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Abstract: The formalism for a quantitative treatment of high-momentum components of  momentum distribu-
tions for the spin-singlet channels is presented. The approach suggests the use of a distribution for a virtual state in
momentum representation for the  channel in question as a universal one which can be further employed within
contact formalisms for nuclei. It is shown how such distributions can be calculated from low-energy scattering wave
functions in the same channels. As a result, a new characteristic (a constant) for the high-momentum part of the mo-
mentum distribution in a spin-singlet channel is introduced. As a test of the approach, we calculate the  nuclear
contacts for  nucleus which occur to be nearly the same for four realistic  interactions with essentially differ-
ent high-momentum properties. Found results should be useful for researchers studying the problem of short-range
correlations in nuclei. In particular, the approach gives a generalization for the formalisms based on nuclear contacts.
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I.  INTRODUCTION

The problem of short-range correlations (SRC) is very
relevant nowadays  due  to  the  recent  theoretical  and  ex-
perimental achievements [1−8]. The new experiments al-
low  to  count  correlated  nucleon  pairs  with  high  relative
momentum  and  small  center  of  mass  momentum.  The
theoretical description  of  the  corresponding  cross  sec-
tions  in  quasi-elastic  kinematics  is  reduced,  in  many
cases, to treatment of the momentum distributions of nuc-
leons  in  nuclei.  This  gave rise  to  the  contact  formalisms
[9, 10]  which  occur  to  be  quite  convenient  for  practical
calculations [5].

ρA
NN

In this paper, we discuss one of the key aspects of the
SRC problem. Two-nucleon momentum distribution 
in  the  nucleus A depends  on  the  relative  momentum  of
nucleons k, the momentum of their center of mass Q, and
the angle θ between them. These distributions have simil-
ar properties for different nuclei [11] and satisfy the fac-
torization property at high relative momenta k and low Q
[9, 12]: 

ρA
NN(k,Q, θ) ≈CA

NNρNN(k)ρA,NN
cm (Q), (1)

CA
NN

ρA,NN
cm (Q)

where  is a constant depending on the nucleus A (the
so-called  nuclear  contact),  is  a  distribution  of

ρNN(k)

NN
np

ρnp(k) = ρd(k) ρd(k)

ad
2

center-of-mass  momentum  for  a  pair  of  nucleons  in  the
nucleus  while  represents  a  universal  two-nucleon
momentum  distribution  (UMD)  which  does  not  depend
on A [9]. This distribution in its high-momentum part de-
pends on the chosen model of  interaction. In the case
of the spin-triplet  pairs, this universal distribution co-
incides with the distribution of nucleons in the deuteron:

. Since  is normalized to 1, one can cal-
culate  explicitly  a  weight  of  the  high-momentum part  of
the distribution  [13], which determines the magnitude
of SRC.
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At  the  same  time,  for  spin-singlet   channels
(i.e. ,  and ) bound states are absent, so there is a
problem of  determining the  corresponding universal  dis-
tributions  [9],  as  well  as  estimating  the  magnitude  of
high-momentum components for such states for two-nuc-
leon system. In [12], the corresponding momentum distri-
butions at  in  were considered as universal dis-
tributions for  (or )  pairs,  and factorization (1)  was
used to calculate spectral  functions for heavier nuclei  up
to Ca.  Another  approach  to  determining  the  UMD  for
spin-singlet  pairs  is  proposed  within  the  Generalized
Contact Formalism (GCF) [5, 10] by using the two-body

 scattering  wave  functions  at  zero  energy  which  are
normalized by their  high-momentum tails,  i.e.  by the in-
tegral  from  some  (the  boundary  of  the  high-mo-
mentum  region)  to  infinity.  However,  the  question  of
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NN

quantitative  evaluating  the  high-momentum  components
for  spin-singlet  channels,  which  would  allow comparing
different  interactions  in  this  respect,  still  remains
open.

NN
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In the  present  study,  we  suggest  the  universal  distri-
bution for singlet  channels which does not depend on
the boundary of the high-momentum region  and is de-
termined  directly  by  the  momentum  distribution  for  the
virtual  state.  It  should  be  noted,  that  such  a  distribution
for  a  particular  case  of  a  separable  interaction  has
been used as a two-body -distribution in Ref. [14]. In a
general case, to obtain the momentum distribution for vir-
tual  state,  one  can  use  the  low-energy  scattering  wave
functions.

NN

NN

NN

For  this  purpose,  we  use  the  approach  of  Fäldt  and
Wilkin [15, 16] which establishes a relation between the
scattering and  bound  state  wave  functions,  and  was  ap-
plied  to  inelastic  scattering  calculations  [17].  This
approach gives an explicit factor (the Fäldt-Wilkin factor)
which allows to approximately reproduce the bound- and
virtual-state  momentum  distributions  at  high-momentum
region by using the low-energy scattering wave functions.
As  a  result  of  the  developed  technique,  we  introduce
high-momentum  constants  for  different  interactions
in  the  spin-singlet  channel  and  compare  quantitatively
high-momentum parts of momentum distributions for dif-
ferent models of  interactions. Our recently suggested
treatment  [18]  for  high-momentum  components  of  the
scattering wave functions is helpful on this way.

pp 3He

NN 3N
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As  a  numerical  illustration,  we  calculate  the  nuclear
contacts  for  momentum distributions  in  with re-
spect to the introduced two-nucleon momentum distribu-
tions for four realistic but essentially different models of

 and  interaction and show that these contacts have
nearly  the  same  values.  Thus,  the  suggested  formalism
can  be  considered  as  an  extension  of  the  formalism
presented  in  Ref.  [9]  for  triplet momentum  distribu-
tions.

NN
NN

av
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The structure of the paper is as follows. In Section II,
we derive a relation between the scattering and bound- or
virtual-state wave functions and define an explicit factor,
i.e. the Fäldt–Wilkin factor. In Section III, the found rela-
tions are tested for the separable interaction when the vir-
tual-state  momentum  distribution  is  found  analytically
and for the realistic  interaction as well. In Section IV,
the  UMDs  for  the  spin-singlet  channels are  intro-
duced  based  on  the  developed  formalism and  the  values
of  the  high-momentum  constants  are  presented  for
four different models of  interaction. In Section V, the
nuclear contacts for  nucleus are calculated based on
the two-nucleon UMDs. The Summary is given in the last
Section VI.  For  the  reader  convenience,  a  small  Ap-
pendix A is given with the explicit relations between dif-
ferent universal momentum distributions. 

