α -decay half-lives of superheavy nuclei within a one-parameter model^{*}

Li-Qian Qi (齐立倩)^{1,2,3} Hong-Min Wang (王宏民)⁴ Jian-Po Cui (崔建坡)^{1,2,3}

Yan-Zhao Wang (王艳召)^{1,2,3,5,6†} Jian-Zhong Gu (顾建中)^{6‡}

¹Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

²Institute of Applied Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

³Hebei Research Center of the Basic Discipline Engineering Mechanics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

⁴Physics Department, Army Academy of Armored Forces, PLA, Beijing 100072, China

⁵Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding 071000, China ⁶China Institute of Atomic Energy, P. O. Box 275 (10), Beijing 102413, China

Abstract: The α -decay half-lives of superheavy nuclei (SHN) with charge number $Z \ge 104$ are investigated by employing a phenomenological one-parameter model based on the quantum-mechanical tunneling through a potential barrier where both the centrifugal and overlapping effects have been taken into account. It is shown that the experimental α -decay half-lives of the 81 SHN are reproduced well. Moreover, the order of magnitude for the α -particle preformation probability inside a parent nucleus (S_{α}) is found as 10^{-2} . Then, within this model, the S_{α} values and α -decay half-lives of Z = 118-120 isotopes are predicted by inputting the α -decay energies (Q_{α}) extracted from the relativistic continuum Hartree-Bogoliubov (RCHB) theory, Duflo-Zuker 19 (DZ19, here 19 denotes the numbers of the fitting parameters.) model, improved Weizsacker-Skyrme (IMWS) model and machine learning (ML) approach, respectively. By analyzing the evolutions of Q_{α} , S_{α} and α -decay half-lives of Z = 118-120 isotopes with the neutron number N of the parent nucleus, it is found that the shell effect at N = 184 are evident for all the nuclear mass models. Meanwhile, for the case of the RCHB, N = 172 is determined as a submagic number. However, the submagic number at N = 172 is replaced by N = 178 for the ML approach.

Keywords: α -decay, superheavy nuclei, preformation probability, half-life

DOI: CSTR:

I. INTRODUCTION

Study on the structure and properties of SHN has been a challenging and attractive subject for researchers [1-5]. Recent years, due to the construction of a new generation of accelerators and the development of the detection technology, the synthesis of elements with $Z \le 118$ have been achieved through the hot fusion reaction with ⁴⁸Ca as a projectile or cold fusion using the double magic target ²⁰⁸Pb or its neighbor ²⁰⁹Bi as a target [6-19]. In synthesis, due to the extremely low production cross sections and short lifetimes of the SHN, it is difficult to directly detect and identify the new elements or isotopes. It is well known that α -decay is one of the main decay modes for SHN and it provides an efficient way for the identification of new superheavy elements or isotopes by detecting the α -decay chains from unknown nuclei to

known nuclei with the help of the parent-daughter correlation [11, 20, 21]. Moreover, study on α -decay contributes to provide some reliable information on the nuclear structure including ground-state lifetime, released energies, magic numbers, spin-parity, and nuclear interaction [7, 22–27]. Hence, the α -decay plays an indispensable role in theoretical and experimental studies of SHN.

 α -decay was firstly explained in the 1920s by Gamow [28] and by Gurney and Condon [29] as a fundamental quantum tunneling effect, which is considered to be the first successful quantum description on nuclear phenomenon. From then on, based on this physical picture numerous phenomenological and microscopic models, such as effective liquid drop model [30-33], generalized liquid drop model [34, 35], cluster model [36–40], density-dependent M3Y effective interaction [41, 42] and unified fission model [43-45], have been developed to pur-

Received 12 April 2025; Accepted 23 May 2025

^{*} This work was supported by the S&T Program of Hebei (Grant No. 236Z4601G); Scientific Research Foundation for the Introducing Returned Overseas Chinese Scholars of Hebei Province (Grant No. C20230360); Natural Science Foundation of Hebei Province (Grant No. A2025210011); Foundation of Hebei Education Department (Grant No. QN2021134); Key Laboratory of High Precision Nuclear Spectroscopy, Institute of Modern Physics, Chinese Academy of Sciences (Grant No. IMP-KFKT2021002) and Key Project of Natural Science Foundation for Basic Discipline Research of Hebei Province (Grant No. A2023210064)

[†] E-mail: yanzhaowang09@126.com

[‡] E-mail: gujianzhong2000@aliyun.com

^{©2025} Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.

sue a quantitative description of α -decay half-lives. In addition, a series of semi-empirical formulas, such as the Royer formula [46], universal decay law [47–51] and universal formula [52–54], have been proposed to calculate the α -decay half-lives. It has been found that these models and semi-empirical formulas can reproduce the experimental α -decay half-lives more or less satisfactor-ily [30–54].

As the view of the preformation model, S_{α} is an important physical quantity for α -decay half-life. However, it is difficult to obtain the accurate S_{α} values of various nuclei. So, when ones estimate the α -decay half-lives, the empirical S_{α} values have to be used [53, 55–58]. Moreover, these S_{α} values are strongly dependent on the models [59]. As a result, the order of magnitude of the calculated half-life is different when ones employe the S_{α} values extracted from different models. So it is very important and necessary to use a model that can calculate the S_{α} values reasonably to estimate the α -decay halflives. Among the numerous α -decay models, the oneparameter model proposed by Tavares et al. is such a model that can estimate α -decay half-lives accurately because the S_{α} values can be extracted by a WKB-integral approximation [60]. Furthermore, the proton and cluster radioactivity were described successfully by this model [61–63]. Recent years, some new SHN have been synthesized and lots of experimental data on α -decay have been measured. Therefore, these experimental data becomes a ground to test the one-parameter model. So it is necessary to extend this model to study the α -decay halflives of SHN. This constitutes the first motivation of this article. Moreover, the synthesis of Z = 119 and 120 elements are the next aim for the nuclear scientists [64–66], so the second motivation of present study is to predict the α -decay half-lives of Z = 119 and 120 isotopes or their neighbors within this model. We hope these predictions are helpful for future experiments.

This article is organized as follows. In Sec. II the theoretical framework is introduced. Results and discussions are presented in Sec. III. In the last section, some conclusions are given.

II. THEORETICAL FRAMEWORK

Generally, the half-life of α -decay is calculated by the following expression: $T_{1/2} = \lambda^{-1} \ln 2$, where $T_{1/2}$ is the half-life and λ is the decay constant. In the framework of the one-parameter model [60–63], λ is calculated by

$$\lambda = \lambda_0 S_{\alpha} P_{se}, \quad S_{\alpha} = e^{-G_{ov}}, \quad P_{se} = e^{-G_{se}}, \tag{1}$$

where λ_0 is the assault frequency on the barrier, G_{ov} represents the Gamow factor calculated in the overlapping barrier region where the α -particle drives away from the parent nucleus until it reaches the contact configuration,

while G_{se} denotes the Gamow factor determined in the external, separation region which spans from the aforementioned contact configuration to the separation point and P_{se} is the corresponding penetration probability of the α -particle.

