electromagnetic field outside the Reissner-
Nordstrom (R-N) black hole is the simplest anisotropic
matter field, where the equation of state satisfies p, = —¢
in the radial direction and py = p, = € in the angular dir-
ections in a local reference frame. Cho and Kim exten-
ded the R-N black hole solution to obtain a Schwarz-
schild black hole with an anisotropic matter field [20].
The anisotropic matter field in this black hole is de-
scribed by parameters @ and K, with the relationship
7o = (1-2w,)K > 0. Subsequently, a rotating charged
black hole with an anisotropic matter field [21] was pro-
posed, and its geometry, thermodynamic properties, and
energy extraction were studied. For additional research
related to an anisotropic matter field, one can refer to
Refs.[22-27].

We have reviewed the research and development
work on regular black holes and an anisotropic matter
field. In this paper, we consider both to obtain the solu-
tion of a non-linear magnetic-charged black hole with an
anisotropic matter field and the corresponding rotating
black hole. We then further study the geometric proper-
ties and thermodynamic properties of this rotating black
hole.

The structure of this paper is as follows. In Sec. 11, the
solution for a non-linear magnetic-charged black hole
with an anisotropic matter field is obtained. In Sec. III,
we extend the solution using the modified Newman-Janis
algorithm to obtain a solution for a rotating and non-lin-
ear magnetic-charged black hole with an anisotropic mat-
ter field and study its energy-momentum tensor and weak
energy condition. In Sec. IV and V explore the geometric
and thermodynamic properties of the rotating black hole,
respectively. In Sec. VI, we examine the efficiency of the
Penrose process for extracting energy from the rotating
black hole. Finally, in Sec. VII, we present the conclu-
sion and discussion of this study.

II. NON-LINEAR MAGNETIC-CHARGED BLACK
HOLE WITH AN ANISOTROPIC MATTER
FIELD

We consider the coupling between Einstein gravity
and a non-linear electromagnetic field in the presence of
an anisotropic matter field, which is described by the fol-
lowing equations

F
Gr=2| 2B pw ~ 8/ L(F)| +81T,
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Here, £ is a function of the invariant F = iF wF* with
F,, =9d,A,-0,A,, given by [5, 28]
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where Q is the magnetic charge. In this work, we con-
sider the black holes with an anisotropic matter field. The
energy-momentum tensor of an anisotropic matter field
obtained from Ref. [20] is given by

Tx}/l = dlag (_87pr’p6"p¢) > (5)
where p, = —&(r) and py = py = we(r). The energy density
is

2w

& 6)

8(1") = w2’
where ry is a charge-like quantity of dimension of length
and defined by 2% = (1 —-2w)K.

To obtain a static spherically symmetric black hole
solution, we assume the line element is

ds* = —f(rdt* + f(r)'dr* + r*dQ?, (7
£y = 1= 2™ a0d 4 = d6? + sin? 0, (8)
and use the ansatz for Maxwell field
F,y, = (6,6¢ - 66%) B(r,6). 9)
From Egs.(2) and (3), we simplify Eq.(9) to obtain
Fy = (6,6% - 8)6%) Qsin, (10)

where Q is the integration constant. Further, we obtain
F = Q?/2r*. Note that, the magnetic charge Q is defined
in the following integral form

1

F =0,
4 Q

5y

(11
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where S5 is a two-sphere at the infinity. From the above
results, it is possible to simplify the time component of
Eq.(1) as

(1-2w)K
2r2w+2

2 dm(r)  6MQ?
2 odr 3+

(12)

By integrating Eq.(12) from 7 to oo and using the relation

r—oo

) K .
M =lim | m(r)— Er_sz) , one finally obtains

2M7r? K

r3+Q3_rTw'

fr=1- (13)

For the above equation for K =0, we can derive the met-
ric function f(r) of the Hayward-like black hole [8].
When Q=0 and w =1, we can derive the metric func-
tion f(r) of the R-N black hole. It is found that K and ¢ (g
is the charge in the R-N black hole) have similar status in
the metric function f(r). Therefore, K is the global
charge, and ry is a charge-like quantity of dimension of
length with 2% = (1 - 2w)K.