II.  MOMENTUM DISTRIBUTIONS FOR A
TWO-NUCLEON SYSTEM

 

A.    Bound-state, virtual-state and scattering
wave functions

Let's start  with the definitions which we will  use be-
low.

u(k) w(k)

For the spin-triplet bound state, the two-nucleon relat-
ive momentum distribution is naturally introduced by us-
ing  the  deuteron  wave  function  with  the S-wave  and D-
wave components  and , respectively: 

ρd(k) = |u(k)|2+ |w(k)|2,
∫ ∞

0
dkk2ρd(k) = 1. (2)

S (p) np
p =

√
2µE/h̄2

p = iκd κd ≡
√
−2µEd/h̄2 > 0

Ed

The S-matrix  for the spin-triplet -scattering (here
 is the on-shell momentum) has a pole in a

complex p-plane  at ,  where 
is the wave number corresponding to the bound-state en-
ergy , μ is the reduced mass of two nucleons.

NS ND

r→∞

The corresponding residues  of  the S-matrix  elements
at this pole determine the asymptotic normalization coef-
ficients (ANCs)  and  (see Section II.D), which set
amplitudes of components of the deuteron wave function
in configuration space at : 

u(r)→ NS exp(−κdr), w(r)→ ND exp(−κdr), r→∞ (3)

∫ ∞
0 [u2(r)+w2(r)]dr = 1

provided that the deuteron wave function is normalized to
unity: .

NN
1S 0

uv(r) Ev < 0 np Ev ≈ −67

p = iκv

There  are  no  bound  states  in  the  spin-singlet
channel .  However,  in  this  channel  there  is  a  virtual
state  with  (for the  system  keV).
The pole of the S-matrix corresponding to the virtual state
lies  on  the  unphysical  energy  sheet  and  on  the  negative
imaginary semi-axis in the complex p-plane at : 

κv ≡ −
»
−2µEv/h̄2, κv < 0. (4)

uv(r)The  function  grows exponentially  at  the  asymptot-
ics: 

uv(r)→ Nv exp(|κv|r), r→∞, (5)

Nv

S (p)
p = iκv

in  contrast  to  the  bound-state case.  However,  the  con-
stant  in eq. (5) is the ANC for a virtual state which is
related to the residue of the S-matrix  for the singlet
state at the pole .

uv(r)
It should be mentioned, that although the virtual state

function  in  the  coordinate  representation  with  the
asymptotics  (5)  cannot  be  normalized,  the  virtual  state
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uv(k)wave  function  in  the  momentum  representation  is
square integrable [19] (see also the example with a separ-
able potential  in Section III).  One can also define a spe-
cial Fourier transform procedure that relates the coordin-
ate  and  momentum  representations  for  the  virtual-state
wave function [20].

Therefore, one  can  consider  the  momentum distribu-
tion  for  the  virtual  state  in  a  similar  manner  as  for  the
bound-state (2) as follows 

ρv(k) = |uv(k)|2. (6)

NN

NN

This  distribution  has  the  same  dimension  as  for  the
bound-state,  however,  it  is  not  normalized  to  unity.  It
would  be  convenient  to  define  the  UMD  for  the  spin-
singlet  channels based on these distributions for vir-
tual states.  However,  a  practical  calculation of  such mo-
mentum distribution could be a complicated task for real-
istic  interactions. Thus, further we will show how to
reconstruct  it  in  high-momentum  region  just  from  the
low-energy scattering wave functions for the same inter-
action.

ψs
p ψt

p,l=0,2

NN 1S 0
3S 1

3D1

Finally, we should introduce here the scattering wave
functions  as  well.  Below we  consider  the  radial  parts  of
the scattering wave functions  and  for two main

 configurations  and -  both  in  coordinate
and momentum representations.  In  the  momentum space
these functions are normalized as follows: ∫ ∞

0
dkk2ψs

p(k)ψs
p′ (k) =

δ(p− p′)
p2

,

∑
l=0,2

∫ ∞
0

dkk2ψt
p,l(k)ψt

p′ ,l(k) =
δ(p− p′)

p2
, (7)

where p is the on-shell momentum.
In the configuration space we will consider functions

that  satisfy the asymptotic condition of a standing wave.
For a singlet channel this means: 

ψs
p(r)→

…
2
π

sin(pr+ϕ(p))
p

, r→∞, (8)

ϕ(p)where  is the partial phase shift. 

B.    Relation between scattering and bound or virtual
state wave functions

In  Ref.  [15],  the  authors  found  an  explicit  relation
between  bound-state  and  scattering  wave  functions  for
the  same Hamiltonian in  case  of  the S-wave interactions
(without tensor coupling) by using an analytical continu-
ation  of  the  scattering  wave  function  to  the  bound-state
pole of the S-matrix. For our purposes, we also need the

similar  relation  for  the  virtual  state.  So,  let's  reproduce
briefly  the  derivation  from  Ref.  [15]  with  some  minor
changes in notations.

p = iκNear  the  pole  corresponding  to  the  bound  or
virtual state the S-matrix can be presented in the form 

S (p) = e2iϕ(p) ≈ −i
N2

p− iκ
. (9)

For  a  bound  state,  the  constant N in eq.  (9)  is  a  corres-
ponding ANC (see [21, 22] and references therein). Near
the pole, the relation (9) can also be written in a form: 

S (p) ≈ 2κ
N2

p2+κ2
, (10)

κ > 0 κ < 0where  for a bound state and  for a virtual state.
The asymptotics  of  the  wave function of  both bound

and virtual  states in the configuration space can be writ-
ten in a unified way: 

u(r)→ Ne−κr, r→∞. (11)

At  the  same  time,  the  scattering  wave  function  has  the
following asymptotics: 

ψp(r)→C(+)(p)eipr −C(−)(p)e−ipr, r→∞, (12)

where in agreement with (8) 

C(±)(p) =
e±iϕ(p)

√
2πip

. (13)

p = iκ ϕ→−i∞ C(−)(p)→ 0Near the pole , , , hence 

ψp(r)→C(+)(p)e−κr,r→∞, p→ iκ. (14)

C(+)
Comparing  Eqs.  (10)  and  (13),  one  can  find  an  explicit
relation between  near the pole and ANC N: 

√
πκ(p2+κ2)C(+)(p) = −N. (15)

The quantity 

W(p,κ) =
√
πκ(p2+κ2) (16)

will be called below as the Fäldt-Wilkin's Factor (FWF).
Combining  Eqs.  (11),  (14),  and  (15),  we  obtain  the

following relationship between the wave functions of the
discrete and continuous spectrum: 
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lim
p→iκ

W(p,κ)ψp(r) = −u(r). (17)

u(r)

u(r)

κ
κ > 0 κ < 0

Eq.  (17)  was  derived in  [15]  for  a  bound state  with 
normalized to unity. However, we have just shown that it
is also valid for the virtual state for which the wave func-
tion  is normalized according to (11) with ANC N re-
lated to a pole of the S-matrix (9).  The transition from a
bound state to a virtual one can be considered as an ana-
lytical  continuation  with  respect  to  the  variable  from

 to  or, equivalently, with respect to some con-
stant characterizing the strength of the interaction poten-
tial.