Usually, the quantity of λ_0 is estimated as

$$\lambda_0 = \frac{\nu}{2a} = \frac{2^{1/2}}{2a} \left(\frac{Q_{\alpha}}{\mu_0}\right)^{1/2},$$
 (2)

where v is the relative velocity of the fragments and $a = R_p - R_a$ is the difference between the radius of the parent nucleus and the α -particle radius. μ_0 is the final reduced mass of the system. In this work, it is defined as $\mu_0 = \frac{A_d A_e}{A_d + A_e} m_p$. Here, A_d and A_e stand for the mass number of the daughter nucleus and the emitted particle, respectively. m_p denotes the nucleon mass.

In Eq. (1), G_{ov} and G_{se} are both calculated by the WKB-integral approximation and their expressions can be written as

$$G_{ov} = \frac{2}{\hbar} \int_{a}^{c} \sqrt{2\mu_{ov}(r)[V_{ov}(r) - Q_{\alpha}]} dr, \qquad (3)$$

$$G_{se} = \frac{2}{\hbar} \int_{c}^{b} \sqrt{2\mu_{se}(r)[V_{se}(r) - Q_{\alpha}]} dr, \qquad (4)$$

where \hbar is the reduced Planck constant, *r* is the center-ofmass distance between the emitted α -particle and the daughter nucleus, $c = R_d + R_\alpha$ is the separation of fragments in the contact configuration and *b* denotes the separation point where the total potential energy satisfies the condition $V(b) = Q_\alpha$. Here, R_α is the charge radius of α particle, whose value is 1.62 fm in this work. R_p and R_d are the radius of the parent and daughter nucleus, whose values are evaluated by the droplet model. The corresponding expressions are

$$R_{i} = \frac{Z_{i}}{A_{i}}R_{p'i} + \left(1 - \frac{Z_{i}}{A_{i}}\right)R_{n'i}, \quad i = p, d,$$
(5)

where $R_{p'i}$ and $R_{n'i}$ are given by

$$R_{ji} = r_{ji} \left[1 + \frac{5}{2} \left(\frac{w}{r_{ji}} \right)^2 \right], \quad j = p', n'; \ i = p, d, \tag{6}$$

where w = 1 fm denotes the diffuseness of the nuclear surface. r_{ji} represent the equivalent sharp radius of a proton (j = p') or neutron (j = n') density distribution of the parent nucleus (i = p) or daughter nucleus (i = d), respectively. According to the finite-range droplet model theory of nuclei proposed by Möller *et al.*, the equivalent sharp radius can be extracted from the following expressions

$$r_{p'i} = r_0(1+\overline{\epsilon_i}) \left[1 - \frac{2}{3} \left(1 - \frac{Z_i}{A_i} \right) \left(1 - \frac{2Z_i}{A_i} - \overline{\delta_i} \right) \right] A_i^{1/3}, \tag{7}$$

$$r_{n'i} = r_0(1+\overline{\epsilon_i}) \left[1 + \frac{2}{3} \frac{Z_i}{A_i} \left(1 - \frac{2Z_i}{A_i} - \overline{\delta_i} \right) \right] A_i^{1/3}, \tag{8}$$

where $r_0 = 1.16$ fm, i = p (parent) or *d* (daughter), and $\overline{\epsilon_i}$ and $\overline{\delta_i}$ can be given by

$$\overline{\epsilon_i} = \frac{1}{4e^{0.831A_i^{1/3}}} - \frac{0.191}{A_i^{1/3}} + \frac{0.0031Z_i^2}{A_i^{4/3}},\tag{9}$$

$$\overline{\delta_i} = \left(1 - \frac{2Z_i}{A_i} + 0.004781 \frac{Z_i}{A_i^{2/3}}\right) / \left(1 + \frac{2.52114}{A_i^{1/3}}\right).$$
(10)

In the overlapping barrier region ($a \le r \le c$, see Fig. 1), the reduced mass of the disintegration system $\mu_{ov}(r)$ and the potential barrier $V_{ov}(r)$ appear in Eq. (3) can be expressed as

$$\mu_{ov}(r) = \mu_0 \left(\frac{r-a}{c-a}\right)^{\chi}, \quad \chi \ge 0, \tag{11}$$

 $V_{ov}(r) = Q_{\alpha} + (V_c - Q_{\alpha}) \left(\frac{r}{c-a}\right)^2, \quad q \ge 1,$ (12)

with

$$V_c = \frac{2Z_d e^2}{c} + \frac{l(l+1)\hbar^2}{2\mu_0 c^2},$$
(13)

in which $e^2 = 1.4399652$ MeV fm. *l* and Z_d represent the

Fig. 1. (Color online) The shape of the one-dimensional potential barrier for α -decay of ²⁷⁴107. The barrier from a to c is the overlapping region and that from c to b is the separation region.

angular momentum carried by the α -particle and the charge number of the daughter nucleus, respectively. The mass power parameter χ in Eq. (11) and potential energy power parameter q in Eq. (12) are employed to characterize the variations of $\mu_{ov}(r)$ and $V_{ov}(r)$ in the overlapping region. According to Eqs. (3) and (11-13), the Gamow factor G_{ov} is analytically given by

$$G_{ov} = 0.4374702(c-a)g\left\{\mu_0 \left[\frac{2Z_d e^2}{c} + \frac{20.9008l(l+1)}{\mu_0 c^2} - Q_\alpha\right]\right\}^{1/2},$$
(14)

where

$$g = \left(1 + \frac{\chi + q}{2}\right)^{-1}, \quad 0 < g \le 2/3,$$
 (15)

is the unique adjustable parameter of the model, the value of which is determined from a set of measured half-life values. According to Eqs. (11), (12) and (15), it is easy to see that the parameter g is correlated to the reduced mass and interaction potential in the overlapping region.

In the separation region ($c \le r \le b$, see Fig. 1), the corresponding reduced mass of the disintegration system $\mu_{se}(r)$ becomes a constant. Meanwhile, the potential barrier $V_{se}(r)$ comprises superposition of the Coulomb and centrifugal potential barriers. As a result, the $\mu_{se}(r)$ and $V_{se}(r)$ can be given by

$$\mu_{se}(r) = \mu_0, \tag{16}$$

$$V_{se}(r) = \frac{2Z_d e^2}{r} + \frac{l(l+1)\hbar^2}{2\mu_0 r^2}.$$
(17)

Combing Eqs. (4), (16) and (17), the Gamow factor G_{se} is given by a simple analytic form as

$$G_{se} = 1.25988372Z_d \left(\frac{\mu_0}{Q_\alpha}\right)^{1/2} [F(x,y) + H(x,y) - f(x,y)],$$
(18)

with

$$F(x,y) = \frac{x^{1/2}}{2y} \times \ln \frac{[x(x+2y-1)]^{1/2} + x + y}{\frac{x}{y} \left[1 + \left(1 + \frac{x}{y^2}\right)^{1/2}\right]^{-1} + y},$$
 (19)

$$H(x,y) = \arccos\left\{\frac{1}{2}\left[1 - \frac{1 - \frac{1}{y}}{\left(1 + \frac{x}{y^2}\right)^{1/2}}\right]\right\}^{1/2}, \quad (20)$$

$$f(x,y) = \left[\frac{1}{2y}\left(1 + \frac{x}{2y} - \frac{1}{2y}\right)\right]^{1/2},$$
(21)

where

$$x = \frac{20.9008l(l+1)}{\mu_0 c^2 Q_\alpha}, \quad y = \frac{Z_d e^2}{c Q_\alpha}.$$
 (22)