In the introduction, we mentioned the non-linear mag-
netic-charged black hole, which is a regular black hole
without curvature singularity. Now, we consider whether
the anisotropic matter field in the non-linear magnetic-
charged black hole with an anisotropic matter field will
alter this property. Therefore, we calculate the curvature
of this black hole as follows

o 12MQ°(20°-P)

G iry +2K(w-1QRw—1)r@D, (14
R g PMPQ°(20°-20° +51°)
. (Q*+r)°
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(@ +r?)
+2 (0 +1) (K =2Kw)*r @,
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16KM
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+0°F (-140* 9w +2) +1° 2w’ +3w+1)]
48M? (202 -20°F + 18Q%/° —40°F° +r'?)
' (Q*+r)° |

[0° (20* -3w+1)
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From the above results, we find that the curvature di-
verges at r=0 due to the influence of the anisotropic

matter field, which indicates that the non-linear magnetic-
charged black hole with an anisotropic matter field is not
a regular black hole and has a singularity.

III. ROTATING AND NON-LINEAR MAGNETIC-
CHARGED BLACK HOLE WITH AN ANISO-
TROPIC MATTER FIELD

In 1965, the Newman-Janis algorithm (NJA) [29] was
first proposed by Newman and Janis. This algorithm ob-
tains the Kerr metric by performing a complex coordin-
ate transformation on the Schwarzschild line element.
The NJA has been widely applied in the scientific com-
munity [21, 28, 30=38]. Later, Azreg-Ainou modified the
NJA [39, 40], and the only difference from the original
one is that they skipped the complexification of coordin-
ates.

In'this section, we will use the modified NJA to gen-
eralize the solution of the spherically symmetric non-lin-
ear magnetic-charged black hole with an anisotropic mat-
ter field to obtain the corresponding rotating black hole
solution. Let's first review the modified NJA to obtain a
general rotating black hole line element from a general
static spherically symmetric black hole line element. The
line element for a static spherically symmetric spacetime
in Boyer-Lindquist (BL) coordinates is

ds* = —f(r)dt* + g (r)dr* + h(r)dQ?, (17
where
dQ? = d6* +sin” 0d¢?. (18)
Considering the following coordinate transformation
dr
du=dt - ——, (19)
Vf(r)g(r)

the line element in Eddington-Finkelstein (EF) coordin-
ates (u,r,0,¢) is obtained as

@dudr +h(r)dQ?.

ds* = —f(r)du* -2
g(r)

(20

In terms of the null tetrads satisfy the relations
¥ =nn =mm* =l,m" =nm" =0 and Ln* =-m,mt =
1, the contravariant metric tensor in Eq.(20) can be ex-
pressed in terms of the null tetrad as

g == -Un*+m'm” + m'm",

2

where
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The key step of the modified NJA is the consideration of
complex coordinate transformations in the u — r plane

u— u—iacosf, r—r+iacosé. (23)
As a result of the transformation of Eq.(22), the metric
function also takes a new form: f(r) — F(r,a,0), g(r)
— G(r,a,0), and h(r) — T =r>+a*cos’6 [39, 40]. Thus,
the new form of null tetrads is given by

=4,
G 1
=] =6"—=F&,
n \/; u 2 r
1 . , 1
mt = E {5’; +ia (6‘; —6‘r‘) sinf + ﬁéﬁg} ,
) 1 . , l
= N {6@’ —ia (6ﬁ —6’,‘) sin@— m&g} : (24)

Then, from Eq.(21), the contravariant components of the
metric g"” can be obtained as
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The following transformation is used to convert from EF
coordinates to BL coordinates:

du=dt+A(rdr, de=dp+x(r)dr, (26)

where the functions A(r) and x(r) can be determined by

ensuring that all the nondiagonal components of the met-
ric tensor, except the coefficient g, (g4), are equal to
zero. Therefore, we obtain that [39]

k() +a? B a
1= Sherva YO oo sa 0
with
K= %hm, 28)
and
Fr.6) (gh+a*cos?6) T
1. =
’ (k2 + a2 cos?0)*
2 2
G(r.0) = gh+ aEcos 0 (29)

Finally, the rotating solution corresponding to the spher-
ically symmetric line element Eq.(17) is obtained as fol-
lows:

2 o2
(gh+a cos 9)2 2. z

ds*=— dr*
(k+ a2 cos?6)’ gh+a?
k—gh
—-2a SiI'l2 0 (kzg20)2:| Zd¢dt + Edgz
+a’cos

2k — gh+a*cos*6
(k+ a2 cos2 )