C(+)(p)

κ > 0 κ < 0

Since  is real for imaginary values of p, it fol-
lows  from  (15)  that  ANC N is  real  for  bound  states
( )  and  purely  imaginary  for  virtual  states  ( ).
The validity of this assertion can be illustrated by the ex-
ample of  the  frequently  used effective  range approxima-
tion, within which 

N =

 
2κ

1−κreff
, (18)

reff

np 1S 0

a = −23.74 reff = 2.77
κ = −0.0399 Nv = i ·0.268 −1/2

where  is  an  effective  range.  Applying  the  effective
range approximation to the  system in the -state and
using  the  experimental  values  of  the  singlet  scattering
length (  fm) and effective range (  fm)
results in  fm-1 and  fm .1) 

C.    Approximate relation for the momentum
distributions

p = iκ

ψp(r)
u(r)

The  relation  (17)  is  an  equality  at  the  complex  pole
 only. However,  it  should  be  approximately  satis-

fied in a certain region near the pole, including small real
positive p. Indeed, in [16] it was shown that a similar ap-
proximate  relationship  between  the  scattering  function

 at  small p (low  energies)  and  the  weakly  bound
state function  holds in the region of small values of r: 

W(p,κ)ψp(r) ≈ −u(r), p ≲ |κ|, pr≪ 1. (19)

A similar  relation  must  also  be  valid  for  wave  func-
tions in  the  momentum representation,  and  thus  for  mo-
mentum  distributions,  in  the  high-momentum  area  for
both bound and virtual states: 

F(p,κ)|ψp(k)|2 ≈ |u(k)|2, p ≲ |κ|, k≫ p, (20)

where the squared FWF is introduced: 

F(p,κ) ≡ |W(p,κ)|2 = π|κ|(κ2+ p2). (21)

The approximation (20) can be explained as follows.
The wave function of each type (i.e. the bound state, vir-
tual state  and  scattering)  satisfies  the  Schrödinger  equa-
tion in the form: 

h̄2

2µ
(
k2− p2

)
ψp(k)+

∫ ∞
0

dk′(k′)2

2π2
V(k,k′)ψp(k′) = 0, (22)

p = iκ
k≫ |p|

where p is either an on-shell momentum (for the scatter-
ing wave function) or  for the bound (virtual) state
wave function. At  the second term in brackets on
the  left-hand side  of  the  equation  (22)  can  be  neglected.
Therefore the scattering and bound (or virtual) state wave
functions for the same interaction potential should be the
same at  large  momenta k up  to  some factors.  According
to (20) these factors are FWF for the wave functions and
squared FWF for momentum distributions. 

D.    Case of coupled channels
NNThe realistic  interaction includes the tensor term,

so that the above S-wave formalism could not be applied
directly for such a case. However, a generalisation of the
approach can be done.

(2×2)
3S 1

3D1

p = iκd

In particular, the total S-matrix is a matrix  for
the coupled -  channels. Near the bound-state pole

 it can be represented in a form [24, 25]: 

S(p) ≈ − i
p− iκ

(
N2

S −NS ND

−NS ND N2
D

)
, (23)

NS ND

p = iκd

where  and  are the ANCs introduced in Eq. (3). It
can be shown that this S-matrix has one eigenvalue with a
non-zero residue at  corresponding to the so-called
eigenchannel  representation  [25]. It  seems  that  the  pro-
cedure with a continuation to the bound-state pole can be
applied  and  proved  for  one  of  the  low-energy  scattering
states defined in this representation. Let's also note, that,
at  low  positive  energy,  mixing  in  the S-matrix  is  very
small,  thus,  the  required  momentum  distribution  can  be
calculated  from  the  ordinary  scattering  wave  function
corresponding to the boundary condition with the incom-
ing S-wave.

Thus, within the above assumptions, one can write the
following  approximate  relation  between  the  momentum
distributions found from the scattering wave function and
from  the  deuteron  bound-state  wave  function  in  case  of
the realistic interaction: 

O.A. Rubtsova, V.N. Pomerantsev, L.D. Blokhintsev Chin. Phys. C 49, (2025)
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1) It should be noted that in the work [23] a value for the ANC for a virtual -state with the Yukawa potential  fm  was obtained, which differs
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F(p,κd)
∑
l=0,2

|ψt
p,l(k)|2 ≈ ρd(k), p ≲ κd, k≫ p. (24)

3S 1
3D1

Here we emphasize that this approximate equality should
be  valid  only  for  one  of  the  scattering  states  in  the -

 channels at given on-shell momentum p, i.e. the state
corresponding to the incoming S-wave.

The  approximate  relations  (20)  and  (24)  between
bound- and  virtual-state  momentum  distributions  and
those found from the scattering wave functions represent
the main result of this Section. In fact, these relations al-
low  to  obtain  the  high-momentum  parts  of  the “basic”
momentum distributions (2) and (6) from the low-energy
scattering wave functions as we have initially suggested.
Prior to  introducing  a  new  form  for  the  universal  mo-
mentum  distributions,  in  the  next  Section  we  will  test
both relations numerically in a more detail. 

III.  CALCULATION OF THE MOMENTUM DIS-
TRIBUTIONS FOR THE VIRTUAL STATES

NN

In this  section  we  demonstrate  that  the  approxima-
tions  (20)  and  (24)  are  valid  for  cases  of  the  model  and
realistic  interactions. 

A.    Case of a separable potential
Using a simple example with a separable interaction,

it is easy to test the considered approximations explicitly
since all solutions are expressed in analytical form in this
case. For the reader convenience, we give here the well-
known formulas  for  a  separable  potential  [26],  however,
supplementing  them  with  the  details  of  the  virtual  state
calculation which seems to be less known.

Consider the S-wave attractive separable potential: 

V(k′,k) = − λ
2µ

g(k′)g(k), λ > 0. (25)

f0(p) ≡ 1/(pcotϕ0− ip)The  unitary  on-shell  amplitude  is
written in explicit form: 

f0(p) =
π

2
g2(p)

λ−1+ J(E)
, (26)

E = p2/(2µ)where , μ is the reduced mass, 

J(E) =
∫ ∞

0

g2(k)k2dk
p2− k2+ i0

= ReJ(E)− iπp
2

g2(p). (27)

ubThe  bound  state  function  for  the  separable  potential
(25)  is  found  from  the  homogeneous  Lippmann–
Schwinger equation (LSE), so that 

ub(k) = Ab
g(k)
κ2+ k2

, Eb = −
κ2

2µ
, (28)

where the normalization factor: 

A−2
b =

∫ ∞
0

g2(k)k2dk
(κ2+ k2)2

, (29)

Eband the energy  is determined by the condition 

λ−1 = −J(Eb) =
∫ ∞

0

g2(k)k2dk
κ2+ k2

. (30)

λ > λmin λmin = {
∫ ∞

0 g2(k)dk}−1

κ = 0 λ < λmin

κ < 0

The  bound  state  exists  for  (
corresponds to ), while for  there is a virtual
state  with ,  which  corresponds  to  the  pole  of  the t-
matrix on the unphysical energy sheet.