Finally, the half-life of α -decay is calculated by

$$T_{1/2} = 1.0 \times 10^{-22} a \left(\frac{\mu_0}{Q_\alpha}\right)^{1/2} e^{G_{ov} + G_{se}}.$$
 (23)

III. RESULTS AND DISCUSSIONS

To proceed with a systematic analysis of the α -decay half-lives of SHN with Z \ge 104, firstly we need to determine the *g*-value of Eq. (14), which has a certain influence on the strength of S_{α} as well as the half-lives. Since the standard deviation (σ) represents the difference between the experimental half-lives and the calculated ones, so in this work we follow the practice of Ref. [60] to find the optimal *g*-value by the minimizing σ within the following formula

$$\sigma = \left[\frac{1}{n} \sum_{i=1}^{n} (\log_{10} T_{1/2}^{\text{expt},i} - \log_{10} T_{1/2}^{\text{cal},i})^2\right]^{1/2}, \quad (24)$$

where $\log_{10} T_{1/2}^{\text{expt.}}$ and $\log_{10} T_{1/2}^{\text{cal.}}$ are the decimal logarithms of the experimental and calculated half-lives, respectively. n is the number of α -decay events of SHN. By inputting the experimental Q_{α} values and half-lives taken from Refs. [6–20, 68–71], the process for determining the optimal g-value is plotted in Fig. 2. From Fig. 2 it can be seen that the parameter g is determined to be 0.2038 when the minimum σ (σ_{\min}) equals to 0.5127. Then the half-lives of the 81 α -emitters are calculated within the

Fig. 2. The standard deviation σ as a function of the g values.

one-parameter model by inputting the obtained optimal gvalue. The detailed calculated results are listed in Table 1. In Table 1, column 1 represents the parent nuclei. Column 2 denotes the experimental Q_{α} values. The S_{α} values extracted by Eqs. (1), (14) and (15) are shown in column 3. Columns 4 and 5 are the decimal logarithms of the experimental half-lives and those of the calculated half-lives, respectively. Note that for α -decay of these SHN, the *l* values are selected as 0 because their spin-parities are not available. Therefore, the centrifugal potential contribution to the half-life is not taken into account. From Table 1, one can see that the S_{α} values are located between 6.12×10^{-2} and 7.15×10^{-2} , whose order of magnitude is consistent with those of the generalized liquid drop model [35, 72] and the study reported by Ismail et al. [73]. Next, to show the global deviation quantitatively, besides the above mentioned σ values, the average deviation $\overline{\sigma}$ is calculated by the following expression

$$\overline{\sigma} = \frac{1}{n} \sum_{i=1}^{n} \left| \log_{10} T_{1/2}^{\text{expt},i} - \log_{10} T_{1/2}^{\text{cal},i} \right|.$$
(25)

Within Eq. (25), the obtained $\overline{\sigma}$ value of 81 SHN is 0.4377. It suggests that the experimental α -decay half-lives are reproduced well by this model.

To further analyze the deviation of the experimental half-lives from the calculated ones, the logarithm hindrance factor $\log_{10} HF$ is calculated by

$$\log_{10} HF = \log_{10} (T_{1/2}^{\text{expt.}} / T_{1/2}^{\text{cal.}}).$$
(26)

The $\log_{10} HF$ values within Eq. (26) are listed in the final column of Table 1 and the $\log_{10} HF$ values versus the neutron numbers *N* of parent nuclei are plotted in Fig. 3. Usually, it is believed that if the $\log_{10} HF$ value is within a factor of 1.0, the calculated half-lives will be in agreement with the experimental data [5, 49, 50]. From the last column of Table 1 and Fig. 3, an agreement between the

Fig. 3. The $\log_{10} HF$ values versus the neutron numbers N of parent nuclei for 81 SHN using the one-parameter model.

a-decay nan-nives of superneavy nuclei within a one-parameter n	decay half lives of	aunarhaava nua	lai within a one	naramatar modal
	-uecay nan-nves of	superneavy nuc	iei wittiin a one-	parameter model

	Table I. The	experimental and calc	unated α -decay half-lives of	I SHIN WITH $Z \ge 104$.	
Nuclei	Q_{α} (MeV)	$S_{\alpha}(10^{-2})$	$\log_{10} T_{1/2}^{\text{expt.}}$ (s)	$\log_{10} T_{1/2}^{\text{cal.}}$ (s)	$\log_{10} HF$
²⁵⁵ 104	9.05 [67]	6.63	0.65 [67]	0.39	0.26
²⁵⁶ 104	8.93 [68]	6.59	0.32 [71]	0.75	-0.43
²⁵⁸ 104	9.19 [68]	6.72	-0.97 [71]	-0.08	-0.90
²⁵⁹ 104	9.13 [67]	6.70	0.41 [67]	0.09	0.33
²⁶¹ 104	8.65 [<mark>68</mark>]	6.53	0.91 [71]	1.55	-0.64
²⁶³ 104	8.25 [67]	6.40	3.30 [67]	2.87	0.43
²⁵⁶ 105	9.34 [68]	6.63	0.45 [71]	-0.13	0.58
²⁵⁷ 105	9.21 [67]	6.59	0.39 [67]	0.25	0.14
²⁵⁸ 105	9.50 [67]	6.72	0.75 [67]	-0.61	1.36
²⁵⁹ 105	9.62 [68]	6.78	-0.29 [71]	-0.97	0.67
²⁷⁰ 105	8.02 [6]	6.27	3.56 [6]	4.00	-0.44
²⁵⁹ 106	9.80 [68]	6.73	-0.51 [71]	-1.12	0.62
²⁶⁰ 106	9.90 [68]	6.78	-1.91 [71]	-1.40	-0.51
²⁶¹ 106	9.71 [68]	6.72	-0.73 [71]	-0.91	0.18
²⁶³ 106	9.40 [68]	6.61	0.03 [71]	-0.05	0.08
²⁶⁷ 106	8.32 [7]	6.25	2.80 [7]	3.34	-0.54
²⁶⁹ 106	8.70 [<mark>68</mark>]	6.41	2.68 [71]	2.03	0.65
²⁷¹ 106	8.66 [8]	6.41	2.21 [8]	2.14	0.08
²⁶⁰ 107	10.4 [67]	6.86	-1.46 [67]	-2.35	0.90
²⁶¹ 107	10.5 [67]	6.92	-1.93 [67]	-2.61	0.69
²⁶⁵ 107	9.38 [9]	6.51	-0.03 [9]	0.34	-0.37
²⁶⁶ 107	9.43 [10]	6.54	0.40 [10]	0.18	0.22
²⁶⁷ 107	8.96 [10]	6.37	1.34 [10]	1.58	-0.24
²⁷⁰ 107	9.06 [67]	6.44	1.78 [67]	1.24	0.54
²⁷² 107	9.14 [11]	6.49	0.91 [11]	0.95	-0.04
²⁷⁴ 107	8.97 [6]	6.44	1.48 [6]	1.46	0.01
²⁶⁴ 108	10.59 [67]	6.86	-2.80 [67]	-2.55	-0.24
²⁶⁵ 108	10.47 [68]	6.82	-2.71 [71]	-2.27	-0.44
²⁶⁶ 108	10.35 [67]	6.78	-2.64 [67]	-1.97	-0.67
²⁶⁸ 108	9.62 [68]	6.52	0.15 [71]	-0.05	0.20
²⁶⁹ 108	9.32 [12]	6.41	1.18 [12]	0.83	0.36
²⁷⁰ 108	9.15 [20]	6.36	0.88 [20]	1.33	-0.45
²⁷³ 108	9.73 [68]	6.61	-0.04 [71]	-0.43	0.39
²⁷⁵ 108	9.44 [68]	6.52	-0.54 [71]	0.38	-0.92
²⁷⁰ 109	10.18 [68]	6.64	-2.20 [71]	-1.26	-0.94
²⁷⁴ 109	10.04 [13]	6.63	-0.35 [13]	-0.94	0.59
²⁷⁵ 109	10.48 [14]	6.82	-2.01 [14]	-2.11	0.10
²⁷⁶ 109	9.81 [67]	6.56	-0.14 [67]	-0.35	0.21
²⁷⁸ 109	9.59 [<mark>6</mark>]	6.49	0.56 [6]	0.25	0.30
²⁶⁷ 110	11.78 [68]	7.15	-5.00 [71]	-4.67	-0.33
²⁶⁹ 110	11.51 [67]	7.06	-3.75 [67]	-4.12	0.37