} de*.  (30)

+Xsin%0 {1 +a?sin®6

In the above, we reviewed the modified NJA algorithm
which provides a general expression for a rotating black
hole metric. Considering the metric function Eq.(8) giv-
en in the previous section, we obtain

2Mr* K
r3 + Q3 r2w

h(r) = k(r) = .

g =fr=1

s

€2

Substituting the above equation into Eq.(30), we obtain
the line element of a rotating and non-linear magnetic-
charged black hole with an anisotropic matter field as

2 p) 4aprsin® 0
ds? =— {1 - ﬂ} df+ 2 = 2T T g
z A z
2a%prsin’ 0

+Ed92+sin29{r2+a2+ 5 d¢*,  (32)

where
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A=r*-2pr+a’
L =r*+d’cos’
2Mr?

— —2w+1

2p

A. The energy-momentum tensor

The nonvanishing components of the Einstein tensor
G, are given by

2(r*+a*r* = 2r°p—a'*sin® fcos® ) p’

G, = 33
a’rsin®6p”
S
2asin® 0 [(a® +r?) (a’cos*0—r?) +2r°p] p’
19 = 33
arsin®0 (a*+r2) p”
+ 52 ,
2 2
Grr = - TP s
A
2a°cos’Gp’
G = — % —rp,
a*sin’ 0 (a® +1?) (a® + (a® +2r%) cos26) p’
Gyp = = 3
z
4a>rsin* Gpp’  rsin’ 0 (a +7°) 2o
- 3 B 32 ’ (34

where the prime s denotes the derivative with respect to r
and

2Mr’ 2w+

2= @‘*‘KV ,

M 3,2

_ MO k(1 2wy,
(@ +r)

3 12MQ3r(Q3—2r3)

(Q*+r3)

/

20" —2Kw(1 =2w)r 7', (35)

In order to obtain the components of the energy-mo-
mentum tensor, we use the standard orthonormal basis
[28, 41]

€y = % (a2+r2,0,0,a) ,

€= \/é(o,l,o,ox

ey = %(0,0,1,0),

gy = —m (asin®6,0,0,1). (36)

The components of the energy-momentum tensor derived
from Eqgs.(34), (36), and the Einstein field equation
G, = 8nT,, are as follows:

1 1
Toxo = 5e€nenCuw = € %020 Cw = Pos

20 Tioye) =

1 v l vV
Ton = 5€0eGuw =Prs Ty = Eef@e(wGuv =py. (37)

2 (r)

from which we obtain

1 rzp’
€e=-p,=Typ= E?’ (33)
20" +rp”
Po =Py = Ligio) = w (E— W) . (39

When Q =0 and K = w =0, Eq.(39) corresponds to rotat-
ing black holes with an anisotropic matter field and non-
linear magnetic-charged black hole, respectively.

B. Weak energy condition

The weak energy condition ensures that the behavior
of matter and energy is physically reasonable, preventing
phenomena such as negative energy density. It states that
for any timelike vector & at any point in spacetime, the
stress-energy tensor T, satisfies

T,'¢ > 0. (40)

With the decomposition of the energy-momentum tensor
T,,, the weak energy condition is equivalent to

€>0,

€+p;i 20, (41)

where i =r, 6, ¢. Substituting Eqgs.(33), (38) and (39) in-
to Eq.(41), we obtain

r (K(l —2w)r % + (Zﬂfﬁzr)zz)

87 (12 + a2 cos? )

€=

>0, (42)

€+p, =0, (43)

IMQO*rw (r3 - 2Q3)
47 (Q3 + %)’ (@® cos2 0+ 12)
Kw (2w* =3w+1)r
T 8n(acostO+r2)

€+py=€+py=we+

(44)

From Eqs.(42), (43) and (44), we present the variations of
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€ and e+ py/e+p, with r and cos@ under two sets of
parameters in Figs. 1 and 2. It can be obtained from Figs.
1 and 2 that the weak energy condition is violated of a ro-
tating and non-linear magnetic-charged black hole with
an anisotropic matter field.