Im p < 0

The virtual  state must  satisfy the LSE continuated to
the second (unphysical) sheet of the energy Riemann sur-
face  (or  for ).  As  shown,  for  example,  in  work
[20], the continuation to the second energy sheet is actu-
ally  a  continuation  of  the  Cauchy-type integral  and  re-
duces to adding a separable energy-dependent term to the
interaction.  For the case of  an initial  separable potential,
this is equivalent to modifying the coupling constant λ.

p = −i|κ|
2iπ

1/(p2− k2)
κ

Therefore, in the case of a separable potential, the for-
mulas for  determining  the  functions  on  the  second  en-
ergy Riemann sheet remain the same as for the functions
on  the  physical  sheet,  but  a  residue  at  the  pole 
(multiplied by )  must  be added to all  integrals  over k
which  include  the  factor .  In  particular,  the
equation  (30)  relating λ and  for  the  virtual  state  takes
the form: 

λ−1
v =

∫ ∞
0

g2(k)k2dk
κ2+ k2

+πg2(−i|κ|)|κ|. (31)

In this  case,  the  virtual  state  function  itself  in  the  mo-
mentum  representation  has  the  same  form  as  the  bound
state function (28): 

uv(k) = Av
g(k)
κ2+ k2

, (32)

p = −i|κ|

i.e. it is a square-integrable (unlike the function in the co-
ordinate  representation).  However,  when  calculating  the
normalization  of  this  function,  a  residue  (of  the  second
order) at the pole  must be added to the integral: 

A−2
v =

∫ ∞
0

g2(k)k2dk
(κ2+ k2)2

+2iπRes
ß

g2(p)p2

(κ2+ p2)2

™∣∣∣∣
p=−i|κ|

. (33)

In fact, here there is no need to use explicit formulas
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κ
λ−1(κ) κ

λ−1

κ > 0) κ < 0

(32)  or  (33)  to  continue  Cauchy-type  integrals,  since
these  integrals  are  given  by  analytical  functions.  Having
calculated the integral in (30) for positive , one gets the
analytic  function  that  is  defined  for  any  values 
and  so  determines  the  value  of  corresponding  to  the
bound  (for )  or  virtual  state  (for ).  The  same
applies to the normalization factor (29).

Below  we  present  some  results  for  the  Yamaguchi
form factor [26]: 

g(k) =
1

k2+β2
, (34)

for  which  the  explicit  relations  are  well  known  in  both
configuration and momentum representations. In particu-
lar,  the  integrals  (30)  and  (29)  for  the  Yamaguchi  form
factor define functions 

λ−1(κ) =
π

4β(κ+β)2
, A−2

b(v)(κ) =
π

4βκ(κ+β)3
, (35)

κ
κ = −β

A2
v

κ < 0
uv(k)

that are analytic in the entire -plane except for the pole
at .  It  should  be  noted  that  according  to  (35)  the
square of the normalization factor  for the virtual state
function ( ) is negative, i.e. the virtual state function

 and  its  ANC  are  purely  imaginary  (cf.  (18)).  The
wave  function  of  the  bound  (or  virtual)  state  for  the
Yamaguchi  potential  in  configuration  space  has  a  very
simple form: 

ub(v)(r) = Nb(v)(e−κb(v)r − e−βr). (36)

V(r) = −V0e−βr/(1− e−βr)

Note that the wave function (36) coincides with the wave
function  for  the  local  Hulthén  potential:

.
Nb(v)

Ab(v) g(iκ)

It  is  easy to show that  the ANC  for  a  separable
potential  is  expressed  in  terms  of  the  normalizing  factor

 and the value of the form factor at the pole : 

Nb(v) =

…
π

2
Ab(v)g(iκ) =

√
2κβ(β+κ)
β−κ . (37)

|ψ+p⟩ E = p2

2µ

f0(p)

The S-wave scattering function  for energy 
can  be  written  in  an  explicit  form,  e.g.  in  terms  of  the
amplitude  (26): 

ψ+p(k) =
δ(p− k)

p2
− g(k)

p2+ iε− k2

2
π

f0(p)
g(p)

. (38)

β = 1.4488 κ
NN h̄2/2µ = 41.47 2

Let  us  check  now  the  approximations  (20)  and  (24).
We use the Yamaguchi potential [26] with the parameter

 fm-1 and two values of  corresponding to two
main -configurations  (at  MeV  fm ):

κ = −0.04045 NN
κ = 0.2316

Eb = −2.2244

 fm-1, which corresponds to the singlet -
channel  with  a  virtual  state,  and  fm-1,  which
gives a bound state with  MeV.

ρp(k) = F(p,κ)|ψp(k)|2
κ

p =
|uv(k)|2

|ub(k)|2

Figure  1 shows  the  momentum  distributions  for  the
scattering  wave  functions: , calcu-
lated for the two above-mentioned values of  and three
energies corresponding to the values of  the on-shell mo-
mentum: 0,  0.06,  and  0.12  fm-1 in  comparison  with
the  momentum  distributions  for  the  virtual  state 
and the bound state .

ρp(k) = F(p,κ)|ψp(k)|2
k > p

∫ ∞
0 |uv(k)|2k2dk

|uv(k)|2 κ = −0.04045

As can be seen from Fig.  1, the momentum distribu-
tions  found  from  the  low-energy
scattering wave functions do not depend on p at  and
approaches (in  absolute  value)  the  corresponding  mo-
mentum distribution for the virtual or bound state.  Thus,
the  approximation  based  on  the  Fäldt–Wilkin  equality
does indeed work in the region of large momenta for both
the bound and virtual states. Let's note that, as discussed
above,  a  correct  normalization  of  the  virtual  state  wave
function  means  that  the  integral  is  not
equal to unity in contrast to the bound-state. For example,
such an integral of  with  fm-1, shown
in the Fig. 1, is equal to 0.8377.