Table 1. The experimental and calculated α -decay half-lives of SHN with $Z \ge 104$.

Continued on next page

Table 1-continued from previous page

				ruore r commucu	nom previous puge
Nuclei	Q_{α} (MeV)	$S_{\alpha}(10^{-2})$	$\log_{10} T_{1/2}^{\text{expt.}}$ (s)	$\log_{10} T_{1/2}^{\text{cal.}}$ (s)	$\log_{10} HF$
270110	11.12 [68]	6.90	-3.69 [71]	-3.25	-0.44
²⁷¹ 110	10.87 [<mark>67</mark>]	6.81	-2.79 [67]	-2.68	-0.10
²⁷³ 110	11.37 [67]	7.04	-3.77 [67]	-3.87	0.10
²⁷⁵ 110	11.37 [70]	7.07	-3.37 [70]	-3.90	0.53
277110	10.83 [67]	6.86	-2.39 [67]	-2.67	0.29
²⁷⁹ 110	9.84 [8]	6.49	0.30 [8]	-0.13	0.43
²⁸¹ 110	8.86 [15]	6.14	2.35 [15]	2.86	-0.51
²⁷² 111	11.20 [67]	6.83	-2.42 [67]	-3.15	0.73
²⁷⁸ 111	10.85 [67]	6.76	-2.38 [67]	-2.42	0.04
²⁷⁹ 111	10.52 [67]	6.64	-0.77 [67]	-1.61	0.84
²⁸⁰ 111	9.89 [11]	6.40	0.55 [11]	0.06	0.48
²⁸¹ 111	9.41 [16]	6.24	2.23 [16]	1.45	0.78
²⁸² 111	9.08 [6]	6.13	2.27 [6]	2.47	-0.20
²⁷⁷ 112	11.62 [67]	6.94	-3.16 [67]	-3.86	0.70
²⁸¹ 112	10.46 [67]	6.52	-0.89 [67]	-1.15	0.27
²⁸³ 112	9.67 [17]	6.24	0.58 [17]	1.01	-0.43
²⁸⁴ 112	9.30 [18]	6.12	0.99 [18]	2.12	-1.13
²⁸⁵ 112	9.32 [68]	6.13	1.51 [71]	2.04	-0.54
²⁷⁸ 113	11.85 [67]	6.93	-3.62 [67]	-4.07	0.45
²⁸² 113	10.78 [67]	6.54	-1.15 [67]	-1.65	0.50
²⁸³ 113	10.26 [14]	6.35	-0.99 [14]	-0.31	-0.68
²⁸⁴ 113	10.11 [11]	6.30	-0.03 [11]	0.08	-0.10
²⁸⁵ 113	9.84 [11]	6.22	0.51 [11]	0.84	-0.33
²⁸⁶ 113	9.79 [67]	6.21	1.30 [67]	0.97	0.33
²⁸⁵ 114	10.54 [19]	6.36	-0.33 [19]	-0.75	0.43
²⁸⁶ 114	10.37 [68]	6.31	-0.46 [71]	-0.32	-0.14
²⁸⁷ 114	10.16 [68]	6.24	-0.28 [71]	0.24	-0.53
²⁸⁸ 114	10.07 [68]	6.22	-0.12 [71]	0.48	-0.60
²⁸⁹ 114	9.97 [68]	6.19	0.38 [71]	0.75	-0.37
²⁸⁷ 115	10.74 [68]	6.35	-0.92 [71]	-0.97	0.05
²⁸⁸ 115	10.63 [68]	6.32	-0.72 [71]	-0.70	-0.02
²⁸⁹ 115	10.49 [11]	6.28	-0.70 [11]	-0.34	-0.36
²⁹⁰ 115	10.45 [6]	6.27	0.11 [6]	-0.25	0.37
²⁹⁰ 116	10.99 [68]	6.36	-2.10 [71]	-1.32	-0.77
²⁹¹ 116	10.89 [68]	6.34	-1.55 [71]	-1.08	-0.47
²⁹² 116	10.77 [68]	6.30	-1.62 [71]	-0.80	-0.82
²⁹³ 116	10.68 [68]	6.28	-1.10 [71]	-0.57	-0.52
²⁹³ 117	11.18 [69]	6.36	-1.84 [69]	-1.51	-0.32
²⁹⁴ 117	11.20 [6]	6.37	-1.29 [6]	-1.58	0.29
²⁹⁴ 118	11.81 [68]	6.49	-2.85 [71]	-2.70	-0.15

calculated half-lives and the experimental data is found except for the cases of ²⁵⁸105 and ²⁸⁴112. The agreement implies the assumed S_{α} expression has a certain of rationality. For some models, the inner potential barrier correlated to S_{α} is neglected. To make up for this deficiency, the empirical or constant S_{α} is usually used [58, 74]. As a result, the accuracies and predicted powers of these models are not so satisfactory. But for the one-parameter model, the potential barrier is composed of the inner barrier in the overlapping region and the external barrier in the separation region. The penetrability through the inner part of the potential is considered to represent S_{α} . Furthermore, the correlation between S_{α} and Q_{α} is taken into account, which can be seen from Eqs. (1) and (14). So, the S_{α} values can be extracted reasonably. Besides, relevant studies suggested that the charge radius has important influence on the α -decay half-life [39, 75, 76]. In the one-parameter model, the accurate radius expressions following the droplet model (Eqs. (5-10)) are included. Based on the two above mentioned reasons, most experimental α -decay half-lives are reproduced well. However, it is necessary to point out that there exist a set of expressions for the charge radius [77-80] except for the radius formulas of droplet model. When other types of radius formulas are used to calculate the α -decay half-life within the one-parameter model, the calculated accuracy will be changed. But if ones want to improve the model accuracy, the parameters of the charge radius formulas need to be refitted using the experimental data of α -decay.