Based on the analysis of parameter w in Ref. [21], we
know that when 0 < w < 1, the energy density is not suffi-
ciently localized, causing the total mass to diverge as
r — oo. As a result, subsequent studies primarily focus on
systems with w > 1 to ensure that the spacetime asymp-

totically approaches flatness at infinity.
IV. GEOMETRIC PROPERTIES

A. Horizons

The event horizon corresponds to the Killing horizon,
which defines the "surface" of a black hole as a three-di-
mensional hypersurface. The line element Eq.(32) is sin-
gular at A =0, which corresponds to the event horizon of
the black hole and satisfies

— KPP0 =0,

45)

Based on the above equation, we show in Fig. 3 the beha-
vior of A vs r for different parameters a, K, and o with Q
taking values of 0, 0.3, 0.5, and 0.7, respectively. In Fig.
3, the first and second graphs correspond to the case of
K <0, while the third and fourth graphs correspond to the
case of K> 0. From the first and third graphs in Fig. 3,

for 5 <w< 1, the influence of O on'A is weakened as r

increases, and this influence becomes negligible when r is
large. This effect is noticeable within a small interval
starting from 0. From the second and fourth graphs in
Fig. 3, for w > 1, the influence of O on A is insignificant

for both small and large values of r, with a noticeable ef-
fect only within a small interval of . Therefore, the influ-
ence of O on A is mainly within a small interval. The
above analysis shows that we can analyze the possible
roots of A by considering the case when Q =0 [21]. By
analyzing Eq.(45) and Fig. 3, we can find the following
conclusions:

1
® For 5 <w< 1, A is mainly dominated by the 7>

term for large r, while for smaller r, it is mainly influ-
enced by r? and the non-linear magnetic-charged term.
The influence of the nonlinear magnetic charge term
causes A (Q # 0)to deviate from the case A (0 =0) in a
small interval starting from r=0. For both cases K <0
and K > 0,the rotating black hole may have two hori-
zons: the Cauchy horizon and the event horizon. For ex-
ample; the first and third graphs in Fig. 32, A graphs cor-

respond. to the cases of K=-0.1, w«=75 and K=0.1,

3

w=3, respectively.

e For w > 1, A is mainly dominated by the r* term for
large », while for smaller 7, it is primarily influenced by
the anisotropic matter field term. The influence of the
non-linear magnetic-charged term causes A (Q # 0) to de-
viate within a small range of » compared to the case A
(0=0). For K<0, A starts from positive infinity at
r — 0, decreases rapidly, and then increases again. There-
fore, for w>1 and K <0, the black hole may have two
horizons. For K >0, A starts from negative infinity at
r — 0, increases rapidly, then decreases and then in-
creases again, or A starts from negative infinity at r — 0,
increases rapidly and then increases with the r* term.
Therefore, for w > 1 and K > 0, the black hole may have
three horizons. For example, the second and fourth
graphs in Fig. 3, they correspond to A images for

Fig. 1.

(color online) Dependence of matter density e and e+ py on radius and angle for rotating and nonlinear magnetic-charged

black hole with an anisotropic matter field for M =1, 0=0.5,a=02, K=1, w=0.2.

-6
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Fig. 2.

(color online) Dependence of matter density e and e+ p, on radius and angle for a rotating and nonlinear magnetic-charged

black hole with an anisotropic matter field for ¥ =1, 0=0.5,a=09, K=1, w=0.2.

M=0.8,2=0.2, K=-0.1, w=2/3

M=0.8, a=0.3, K=-0.1, w=3/2

12} ]
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Fig. 3.

3 3
K=-01,w= 3 and K =0.018, w = 5, respectively.

2)

B. Ergosphere

The stationary limit surface, also known as the infin-
ite redshift surface, is where the timelike Killing vector
K* = 9, satisfies K*K, = 0. Therefore, we obtain

2Mr*

— KPP0 =,
rPr+Q3

r +a*cos® 0 - (46)

The ergosphere is a region that lies outside the black hole,

(color online) The behavior of A vs r for parameters a, K, and @ when Q takes the values of 0, 0.3, 0.5, and 0.7.

bounded by the event horizon and the outer stationary
limit surface. The extraction of energy from a rotating
black hole relies on the ergosphere region, which corres-
ponds to the area between the outermost red curve and
the blue curve in each graph in Fig. 4. Using Eqgs.(45) and
(46), we present the behavior of the ergosphere in the xz-
plane for different parameters a, K, @ and Q in Fig. 4. In
the first row of ergosphere graphs in Fig. 4, we show that
when other parameters are kept constant and parameter Q
is changed, the area of the ergosphere increases with the
increase of parameter Q. In the second and third rows of
ergosphere graphs in Fig. 4, we show that when other