ρp(k)
ρv(k)

To  demonstrate  an  accuracy  of  the  approximation
(20) we show in Fig. 2 the ratios of the momentum distri-
butions  at different p to the virtual-state momentum
distribution . This ratio has the form: 

Rp,κ(k) =
ρp(k)
ρv(k)

= A(κ, p)χp,κ(k), (39)

where the function determining k dependence 

 

ρp(k) = F(p,κ)|ψp(k)|2

p =

κ κ = 0.2316

|uv(k)|2 |ub(k)|2

Fig.  1.    (color online) The  momentum  distributions  for  the
scattering  functions  for  the  Yamaguchi
potential at three values 0, 0.06 and 0.12 fm-1 and for two
values  of : -0.04045  fm-1 (solid  curves)  and  fm-1

(dashed curves)  compared to the momentum distributions for
the virtual state  and bound state .
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χp,κ(p) =
Å

k2+κ2

k2− p2

ã2

+2
κ2+ p2

k2
, k≫ p,κ. (40)

κ2+ p2 Rp,κ(k)
A(κ, p)
p = 0

κ

monotonically  approaches  1  (the  faster,  the  smaller
).  But  at  the  same  time,  the  ratio  tends  to

the limit value , which is slightly less than 1, even
at zero energy ,  which is  due to the non-zero value
of .

A(κ, p) κ = −0.0405
p = 0

A(κ,0)
κ = 0.2316

p = 0
Rp,κ(k)
k > 0.6

The  limit  values  for  fm-1 are
0.9998, 0.9994 and 0.9980 for , 0.06 and 0.12 fm -1,
correspondingly. For comparison, the limit ratio  at

 fm-1,  corresponding  to  the  bound  state,  is
0.9971.  As  can  be  seen  from Fig.  2,  at  the  ratio

 differs  from  1  by  less  than  one  percent  for  all
 fm-1.  The  above  accuracy  of  the  approximation

(20)  seem to  be  quite  enough  for  calculations  with  such
two-nucleon momentum distributions. 

NN

B.    Approximations (20) and (24) for a
realistic  potential.

NN

1S 0 np

κv = −0.04
k > 1

Let's  now  test  the  approximations  based  on  the
Fäldt–Wilkin  factor  for  a  realistic  local  interaction.
In Fig. 3, we present the momentum distributions for the

  scattering  wave  functions  with  the  factor  (21)  at
three values of energy for the Argonne V18 (AV18) po-
tential [28]. Here the wave number of the virtual state is
equal  fm-1.  All  three  curves  in  this  figure  are
almost indistinguishable in the region  fm-1. So that,
the FWF indeed allows to get close momentum distribu-
tions  at  different  small  on-shell  momenta.  Based  on  the
exact equality  (17)  and  the  results  for  separable  interac-
tion, we assume that the approximation (20) is also valid
for realistic  interaction.  That  is,  the  momentum distribu-
tion for the scattering state multiplied by the factor (21) is
an  approximation  of  the  momentum  distribution  for  the

virtual state in this case.
3S 1

3D1

NN
κd = 0.2316

NN

In Fig.  4,  we  test  the  relation  (24)  for  the -
coupled  channels  with  AV18  interaction.  Here

 fm-1. Although all three curves are very close
to each other in high k region, one can see a small devi-
ation of the momentum distributions found from the scat-
tering wave functions from the deuteron one even for the
smallest p.  Thus,  the  approximate  relation  (24)  is  also
valid  for  realistic -interaction. Here  we  can  even  es-
timate its error, which is about 5% for the case of zero en-
ergy.

|κ|

Taking into account the above example with a separ-
able  potential,  it  can  be  concluded  that  the  FWF-based
approximation  works  slightly  better  for  the  spin-singlet
channel  due  to  the  smaller  value  of .  So  the  error  for
the spin-singlet channel should be no more than 2-3%. 

 

ρp(k) = F(p,κ)|ψp(k)|2 p =

|uv(k)|2 κ = 0.04045

Fig.  2.    (color online) The ratio  of  the  momentum  distribu-
tions for the scattering functions  at 0,
0.06  and  0.12  fm-1 to  the  distribution  for  the  virtual  state

 at  fm-1.

 

np

p = 0.008 p = 0.041

Fig.  3.    (color online) Spin-singlet  momentum distribu-
tions for the AV18 potential with the factor from Eq. (20) for
three  momenta:  fm-1 (solid  curve),  fm-1

(dotted curve), p=0.23 fm-1 (dashed curve).

 

p = 0.041
p = 0.23

Fig. 4.    (color online) Deuteron momentum distribution (sol-
id curve)  for  AV18  potential  in  comparison  with  the  mo-
mentum distributions  found  from  the  scattering  wave  func-
tions  according  to  Eq.(24):  fm-1 (dotted  curve),

 fm-1 (dashed curve).
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IV.  UNIVERSAL MOMENTUM DISTRIBUTIONS
AND THEIR PROPERTIES

 

A.    Universal momentum distributions based on
the virtual states

NN
The results of the previous sections allow us introdu-

cing  a  new  form  for  UMD  for  the  singlet  channels
based  on  the  scattering  wave  functions  at  zero  or  small
on-shell momentum p as follows: 

ρs
p(k) = F(p,κv)|ψs

p(k)|2. (41)

Based on the results of the previous sections, in the high-
momentum region  these  distributions  should  approxim-
ate  the  momentum  distribution  for  the  virtual  state  (6)
(whose  wave  function  in  the  configuration  space  is
uniquely determined by the ANC (5)): 

ρs
p(k) ≈ ρv(k), p ≲ κv, k≫ p. (42)

NN
pp np nn

κv

Here  it  should  be  noted  that  for  the  interactions  which
take  into  account  charge  dependence  of  forces,  one
will have three different singlet UMDs for ,  and 
pairs. The values  differ for these three cases as well.

NN
NN

k > 1.3

The  corresponding  UMD  for  the  spin-triplet  channel
is just the deuteron momentum distribution. A comparis-
on  of  the  deuteron  momentum distributions  for  different

 interactions  is  presented  in Fig.  5. Below  we  con-
sider four models for  interactions, viz. the CD Bonn
potential  [27],  AV18  potential  [28]  and  two  versions  of
the  dibaryon  model  with  energy  dependent  interactions
DBM-1  and  DBM-2024  (see  details  and  further  refs.  in
[30]).  As  is  seen  from Fig.  5,  the  deuteron  momentum
distributions at  small  relative  momenta  are  nearly  indis-
tinguishable for the considered interactions while in high-
momentum region,  at  fm-1,  all  distributions show
quite different behavior. Thus, we chose the above inter-
actions  with  evidently  different  high-momentum proper-
ties for the further tests of the presented formalism.

np

p = 0.008

A comparison of the spin-singlet  UMDs construc-
ted  from  the  scattering  wave  functions  (calculated  at

 fm-1) using the equation (41) for the four above
interactions is shown in Fig. 6.

0.2 < k < 0.6

ρv(k)
k > 1

It is seen that the UMDs for different interactions are
almost  the  same  in  the  momentum  region 
fm-1. Also in this region they are close to the exact distri-
bution  for  the  separable  Yamaguchi  potential,
shown by dots. At the same time, at  fm-1 all distri-
butions exhibit different behavior, which is primarily due
to the difference in the position of the nodes of the corres-
ponding wave functions.