Encouraged by the agreement between the calculated half-lives and the experimental data, we attempted to predict the α -decay half-lives of Z = 118-120 isotopes within the one-parameter model. It is well known that Q_{α} values play a crucial role in determining the half-lives. Recent years, various models on the nuclear masses have been developed to obtain the Q_{α} values. In present work, we select the RCHB [81], DZ19 [82], IMWS [83] and ML [84] mass tables to get the Q_{α} values through the following relationship

$$Q_{\alpha} = M - M_d - M_{\alpha}, \qquad (27)$$

where M, M_d and M_α represent the mass excesses of the parent nucleus, daughter nucleus and emitted α -particle, respectively.

Then, the α -decay half-lives of Z = 118-120 isotopes are calculated by inputting the Q_{α} values extracted from the above mentioned four kinds of nuclear mass tables. The Q_{α} values, corresponding S_{α} and half-lives of Z =118-120 isotopes are listed in Table 2. From Table 2, one can see that (i) for a given nucleus the Q_{α} values extracted from the four types of nuclear mass tables are different. This indicates that Q_{α} are dependent strongly on nuclear mass models; (ii) S_{α} is slightly dependent on the Q_{α} values. Specifically, the larger the Q_{α} , the larger the S_{α} value, and vice versa; (iii) the half-lives are sensitive to the Q_{α} values. For example, the Q_{α} value of ²⁸⁹118 given by the RCHB theory is lower 2.82 MeV than that by the DZ19 model, but the corresponding half-life difference is as high as about 7 orders of magnitude. Hence, it is necessary to continue developing a more accurate mass model by taking into account more physical ingredients.

Very recently, a newly synthesized nuclide ²⁵²Rf was reported [85]. Its half-life is measured as 60^{+90}_{-30} ns, which has the shortest half-life among all the synthesized SHN. However, the research focused on its spontaneous fission and decay in high-K isomeric states and its α -decay halflife was not given. So we predict its decimal logarithms of α -decay half-life within the one-parameter model by inputting the Q_{α} values extracted from the RCHB, DZ19, IMWS and ML mass models, whose Q_{α} values are 10.71, 9.79, 9.66 and 9.87 MeV, respectively. It results in the decimal logarithms of α -decay half-lives with -3.95, -1.68, -1.33 and -1.87 s, respectively. These values are much longer than its total half-life, which indicates that the dominant decay mode of ²⁵²Rf is the spontaneous fission indeed. Additionally, the Lawrence Berkeley National Laboratory announced that the SHN with Z = 116 was produced using titanium beams and two α -decay chains were observed from ²⁹⁰Lv [86]. The Q_{α} values detected from the two α -decay chains are 10.32 and 10.98 MeV, respectively, which are close to the previous experimental data [68]. However, the precise α -decay half-lives were not measured. Within the one-parameter model by inputting the two new Q_{α} values, the decimal logarithms of α decay half-lives are estimated as 0.44 and -1.30 s, respectively, which are greater than the half-life reported in Ref. [71]. So, its α -decay half-life needs to be measured more accurately in future experiments.

It is well known that searching for the magic numbers of the SHN has been an interesting subject in modern nuclear physics. To get the magic numbers, the extracted Q_{α} values, the corresponding S_{α} and predicted $\log_{10} T_{1/2}$ values versus N are plotted in Fig. 4. Meanwhile, the locations of the magic numbers are marked by the dashed lines. From Fig. 4 one can see that for the case of the RCHB, magic number effect at N = 172 and N =184 are observed evidently. This implies that the nuclei with N = 172 and N = 184 could be more stable and synthesized more easily than their neighborhoods. However, for the case of the ML, the magic numbers are located at N = 178 and 184, respectively. Furthermore, the shell effect of N = 184 is stronger than that of N = 178. Besides, for the cases of the DZ19 and IMWS, an apparent shell effect at N = 184 is observed. In fact, the shell effect at N = 184 is almost not dependent on the models [91, 87]. However, the shell effects at N = 172 and 178 depend on the models strongly. Anyway, the shell effects of the SHN need to be verified by more experiments in the fu-

Table 2. The predicted $\log_{10} T_{1/2}$ values of Z = 118-120 isotopes by inputting the Q_{α} values extracted from the RCHB, DZ19, IMWS, and ML mass tables. The Q_{α} values and the α -decay half-lives are measured in MeV and seconds, respectively. The symbol '-' denotes the Q_{α} values are not available, therefore, the corresponding $\log_{10} T_{1/2}$ values are not shown.