Qi-Quan Li, Yu Zhang, Hoernisa Iminniyaz

Chin. Phys. C 49, (2025)

M=1,a=0.64, K=-0.1, w=2/3, Q=0.3

M=1,a=0.64, K=-0.1, w=2/3, Q=0.5

M=1, a=0.64, K=-0.1, w=2/3, Q=0.7
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Fig. 4. (color online) The behavior of ergosphere in the xz-plane for different parameters M, a, K, w and Q.
2

parameters are kept constant and parameter a is changed,
the area of the ergosphere increases with the increase of
parameter a. In the third row of ergosphere graphs in Fig.
4, we show that for K >0 and w > 1, as parameter a in-
creases, the black hole transitions from having a single
horizon to three horizons, and then to two horizons.

V. THERMODYNAMICS OF THE ROTATING
BLACK HOLE

We now know that a black hole is not just a gravita-
tional system, but also a thermodynamic system. This un-
derstanding originates from the proposal of black hole en-
tropy [42, 43] and Hawking temperature [44, 45]. The
Bekenstein-Hawking entropy is one-quarter of the event
horizon area. Therefore, the entropy of a rotating and
non-linear magnetic-charged black hole with an aniso-
tropic matter field is given by

S=—=nm

; )

(rp+d*),

where ry is the event horizon, satisfying Egs.(45). On the
event horizon, the Hawking temperature is proportional
to the surface gravity «:

K arHA(rH)
T=—=—"2 -7
2n An(r}+a?)
1

_ 243, 3 5
 dary (a®+1%) (Q3+r§1)( @ (40 ) 1

+ K2 20° (0 + 1) +r5Qw—1)) —20°%).  (48)

The angular velocity of a rotating black hole at the event
horizon is

_ 8w a

8¢¢ | r=ry

Q=

2 2"
ry+a

(49)

In the above, we directly derived the entropy, temperat-
ure, and angular velocity of the rotating black hole
through the relationship between thermodynamic quantit-
ies and classical mechanical quantities. Nevertheless, for
other thermodynamic quantities of the black hole, such as
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the electric potential, it is not easy to solve using the
above similar methods. Below, we use the first law of
thermodynamics and a squared-mass formula of the rotat-
ing and non-linear magnetic-charged black hole with an
anisotropic matter field to solve for the various thermody-
namic quantities of the rotating black hole.

For the rotating and non-linear magnetic-charged
black hole with an anisotropic matter field, we take S and
0, J, ry as four independent thermodynamic quantities
and present its first law of thermodynamics as [46]

dM =TdS + ®dQ + QdJ + Dydry, (50)
where @ is the magnetic charge potential for Q, J is the
angular momentum and @, is the electric potential for r.
From Eqgs.(45), (48) and J = Ma, we obtain the squared-
mass formula for a rotating and non-linear magnetic-

charged black hole with an anisotropic matter field as
[47, 48]

2
C-at+g
T

T Ve
M==J+—
s” 48 (§—a2)%
T
w 2
S r(2)u) S ) %(1+%>
2 S 51
- (l—2w)(ﬂ' a) D

From Eqgs. (50) and (51), we obtain the following two
thermodynamic quantities:

°=(%)..,

and

30°

220 + ) (i +a®=Krif ™), (52)
H\"H

®, = (iM)
arg $,0.J

- v (”iﬁ;Q3>( Z'”H”o )(Q)Mﬂ)_ (53)
2w-1 ry ryg+a?/) \ry

For Eq.(53), when Q=a=0 and Q =0 (a #0), it degen-
erates into a Schwarzschild black hole with an anisotrop-
ic matter field [20] and rotating black hole with an aniso-
tropic matter field [21], respectively. For a thermodynam-
ic system of a black hole, the thermodynamic stability of
the black hole can be studied by its heat capacity. There-
fore, we obtain the heat capacity of a rotating and non-
linear magnetic-charged black hole with an anisotropic
matter field and analyze the stability of the rotating black
hole. The heat capacity C calculated at constant angular
momentum and charge in the canonical ensemble can be

obtained as follows:

C= Tz—; =2 (@ +13) (QF+ 1) P l—a (407 + 7))