Thus,  by using the definition (41),  one can evidently

NN
compare  high-momentum components  of  the  distribu-
tions  in  the  spin-singlet  channels  for  different  inter-
actions. Below we introduce constants which allow us to
quantify these differences. 

B.    High-momentum components of the UMDs

p0

kF

To  consider  high-momentum parts  of  the  distribu-
tions,  which  just  correspond  to  SRC,  let's  introduce  the
boundary of the high-momentum region as a constant .
Usually, it is taken to be comparable with the Fermi mo-
mentum  in nuclei [5, 13].

A high-momentum part of the deuteron (bound-state)
distribution is defined by the integral: 

ad
2 =

∫ ∞
p0

dkk2ρd(k), (43)

which,  due  to  normalization  to  unity  (2),  is  simply  the

 

np

NN

Fig.  5.    (color online) Spin-triplet  (deuteron) -momentum
distributions  for  different  realistic -potentials:  CD  Bonn
(solid curve),  AV18 (dash-dotted curve),  DBM-2024 (dashed
curve) and DBM-1 (dash-dot-dotted curve).

 

np

NN

Fig.  6.    (color online) Spin-singlet  universal  momentum
distributions  for  different  realistic -potentials. The  nota-
tions are the same as in Fig. 3. The dots show the virtual-state
momentum distribution for the Yamaguchi potential.
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ad
2

NN

weight of the high-momentum components in the deuter-
on.  The  values  of  are  different  for  different  realistic

-interactions [13].
Now  one  can  consider  the  high-momentum  parts  of

the singlet  UMDs  by  taking  the  integral  of  the  mo-
mentum distribution for the virtual state (6): 

av
2 ≡
∫ ∞

p0

dkk2ρv(k). (44)

av
2

av
2

NN

It  should  be  emphasized  that,  unlike  the  triplet  channel,
the  quantity  is  not  the  weight  of  the  high-momentum
tail in the singlet channel. However, the quantity  is di-
mensionless  and  its  value  estimates  the  high-momentum
contribution for different  interactions.

For  practical  calculation  of  these  quantities,  let  us
consider high-momentum integrals of the squared modu-
lus of scattering wave functions: 

cs
2(p) =

∫ ∞
p0

dkk2|ψs
p(k)|2,

ct
2(p) =

∑
l=0,2

∫ ∞
p0

dkk2|ψt
p,l(k)|2, (45)

p≪ p0

cs(t)
2 (p)

ad
2 av

2
−3

NN

where  is assumed,  so  that  these  integrals  are  fi-
nite. The functions  do not have the same meaning
as  values  and , as  is  already  evident  from their  di-
mension  (fm ), however,  they  contain  quantitative  in-
formation  about  the  high-momentum  components  of  the

 scattering states.

av
2

By  using  FWF,  one  can  get  an  explicit  approximate
expression for the constant  for a virtual state: 

av
2 ≈ cs

2(p)F(p,κv), p≪ p0, p ≲ |κv|. (46)

ad
2

The same approximate equality is also valid for the triplet
channel,  but there is no need for it  there, since the high-
momentum constant  is simply calculated from the deu-
teron momentum distribution.

cs
2(p)F(p,κnp) NN

p < 0.1
av

2

To  check  the  relation  (46),  we  show  in Fig.  7 the
function  for  the  potentials  considered
here. As can be seen from the figure, these functions are
practically  constant  at  fm-1,  which  allows  us  to
calculate  the  values  for  different  potentials  from  the
scattering wave functions.

av
2 NN

ad
2

p0 = 1.4
kF

The values of  for different  interactions in com-
parison with  found for the deuteron momentum distri-
bution are given in Table 1. Here the high-momentum re-
gion boundary  fm-1 is used, which corresponds to
the generally accepted value of  for nuclei. From Table
1 it  can be seen that  the spread of  high-momentum con-

av
2

ad
2

stants  for  various  interactions  is  different  for  triplet  and
singlet  channels.  In  all  cases,  even  for  the  traditional
AV18 and CD Bonn models, the  constants differ from
each other more than the  constants for the same poten-
tials.

ad
2

av
2

av
2

NN

Note  also  that  the  value  for  DBM-2024  is  a  bit
smaller than for AV18, while the  values are more than
1.5  times  larger  than  for  AV18.  Thus,  one  can  conclude
that  the  value  represents  an  independent  high-mo-
mentum  characteristics  of  the  interaction  in  spin-
singlet channels.

pp
av(pp)

2

κpp ≈ −0.054
av(pp)

2 /av(np)
2

In Table 1,  the high-momentum constants for the 
interaction, , are also presented. These constants cor-
respond1) to  fm-1.  It  is  clear  that  the  ratio

 depends on the model very weakly.

av(pp)
2 /ad

2

Finally,  in Table 1 we present the ratios of constants
 which are discussed in the next subsection. 

C.    Two-body estimations for pp/np ratios

q≪ p0

Recently  [18]  we  have  proposed  a  way  to  calculate
the weight of high-momentum components for scattering
wave functions via the integral over on-shell  momentum
p up to some small value q ( ): 

As(t)(q) =
∫ q

0
dpp2cs(t)

2 (p). (47)

 

cs
2(p)

np

Fig.  7.    (color online) Function  with  the  factor  (21)  at
low on-shell momentum p for different  potentials.

 

NN

p0 = 1.4
Table 1.    High-momentum constants for different  mod-
els for  fm-1.

model ad
2 av(np)

2 av(pp)
2 av(pp)

2 /ad
2

CD Bonn 0.031 0.0007 0.0009 0.03

AV18 0.041 0.0013 0.0016 0.04

DBM-2024 0.036 0.002 0.0026 0.07

DBM-1 0.068 0.008 0.011 0.16

Universal momentum distributions for the spin-singlet NN channels Chin. Phys. C 49, (2025)

1) Here the Coulomb interaction between protons is not taken into account.

-9

CPC
 A

cce
pte

d



ad
2

Such  an  integral  is  dimensionless  and  can  be  compared
with the  value for the bound-state wave function.