Nuclai	$Q^{ m RCHB}_{lpha}$	Q^{DZ19}_{lpha}	$Q^{\rm IMWS}_{lpha}$	Q^{ML}_{lpha}	S_{α}^{RCHB}	$S_{\alpha}^{\mathrm{DZ19}}$	$S_{\alpha}^{\rm IMWS}$	S ^{ML} _a	$\log_{10} T_{1/2}^{\text{RCHB}}$	$\log_{10} T_{1/2}^{\text{DZ19}}$	$\log_{10} T_{1/2}^{\mathrm{IMWS}}$	$\log_{10} T_{1/2}^{\mathrm{ML}}$
Nuclei	(MeV)	(MeV)	(MeV)	(MeV)	(10^{-2})	(10^{-2})	(10^{-2})	(10^{-2})	(s)	(s)	(s)	(s)
²⁸⁹ 118	9.77	12.59	12.09	12.52	5.72	6.75	6.55	6.72	2.76	-4.31	-3.25	-4.17
²⁹⁰ 118	9.50	12.38	12.18	12.46	5.65	6.67	6.60	6.71	3.60	-3.88	-3.47	-4.05
²⁹¹ 118	10.27	12.16	12.05	12.35	5.91	6.60	6.55	6.67	1.26	-3.43	-3.19	-3.84
²⁹² 118	10.97	11.95	12.07	12.10	6.16	6.53	6.57	6.59	-0.64	-2.99	-3.24	-3.32
²⁹³ 118	10.94	11.75	11.92	12.17	6.16	6.46	6.53	6.62	-0.58	-2.54	-2.94	-3.48
²⁹⁴ 118	10.92	11.56	11.89	12.06	6.16	6.40	6.52	6.59	-0.54	-2.12	-2.87	-3.25
²⁹⁵ 118	10.88	11.36	11.78	11.83	6.16	6.33	6.49	6.51	-0.46	-1.67	-2.65	-2.77
²⁹⁶ 118	10.78	11.18	11.89	11.61	6.13	6.28	6.55	6.44	-0.21	-1.25	-2.91	-2.27
²⁹⁷ 118	10.65	11.00	11.83	12.03	6.09	6.22	6.53	6.61	0.12	-0.81	-2.80	-3.24
²⁹⁸ 118	10.62	10.84	11.86	12.04	6.09	6.17	6.55	6.63	0.19	-0.40	-2.87	-3.27
²⁹⁹ 118	10.50	10.67	11.76	11.98	6.06	6.12	6.53	6.61	0.50	0.02	-2.67	-3.14
³⁰⁰ 118	10.48	10.52	11.75	11.81	6.06	6.08	6.53	6.56	0.54	0.42	-2.66	-2.80
³⁰¹ 118	10.27	10.37	11.68	11.95	6.00	6.03	6.51	6.62	1.11	0.83	-2.49	-3.11
³⁰² 118	10.62	10.23	11.65	11.90	6.13	5.99	6.51	6.61	0.13	1.20	-2.44	-3.01
³⁰³ 118	12.21	11.18	12.40	12.53	6.74	6.34	6.82	6.88	-3.70	-1.33	-4.10	-4.38
³⁰⁴ 118	12.66	11.92	12.36	12.98	6.94	6.64	6.82	7.08	-4.65	-3.09	-4.03	-5.29
²⁹⁰ 119	9.98	12.95	12.74	13.07	5.71	6.79	6.70	6.84	2.46	-4.74	-4.34	-4.98
²⁹¹ 119	9.70	12.72	12.76	12.98	5.63	6.71	6.72	6.81	3.31	-4.32	-4.39	-4.82
²⁹² 119	10.57	12.50	12.75	12.90	5.92	6.63	6.73	6.79	0.74	-3.87	-4.38	-4.69
²⁹³ 119	11.35	12.29	12.70	12.64	6.20	6.56	6.72	6.70	-1.29	-3.44	-4.29	-4.19
²⁹⁴ 119	11.34	12.07	12.53	12.73	6.21	6.48	6.66	6.74	-1.28	-2.99	-3.96	-4.36
²⁹⁵ 119	11.33	11.88	12.62	12.69	6.21	6.42	6.71	6.74	-1.27	-2.56	-4.16	-4.30
²⁹⁶ 119	11.29	11.68	12.43	12.47	6.21	6.35	6.64	6.66	-1.18	-2.12	-3.79	-3.88
²⁹⁷ 119	11.21	11.49	12.55	12.35	6.19	6.29	6.70	6.62	-1.00	-1.69	-4.05	-3.64
²⁹⁸ 119	11.09	11.30	12.62	12.71	6.16	6.23	6.74	6.78	-0.71	-1.25	-4.20	-4.39
²⁹⁹ 119	11.07	11.13	12.60	12.69	6.16	6.18	6.74	6.78	-0.68	-0.83	-4.17	-4.37
³⁰⁰ 119	10.97	10.95	12.48	12.57	6.13	6.13	6.71	6.74	-0.43	-0.40	-3.95	-4.13
³⁰¹ 119	10.95	10.79	12.39	12.36	6.13	6.08	6.68	6.67	-0.40	0.01	-3.77	-3.69
³⁰² 119	10.70	10.63	12.32	12.43	6.06	6.03	6.66	6.70	0.25	0.43	-3.63	-3.86
³⁰³ 119	11.17	10.48	12.23	12.35	6.23	5.99	6.64	6.68	-0.98	0.82	-3.46	-3.70
³⁰⁴ 119	12.73	11.60	13.06	12.93	6.85	6.40	6.99	6.93	-4.50	-2.04	-5.15	-4.90
³⁰⁵ 119	13.10	12.51	12.87	13.35	7.02	6.77	6.92	7.13	-5.24	-4.07	-4.80	-5.73
²⁹¹ 120	_	-	13.33	13.50	-	_	6.83	6.90	_	_	-5.21	-5.53
²⁹² 120	-	-	13.22	13.40	-	-	6.80	6.88	-	-	-5.03	-5.36
²⁹³ 120	11.02	-	13.22	13.39	5.98	-	6.81	6.88	-0.14	-	-5.05	-5.36
²⁹⁴ 120	11.91	12.63	13.23	13.17	6.31	6.59	6.83	6.80	-2.31	-3.89	-5.08	-4.96
²⁹⁵ 120	11.88	12.42	13.17	13.26	6.31	6.51	6.81	6.85	-2.26	-3.44	-4.96	-5.14
²⁹⁶ 120	11.88	12.21	13.16	13.27	6.32	6.45	6.82	6.87	-2.27	-3.02	-4.97	-5.18

Continued on next page

 α -decay half-lives of superheavy nuclei within a one-parameter model

										Table 2-continued from previous p			
Nuclei	$Q^{ m RCHB}_{lpha}$	Q^{DZ19}_{lpha}	$Q^{ m IMWS}_{lpha}$	$Q^{ m ML}_{lpha}$	$S_{\alpha}^{\rm RCHB}$	$S^{\mathrm{DZ19}}_{\alpha}$	$S_{\alpha}^{\rm IMWS}$	S_{α}^{ML}	$\log_{10} T_{1/2}^{\rm RCHB}$	$\log_{10} T_{1/2}^{\text{DZ19}}$	$\log_{10} T_{1/2}^{\mathrm{IMWS}}$	$\log_{10} T_{1/2}^{\rm ML}$	
Tracter	(MeV)	(MeV)	(MeV)	(MeV)	(10^{-2})	(10^{-2})	(10^{-2})	(10^{-2})	(s)	(s)	(s)	(s)	
²⁹⁷ 120	11.84	12.00	13.06	13.13	6.31	6.38	6.79	6.82	-2.19	-2.57	-4.78	-4.92	
²⁹⁸ 120	11.77	11.81	13.09	12.94	6.30	6.31	6.81	6.75	-2.05	-2.14	-4.86	-4.56	
²⁹⁹ 120	11.66	11.61	13.10	13.25	6.27	6.25	6.83	6.89	-1.80	-1.69	-4.89	-5.17	
³⁰⁰ 120	11.63	11.43	13.05	13.25	6.27	6.19	6.82	6.90	-1.75	-1.27	-4.81	-5.19	
³⁰¹ 120	11.55	11.24	12.90	13.05	6.25	6.14	6.77	6.83	-1.57	-0.83	-4.53	-4.82	
³⁰² 120	11.52	11.08	12.81	12.82	6.25	6.09	6.74	6.75	-1.51	-0.42	-4.37	-4.38	
³⁰³ 120	11.33	10.90	12.74	12.80	6.19	6.04	6.73	6.75	-1.06	0.01	-4.23	-4.35	
³⁰⁴ 120	11.73	10.75	12.66	12.69	6.34	5.99	6.70	6.72	-2.04	0.42	-4.08	-4.15	
³⁰⁵ 120	13.25	12.03	13.45	13.27	6.96	6.47	7.04	6.96	-5.25	-2.76	-5.64	-5.29	
³⁰⁶ 120	13.59	13.12	13.29	13.72	7.11	6.91	6.99	7.17	-5.90	-5.02	-5.35	-6.14	

Fig. 4. (Color online) Left panel: The extracted Q_{α} values of Z = 118-120 isotopes versus N for RCHB theory, DZ19, IMWS, and ML models. Middle panel: Same as the left panel, but for the corresponding S_{α} values. Right panel: Same as the left and middle panels, but for the corresponding $\log_{10} T_{1/2}$ values.

ture.