+Kr? 20w+ D +rQw—1)) =207, + 3]
Jla* (40°+ 140" +15)

+ary[2 (5Q° +16Q°r}, +2r5) 1

- K[20° (2‘”2 tw-= 1) + 2Q3r13.1 (40)2 -w+ 4)
151 =207 1= [KIQ° (4 + 60+2)

+20°r (4” +3w+5) + 1y (40° - 1)]

+(=20°=100°r;, +r9) 1311
(54)

When Q =0, the above equation degenerates into the heat
capacity of a rotating black hole with an anisotropic mat-
ter field [21]. Based on Eq.(54), we plot the behavior of
heat capacity vs ry for different parameters O, a, K and w
in Fig. 5. For a black hole thermodynamic system, the
positive and negative values of the black hole heat capa-
city correspond to local thermodynamic stability and in-
stability, respectively. In Fig. 5, the left and right graphs
correspond to the heat capacity graphs under different (X,
w) parameters and different O parameter, respectively.
We can observe that when the black hole event horizon
radius satisfies 0 < ry < r, the system is thermodynamic-
ally stable, while for ry > rS, it is thermodynamically un-
stable. At ry = r§, the black hole heat capacity diverges,
which indicates a second-order phase transition.

VI. PENROSE PROCESS

In 1969, British physicist Penrose proposed a theoret-
ical process for extracting energy from a rotating black
hole, known as the Penrose process. Here, we calculate
the Penrose process for a rotating and non-linear magnet-
ic-charged black hole with an anisotropic matter field
[49-51], and obtain the energy gain and extraction effi-
ciency of this process.

The basic idea of the Penrose process is that a particle
A moving on the equatorial plane (8 = 7/2, u’ = 0) of the
black hole entering the ergosphere, where it decays into
two massless particles, B and C. The massless particle B
falls into a negative energy orbit, while massless particle
C escapes to infinity. According to the energy conserva-
tion, the energy of massless particle C exceed the initial
energy of particle 4. The four-momentum of a particle is

_ v
P;t_gyvu,

(55)

where u” is the four-velocity of a particle. Considering
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Fig. 5. (color online) The behavior of the heat capacity vs ry for different parameters a, K, @ and Q.

that particles moving on the equatorial plane of a black
hole satisfy energy and momentum conservation, we ob-
tain

P =-E= gnut + & M¢, 56
&

Py =L=guu’ +gyut', (57)

where £ and L are the energy and angular momentum of
the test particle, respectively. The radial equation for the
geodesic motion of a test particle, derived from Eqgs. (56)
and (57) and using the condition P,P* = —§ where § = —1,
0, 1 correspond to time-like, null, and space-like
geodesics, respectively, is as follows:

u’ = E? (r4 +d*+d? (Zr2 - A))
+1? (a2 - A) —4aLEpr+6r°A. (58)

Assuming that the decay of particle 4 occurs at the turn-
ing point of the geodesic (" =0), so we can derive from
Eq. (58) and the condition u” = 0 that

_ 2aprL+r VAN =5(P+d +a> (2P =N))
B r+at+a(2r2 = A) ’

E (59)

and

L= —2aprE +r VA \/E2r2 + 6 (12 = 2pr)

(60)

In order to have negative energy, the angular momentum
must satisfy L < 0. Therefore, from Eq. (60), we obtain

(61)

Vg 2
Given that g.(6 = 5) =- (1 - 7'0), it is evident from the

inequality that this phenomenon can occur within the er-
gosphere. We consider a particle 4 (6§ = —1) with energy
E, =1>0 and angular momentum L = L, entering the er-
gosphere. It then decays into two massless particles B and
C (6=0), with energies and angular momenta (Ep, Lp)
and (Ec, Lc), respectively. The massless particle B that
falls into the event horizon has negative energy, while the
massless particle C that escapes to infinity has positive
energy. From Eq.(60), we obtain the relationship between
the angular momentum and energy for 4, B, and C as

—2apr+r VA \2pr

Ly= ,
A—-a?
B —Zapr—r2 VA

o=@ v

—2apr+r* VA
Le = MEC. (62)

A—a?