Now, one can also compare quantitatively the weight
of high-momentum components for the singlet and triplet
channels by using the ratio [18]: 

η(q) = As(q)/(ad
2 +At(q)). (48)

NN

The  values  in  the  numerator  and  denominator  represent
the  cumulative  weights  of  high-momentum  components
from all the states of the spectra up to the energy related
to the considered on-shell momentum q in the singlet and
the triplet  channels correspondingly.

c2(p)

A(q)

Using  the  relations  (46)  as  approximation  for  both
singlet and triplet functions  at small values of p, one
gets the following approximate expressions for the high-
momentum integrals  at small q: 

As(t)(q) ≈ av(d)
2

π
γ(q/|κv(d)|), γ(x) ≡ x− arctan x. (49)

η(q)This results in the relation for the ratio : 

η(q) ≈ av
2

ad
2
ζ

Å
q
|κv|

,
q
κd

ã
, ζ ≡ γ(q/|κv|)

π+γ(q/κd)
. (50)

κv κd

NN
η(q) NN

av
2/a

d
2 q = |κpp| q = κd

The nice feature of this presentation is that the function ζ
depends  on  the  on-shell  parameters  and  only,  so
that the dependence on q in the ratio η is the same for all
the realistic  interactions. Thus, the only difference in
the values of  for different  interaction models is
the ratio of the constants . At  and  the
corresponding ratios are the following: 

η(|κpp|) ≈ 0.07
av(pp)

2

ad
2
, η(κd) ≈ 0.89

av(pp)
2

ad
2
. (51)

η(q)

av(pp)
2 /ad

2

NN

One  can  see,  the  ratio  of  high-momentum  weights 
increases  with  increasing q showing  that  spin-singlet
channel  contribution  to  high-momentum  components
grows faster with energy than the spin-triplet one. At the
same  time,  the  ratio  represents  an  informative
characteristic for high-momentum components of the mo-
mentum distributions in continuum for the chosen model
of the  interaction.

av(pp)
2 /ad

2 p0 = 1.4 NN

av
2/a

d
2

pp

Using the data from Table 1, one can compare the ra-
tios  at  fm-1 for  different  interac-
tions. From the considered models, the minimal value of
this ratio corresponds to the CD Bonn potential while the
DBM-1  gives  an  essentially  greater  one.  Based  on  the
contact formalism, we may also expect that the use of an
interaction  with  greater  ratio  at  two-nucleon  level
will  lead to greater mean values for the ratios of  and

np momentum distributions in nuclei.
av(pp)

2 /ad
2

p0

av(pp)
2 /ad

2

p0

p0 ∼ 1.3−1.5
p0

Also, we present in Fig. 8 the ratio  as a func-
tion  of  the  high-momentum  parameter .  One  can  see
that  the ratio  depends significantly on the value
of . It is interesting to note that the minimum of this ra-
tio  for  the  conventional  AV18  and  CD  Bonn  potentials
corresponds just to the most frequently considered range
of  fm-1 where the pp/np ratio is very sensit-
ive to the chosen value of .

av
2 ad

2

pp np
NN

NN
3He

Thus,  the  UMDs  suggested  in  this  Section  is  quite
convenient  for  practical  calculations.  The  developed
formalism  also  allows  to  introduce  a  high-momentum
constant  for the spin-singlet  channel in addition to 
for  the  deuteron  channel.  Besides,  some  estimations  for
the ratios of  and  momentum distributions in nuc-
lei  for  various  models  of  interactions  can  be  given
already  at  the  two-body  level.  In  the  next  Section  we
show how the introduced UMDs can be employed within
the  contact  formalism  for  analyzing  distributions  in

. 

3HEV.  TWO-NUCLEON DISTRIBUTIONS IN 

ρA
NN

3He
C

3He
NN

ρA
NN(k,Q = 0)

Here  we  will  test  the  factorization  property  (1)  of
two-nucleon momentum distributions  for  nucle-
us as an example and calculate the nuclear contacts 
for  various  interactions.  We  consider  the  distributions

 which  corresponds  just  to  back-to-back
SRC pairs,  where Q is  the center-of-mass momentum of
the pair.

Q = 0
In this  case  it  is  convenient  to  introduce  the  normal-

ized distribution at  as follows [9]: 

ρ0
NN(k) =

ρA
NN(k,Q = 0)
ρA,NN

cm (Q)|Q=0
,

∫ ∞
0
ρ0

NN(k)k2dk = nNN , (52)

nNNwhere  is a number of nucleon pairs which is equal to

 

av(pp)
2 /ad

2

p0 NN

Fig. 8.    (color online) Ratio of  values as a function
of high-momentum parameter  for different  potentials.
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NN = np NN = pp

ρA,NN
cm (Q)

2 for  and 1 for  correspondingly. Note
that with such normalization,  the distribution of the cen-
ter-of-mass  momentum of  a  pair  of  nucleons  is
assumed to be normalized to 1.

ρNN(k)
According to [9], the normalized momentum distribu-

tion  is  proportional  to  the  UMD  in  the  high-mo-
mentum region with the nuclear contact as a factor: 

ρ0
NN(k) ≈CNNρNN(k), k > p0. (53)

3He

ρnp = ρd ρpp = ρv(pp) np
pp

Since  here  we  consider  only  the  nucleus,  we  have
omitted  the  index A, indicating  the  nucleus,  in  the  nota-
tion of the distributions ρ and nuclear contacts C.  Below
we  use  the  UMDs  and  for - and

-pairs correspondingly.
NN

3He NN

3He
3N

3N

We  use  the  same  four  interactions:  CD  Bonn,
AV18,  DBM-1,  and  DBM-2024  listed  in  the  previous
Section  and  the  -distributions  calculated  using
these  interactions  and  the  corresponding  three-particle
forces.  The  distributions  for  AV18  potential  with
UIX  force are taken from Ref. [29], the distributions
for  CD Bonn potential  supplemented  with  TM force
are  presented  in  Ref.  [13],  and  the  distributions  for  two
versions of the DBM are obtained by the present authors
from  the  variational  calculations  on  an  antisymmetrized
Gaussian basis (see details in Ref. [30]).

np

np 3He Q = 0
ρ0

np(k)
ρd(k)

Cnp

First, let us check how the factorization (53) is satis-
fied  for  distributions, where  the  momentum distribu-
tion in the deuteron is used as the UMD. Fig. 9 shows the
normalized momentum -distributions  in  at ,

, for the different interaction models in comparison
with the corresponding deuteron distributions  multi-
plied by the corresponding nuclear contacts .

3He
k ∼ 1.5

Cnp

Cnp

Here,  for  all  the  interaction  models  considered,  the
 momentum  distributions  achieve  the  deuteron

“asymptotics” already  at  the  relative  momentum 
fm-1. Although high-momentum parts of the distributions
for  different  interaction  differ  strongly,  their  ratios  to
their “own” deuteron  momentum  distributions  in  the
high-momentum  region  (i.e.  the  nuclear  contacts)  are
nearly  independent  on  the  interaction  model.  The  found
nuclear  contacts  for all  considered  interaction  mod-
els  are  close  to  2,  which  agrees  with  the  results  of  Ref.
[9]. The values of  found in the present study are giv-
en in Table 2.