V. CONCLUSIONS

In this article, the α -decay half-lives of SHN with $Z \ge 104$ have been calculated by the one-parameter model. By the comparison between the calculations and experimental data, it is shown that the calculated half-lives are in good agreement with the experimental data. Moreover, the S_{α} values and α -decay half-lives of the Z = 118-120isotopes are estimated by inputting the Q_{α} values extracted from the RCHB, DZ19, IMWS and ML nuclear mass tables. It is shown that the order of magnitude of S_{α} is 10^{-2} . By analyzing the Q_{α} values, the corresponding S_{α} and $\log_{10} T_{1/2}$ values versus the neutron number N, it is found that the shell effect at N = 184 is evident for all the cases. Meanwhile, it is found that N = 172 is the submagic number for the RCHB theory. However, the submagic number at N = 172 is replaced by N = 178 for the ML approach. We hope our study is helpful for the synthesis of the new SHN in the future. At last, it is necessary to point out that the two-proton radioactivity, especially for its spectroscopic factor, has been an attracted subject in recent years [88–91]. However, it is a challenging task to obtain the accurate spectroscopic factor because the correlation between the two emitted protons is complex [88–93]. So it is interesting to extend or improve the one-parameter model to extract the spectroscopic factor of the two-proton radioactivity, which is a work in progress.

References

- [1] T. Wan, S. L. Tang, and Y. B. Qian, Chin. Phys. C 48, 034103 (2024)
- [2] G. Saxena, P. K. Sharma, and P. Saxena, Eur. Phys. J. A 60, 50 (2024)
- [3] Y. L. Zhang and Y. Z. Wang, Phys. Rev. C 97, 014318 [25] (2018)
- [4] Y. Z. Wang, S. J. Wang, Z. Y. Hou, and J. Z. Gu, Phys. Rev. C 92, 064301 (2015)
- [5] J. P. Cui, Y. L. Zhang, S. Zhang, and Y. Z. Wang, Phys. Rev. C 97, 014316 (2018)
- [6] J. Khuyagbaatar, A. Yakushev, Ch. E. Düllmann *et al.*, Phys. Rev. Lett. **112**, 172501 (2014)
- [7] J. Dvorak, W. Brüchle, M. Chelnokov *et al.*, Phys. Rev. Lett. **100**, 132503 (2008)
- [8] Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov et al., Phys. Rev. C 74, 044602 (2006)
- [9] Z. G. Gan, J. S. Guo, X. L. Wu *et al.*, Eur. Phys. J. A 20, 385 (2004)
- [10] P. A. Wilk, K. E. Gregorich, A. Türler *et al.*, Phys. Rev. Lett. **85**, 2697 (2000)
- [11] Yu. Ts. Oganessian, F. Sh. Abdullin, S. N. Dmitriev *et al.*, Phys. Rev. Lett. **108**, 022502 (2012)
- [12] S. Hofmann and G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000)
- [13] Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov *et al.*, Phys. Rev. C **76**, 011601(R) (2007)
- [14] Yu. Ts. Oganessian, V. K. Utyonkoy, Yu. V. Lobanov et al., Phys. Rev. C 69, 021601(R) (2004)
- [15] Ch. E. Düllmann, M. Schädel, A. Yakushev *et al.*, Phys. Rev. Lett. **104**, 252701 (2010)
- [16] Yu. Ts. Oganessian, F. Sh. Abdullin, C. Alexander *et al.*, Phys. Rev. C 87, 054621 (2013)
- [17] Yu. Oganessian, J. Phys. G: Nucl. Part. Phys. 34, R165 (2007)
- [18] Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov *et al.*, Phys. Rev. C **62**, 041604 (2000)
- [19] P. A. Ellison, K. E. Gregorich, J. S. Berryman *et al.*, Phys. Rev. Lett. **105**, 182701 (2010)
- [20] Yu. Ts. Oganessian, Radiochim. Acta 99, 429 (2011)
- [21] J. H. Hamilton, S. Hofmann, and Y. T. Oganessian, Ann. Rev. Nucl. Part. Sci. 63, 383 (2013)

- [22] J. G. Deng and H. F. Zhang, Phys. Rev. C 102, 044314 (2020)
- [23] E. Olsen and W. Nazarewicz, Phys. Rev. C 99, 014317 (2019)
- [24] D. T. Akrawy and A. H. Ahmed, Phys. Rev. C 100, 044618 (2019)
- [25] T. N. Ginter, K. E. Gregorich, W. Loveland *et al.*, Phys. Rev. C 67, 064609 (2003)
- [26] X. Y. Zhu, S. Luo, W. Gao, L. J. Qi, M. Li, X. H. Li, and W. B. Lin, Chin. Phys. C 48, 074102 (2024)
- [27] X. Liu, J. D. Jiang, X. J. Wu, and X. H. Li, Chin. Phys. C 48, 054101 (2024)
- [28] G. Gamow and Z. Phys. 51, 204 (1928).
- [29] E. U. Condon and R. W. Gurney, Nature 122, 439 (1928)
- [30] M. G. Goncalves and S. B. Duarte, Phys. Rev. C 48, 2409 (1993)
- [31] S. B. Duarte and M. G. Goncalves, Phys. Rev. C 53, 2309 (1996)
- [32] F. Guzman, M. Goncalves and O. A. P. Tavares *et al.*, Phys. Rev. C 59, R2339 (1999)
- [33] J. P. Cui, F. Z. Xing, Y. H. Gao, L. Q. Qi, Y. Z. Wang, and J. Z. Gu, Commun. Theor. Phys. 76, 035301 (2024)
- [34] G. Royer, R. K. Gupta and V. Y. Denisov, Nucl. Phys. A 632, 275 (1998)
- [35] H. F. Zhang and G. Royer, Phys. Rev. C 77, 054318 (2008)
- [36] B. Buck, Phys. Rev. Lett. 72, 1326 (1994)
- [37] B. Buck, A. C. Merchant and S. M. Perez, Phys. Rev. C 45, 2247 (1992)
- [38] C. Xu and Z. Z. Ren, Phys. Rev. C 69, 024614 (2004)
- [39] Y. Z. Wang, F. Z. Xing, Y. Xiao, and J. Z. Gu, Chin. Phys. C 45, 044111 (2021)
- [40] C. Xu and Z. Z. Ren, Phys. Rev. C 74, 037302 (2006)
- [41] P. R. Chowdhury, C. Samanta, and D. N. Basu, Phys. Rev. C 73, 014612 (2006)
- [42] C. Samanta, P. R. Chowdhury, and D. N. Basu, Nucl. Phys. A 789, 142 (2007)
- [43] T. B. Zhu, B. T. Hu, H. F. Zhang, J. M. Dong, and J. Q. Li, Commun. Theor. Phys. 55, 307 (2011)
- [44] J. M. Dong, H. F. Zhang, J. Q. Li, and W. Scheid, Eur. Phys. J. A 41, 197 (2009)
- [45] K. P. Santhosh, R. K. Biju, and A. Joseph, J. Phys. G: Nucl. Part. Phys. 35, 085102 (2008)
- [46] G. Royer, J. Phys. G: Nucl. Part. Phys. 26, 1149 (2000)