The conservation of energy and angular momentum is

given as follows:

Egy+Ec=E, =1, (63)

and

LB + LC = LA. (64)

The energies of two massless particles B and C obtained
from Egs. (62), (63) and (64) are given by

)

(65)

and
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al-A
2

EC ==

1
1 1
2(+ s )
1( 2Mr2
1+

= ERT +Kr‘2‘”> .
From the above equation, we find that the energy of the
massless particle C escaping to infinity is higher than the
energy of the particle 4 that initially entered the ergo-
sphere of the black hole. The energy gain AE can be ob-
tained as

According to Eq.(65), the maximum energy gain occurs
at the event horizon, and the maximal efficiency of the
Penrose process is then given by

I%

2

(66)

1
AE ==
2

2Mr?
S Krw -1
r+Q

> =—Ez. (67

E,+AE
EffmaszA
1 2Mr,
=—|1+ +Kr? . 68
2( Ao ) (68)

The behavior of the maximal efficiency of the Pen-
rose process vs a for different parameters K, w-and Q is
shown in Fig. 6. We observe that E s,y increases with
the increase of the spin parameter a and the magnetic
charge Q. The influence of the anisotropic matter field on
the E;rmax is realized through its effect on the event hori-
zon ry.

VII. CONCLUSION AND DISCUSSION

In this article, we have first presented the exact solu-
tion of the static spherically symmetric non-linear mag-
netic-charged black hole with an anisotropic matter field
and further calculated the curvature of the black hole. The
results show that the curvature diverges at r =0, indicat-

ing that the non-linear magnetic-charged black hole with
an anisotropic matter field has a singularity. We have
used a modified Newman-Janis algorithm to obtain the
solution for a rotating and non-linear magnetic-charged
black hole with an anisotropic matter field. Subsequently,
we have studied the energy-momentum tensor and the
weak energy condition for the rotating black hole, find-
ing that the rotating black hole violates the weak energy
condition.

We have investigated the geometric properties and
thermodynamic properties of a rotating and nonlinear
magnetic-charged black hole with an anisotropic matter
field. Regarding geometric properties, we first have ana-
lyzed the influence of the spin parameter a and the mag-
netic charge Q on A in Fig. 3 and have found that the in-
fluence of O is mainly within a small interval. Further
analysis of Fig. 3 and A (Q=0) [21] have revealed that
the rotating black hole may have two horizons for

3 <ws< 1, regardless of whether K is positive or negat-

ive. For w > 1 and K <0, A can have at most two roots,
while for w>1 and K >0, the black hole can have at
most three roots, indicating the possible existence of three
horizons. Further studies on the influence of various para-
meters on the ergosphere of the black hole have showed
that the area of the ergosphere increases with the spin
parameter a and the magnetic charge Q.

Regarding thermodynamic properties, we have ob-
tained the entropy, Hawking temperature and angular ve-
locity of the rotating and non-linear magnetic-charged
black hole with an anisotropic matter field. To further de-
rive other thermodynamic quantities, we have presented
the first law of thermodynamics for the black hole. Using
A =0, we have derived the squared mass formula and
have calculated other thermodynamic quantities. We fur-
ther have studied the stability of this black hole through
its heat capacity and have found that the black hole is
thermodynamically stable when the event horizon radius
satisfies 0 <ry <r§. However, when ry > r§, the black
hole becomes thermodynamically unstable. At ry =r§,
the heat capacity diverges, which indicates a second-or-

M=1, K==0.1, w=2/3 s M=1,Q=0.2
115
— Q=0 110} — (K,w)=(-0.1, 2/3)
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Fig. 6. (color online) The behavior of maximal efficiency of Penrose process vs a for different parameters K, @ and Q.
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der phase transition.

Finally, we have calculated the energy extraction effi-
ciency of the Penrose process of a rotating and non-lin-
ear magnetic-charged black hole with an anisotropic mat-
ter field and have found that the maximal efficiency in-
creases with the spin parameter a¢ and the magnetic
charge Q. The influence of the anisotropic matter field on
the maximum efficiency of the Penrose process is real-
ized through its impact on the event horizon.

In this paper, we mainly analyze black hole proper-

ties under various parameter values without imposing
constraints on these parameters. We know that the shape
of the black hole shadow is sensitive to parameter
changes. Combined with observational data from Event
Horizon Telescope (EHT) and others, we can effectively
eliminate parameter regions that do not match the meas-
ured results. In our subsequent research, we will con-
strain the parameter space of this black hole through the
observational features of the black hole shadow, such as
the axis ratio and angular diameter.
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