- [47] C. Qi, F. R. Xu, R. J. Liotta, and R. Wyss, Phys. Rev. Lett. 103, 072501 (2009)
- [48] C. Qi, F. R. Xu, R. J. Liotta, R. Wyss, M. Y. Zhang, C. Asawatangtrakuldee, and D. Hu, Phys. Rev. C 80, 044326 (2009)
- [49] F. Z. Xing, H. Qi, J. P. Cui, Y. H. Gao, Y. Z. Wang, J. Z. Gu, and G. C. Yong, Nucl. Phys. A **1028**, 122528 (2022)
- [50] L. Q. Qi, J. P. Cui, Y. H. Gao, Y. Z. Wang, and J. Z. Gu, Nucl. Phys. A 1050, 122929 (2024)
- [51] F. Z. Xing, J. P. Cui, Y. H. Gao, L. Q. Qi, Y. Z. Wang, and J. Z. Gu, Nucl. Phys. Rev. 40, 511 (2023)
- [52] D. N. Poenaru, Phys. Rev. C 65, 054308 (2002)
- [53] D. N. Poenaru, R. A. Gherghescu, and W. Greiner, Phys. Rev. C 83, 014601 (2011)
- [54] D. N. Poenaru and R. A. Gherghescu, Phys. Rev. C 97, 044621 (2018)
- [55] H. F. Zhang, G. Royer, Y. J. Wang, J. M. Dong, W. Zuo, and J. Q. Li, Phys. Rev. C 80, 057301(2009).
- [56] D. D. Ni and Z. Z. Ren, Nucl. Phys. A **828**, 348 (2009)
- [57] Y. B. Qian and Z. Z. Ren, Nucl. Phys. A 852, 82 (2011)
- [58] O. Nagib, Phys. Rev. C 101, 014610 (2020)
- [59] S. M. S. Ahmed, R. Yahaya, S. Radiman, M. S. Yasir, H. A. Kassim, and M. U. Khandaker, Eur. Phys. J. A 51, 13 (2015)
- [60] O. A. P. Tavares, E. L. Medeiros, and M. L. Terranova, J. Phys. G: Nucl. Part. Phys. 31, 129 (2005)
- [61] E. L. Medeiros, M. M. N. Rodrigues, S. B. Duarte, and O. A. P. Tavares, J. Phys. G: Nucl. Part. Phys. 32, B23 (2006)
- [62] O. A. P. Tavares and E. L. Medeiros, Phys. Sci. 86, 015207 (2012)
- [63] E. L. Medeiros, M. M. N. Rodrigues, S. B. Duarte, and O. A. P. Tavares, Eur. Phys. J. A 34, 417 (2007)
- [64] C. E. Düllmann, in EPJ Web Conf., 163, 00015 (2017).
- [65] S. Hofmann, S. Heinz, R. Mann *et al.*, Eur. Phys. J. A 52, 1 (2016)
- [66] Yu. Ts. Oganessian, V. K. Utyonkov, N. D. Kovrizhnykh et al., Phys. Rev. C 106, L031301 (2022)
- [67] NuDat2.7, http://www.nndc.bnl.gov.
- [68] M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xing, Chin. Phys. C 41, 030003 (2017)
- [69] Yu. Ts. Oganessian, F. Sh. Abdullin, P. D. Bailey et al., Phys. Rev. Lett. 104, 142502 (2010)
- [70] Yu. Ts. Oganessian, V. K. Utyonkov, M. V. Shumeiko et

al., Phys. Rev. C 109, 054307 (2024)

- [71] G. Audi, F. G. Kondev, M. Wang, W. J. Huang, and S. Naimi, Chin. Phys. C 41, 030001 (2017)
- [72] J. G. Deng and H. F. Zhang, Chin. Phys. C 45, 024104 (2021)
- [73] M. Ismail, A. Y. Ellithi, A. El-Depsy, and O. A. Mohamedien, Int. J. Mod. Phys. E 26, 1750026 (2017)
- [74] F. Z. Xing, J. P. Cui, Y. Z. Wang, and J. Z. Gu, Chin. Phys. C 45, 124105 (2021)
- [75] Y. B. Qian, Z. Z. Ren, and D. D. Ni, Rhys. Rev. C 87, 054323 (2013)
- [76] Y. B. Qian and Z. Z. Ren, Nucl. Phys. A 945, 134 (2016)
- [77] Y. Y. Cao and J. Y. Guo, Acta Phys. Sin. 69, 162101 (2020)
- [78] Z. Q. Sheng, G. W. Fan, J. F. Qian, and J. G. Hu, Eur. Phys. J. A 51, 40 (2015)
- [79] S. Q. Zhang, J. Meng, S. G. Zhou, and J. Y. Zeng, Eur. Phys. J. A 13, 285 (2002)
- [80] N. Wang and T. Li, Rhys. Rev. C 88, 011301(R) (2013)
- [81] X. W. Xia, Y. Lim, P. W. Zhao *et al.*, Atom. Data Nucl. Data **121**, 1 (2018)
- [82] C. Qi, J. Phys. G: Nucl. Part. Phys. 42, 045104 (2015)
- [83] N. N. Ma, H. F. Zhang, X. J. Bao, and H. F. Zhang, Chin. Phys. C 43, 044105 (2019)
- [84] Z. P. Gao, Y. J. Wang, H. L. Lü, Q. F. Li, C. W. Shen, and L. Liu, Nucl. Sci. Tech. 32, 109 (2021)
- [85] J. Khuyagbaatar, P. Mosat, J. Ballof *et al.*, Phys. Rev. Lett. 134, 022501 (2025)
- [86] J. M. Gates, R. Orford, D. Rudolph *et al.*, Phys. Rev. Lett. 133, 172502 (2024)
- [87] N. Wang, M. Liu, X. Z. Wu, and J. Meng, Phys. Lett. B 734, 215 (2014)
- [88] Y. Z. Wang, F. Z. Xing, J. P. Cui, Y. H. Gao, and J. Z. Gu, Chin. Phys. C 47, 084101 (2023)
- [89] Y. Z. Wang, F. Z. Xing, W. H. Zhang, J. P. Cui, and J. Z. Gu, Phys. Rev. C 110, 064305 (2024)
- [90] L. Zhou, S. M. Wang, D. Q. Fang, and Y. G. Ma, Nucl. Sci. Tech. 33, 105 (2022)
- [91] M. Pfützner, M. Karny, L. V. Grigorenko, and K. Riisager, Rev. Mod. Phys. 84, 567 (2012)
- [92] J. P. Cui, Y. H. Gao, Y. Z. Wang, and J. Z Gu, Rhys. Rev. C 101, 014301 (2020)
- [93] J. D. Jiang, X. Liu, D. M. Zhang, M. Li, X. J. Wu, and X. H. Li, Chin. Phys. C 48, 104108 (2024)