ρv(k)
pp

3He Q = 0
Cpp

pp
k ≥ 2.3

Cpp

Now,  having  the  UMD for  the  singlet  channel ,
one can compare the normalized momentum -distribu-
tions in  at  with these UMDs and find the cor-
responding  nuclear  contacts . Fig.  10 shows  such  a
comparison  for  the  four  interaction  models  considered.
Here the ratios of the -distributions to the correspond-
ing  UMDs  become  nearly  constant  at  values  of 
fm-1. In Figure, we show the UMDs multiplied by the cor-
responding nuclear  contacts  the  values  of  which are

given in Table 2 and are close to 3.

np
np

pp

As mentioned  above,  the  values  of  the  nuclear  con-
tacts  found  for  the -pairs are  consistent  with  the  res-
ults  of  Ref.  [9].  However,  these  values  of  both - and

-nuclear  contacts  differ  from  those  given  in  Ref.  [5]
because  the  definitions  of  the  corresponding  UMDs  and

 

np
3 Q = 0 ρ0

np(k)

ρd(k) Cnp

Fig.  9.    (color online) The normalized momentum -distri-
butions  in He  at , ,  for  three  interaction  models
(DBM-1 – triangles-up,  DBM-2024 – triangles-down,  CD
Bonn+TM – diamonds) in comparison with the corresponding
deuteron distributions  multiplied by  (solid curves).

 

3He
NN 3N

Table  2.    Nuclear  contacts  for  for  different  models  of
 and  interaction.

AV18 + UIX CD Bonn + TMa DBM-1 DBM-2024

Cnp 1.82±0.07 2.2 2.26±0.03 2.17±0.04

Cpp 2.91±0.16 3.1 3.12±0.03 2.98±0.05
3HeaThe data on the distribution in  are obtained by digitizing the figure in Ref. [13],

so that the results are given without errors.

 

pp
3 Q = 0 ρ0

pp(k)

Cpp

Fig. 10.    (color online) The normalized momentum  distri-
butions in He at , , for four interaction models in
comparison with the corresponding singlet UMDs, multiplied
by  the  contacts .  The  notations  are  the  same  as  in Fig.  9
plus filled circles representing AV18+UIX.
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nuclear  contacts  are  different  there1) (see also  the  rela-
tions between momentum distributions in Appendix A).

3He

NN

k > p0

Thus, we have shown that the nuclear contacts for the
 nucleus,  calculated  with  respect  to  the  two-particle

UMD corresponding  to  a  virtual  state  are  indeed  almost
identical  for  interactions,  nevertheless  the  high-mo-
mentum  components  of  the  momentum  distributions  for
those interactions differ significantly at .  Based on
the results of the contact formalisms [5, 9], one may ex-
pect that this property will keep for heavier nuclei. 

VI.  SUMMARY

1S 0 NN
In  this  paper  we  have  suggested  a  way  to  construct

the  momentum distributions  for  the  spin-singlet  
channels  based  on  the  virtual  state  from  the  low-energy
scattering wave  functions.  The  advantages  of  such  mo-
mentum distributions are the followings.
 

(i)

p0

 The  distribution  is  given  by  the  square  integrable
function  and  does  not  depend  on  the  boundary  of  the
high-momentum region .
 

(ii)
av

2
NN

ad
2

 One can introduce a two-nucleon short-range con-
stant  for spin-singlet channels, which characterizes the

 interaction with respect to high-momentum compon-
ents  of  wave  functions,  similar  to  the  value ,  well
known for the deuteron channel.
 

(iii) av(pp)
2 /ad

2 NN
pp

np

 The ratio  differs for various realistic 
models and allows to estimate differences in ratios of -
and -momentum distributions in nuclei.
 

(iv)

NN
κ

NN

 In the low-momentum region, the momentum dis-
tribution for the virtual state depends only on the on-shell
characteristics of the -system, such as the wave num-
ber  and the scattering length, which are the same for all
realistic  interaction  models.  Thus,  the  introduced
UMDs turn out to be the same for different models in the
momentum region of 0.2-0.6 fm−1, exhibiting obvious dif-
ferences at high momenta.
 

(v)

NN

 Due to the previous property, the nuclear contacts
calculated  relatively  to  the  introduced  UMDs  should  be
nearly the same for different realistic  interactions.
 

A = 3
NN

2N
3N

NN

The  last  property  has  been  demonstrated  for 
nuclei with four essentially different models of  inter-
actions which correspond to the same observables in 
and  systems. One can expect that a weak dependence
of  nuclear  contacts  on  the  interaction  will  also  hold
for  heavier  nuclei  that  should  be  studied  and  verified  in
future researches.

pp
NN

The above conclusion seems to differ from the results
of Ref. [5] where a spread of the -nuclear contacts for
different  interactions has been found. This is caused
by the difference in the definitions of UMDs and nuclear
contacts. At the same time, the relation (58) from the Ap-
pendix A shows that the ratio of nuclear contacts for two
nuclei  remains  the  same  for  differently  defined  UMDs.
This  result  agrees  with  the  findings  of  Ref.  [5]  where  a
very weak dependence on the interaction models for such
ratios of the nuclear contacts was demonstrated.

np

p0

NN

pp
NN

NN

NN

The  suggested  spin-singlet  universal  distributions
based on the momentum distribution for  the virtual  state
can be considered as a supplement to the contact formal-
ism presented in  Ref.  [9]  for  the  triplet  distributions.
Since the proposed UMDs do not depend on the high mo-
mentum boundary , one can expect that our formalism
will  be  suitable  for  calculations  with  models  using
various “low-k” approximations. In particular, the nucle-
ar -contacts for such interactions would be the same as
for  other  realistic  models, since  the  momentum dis-
tributions  for  the  virtual  state  are  nearly  identical  at  low
momenta  for  all  realistic  interactions. One  may  as-
sume  that  the  contacts  will  not  depend  on  the  cut-off
parameters for this type of  potentials as well. 

APPENDIX A.  RELATION BETWEEN DIFFER-
ENT UNIVERSAL DISTRIBU-

TIONS

Let's  show  how  the  introduced  UMDs  are  related  to
other universal distributions used in the GCF.

ψs
p=0(k)

The  momentum  distribution  for  the  virtual  state  can
be  calculated  by  using  the  scattering  wave  function  at
zero  energy  (normalized  according  to  (7))  from
the relation: 

ρv(k) ≈ π|κv|3|ψs
p=0(k)|2, (A1)

k > 0.5which is valid with high accuracy at  fm−1.

[p0,∞]
The universal  momentum distributions normalized to

unity in the region  can be calculated from the ra-
tios [18]: 

ρ̄s
p(k) =

|ψp(k)|2
cs

2(p)
, ρ̄t

p(k) =
∑

l=0,2 |ψt
p,l(k)|2

ct
2(p)

, (A2)

c2(p)where functions  are defined in Eq. (45). It has been
shown [18] that these distributions do not depend on p in
high-momentum region.

Thus,  by  using  Eq.  (46)  for  the  spin-singlet  channel,
one gets that  such 'tail-normalized'  distribution is  related
to the density defined in Eq. (41) as follows: 
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ρ̄s
p(k) = ρs

p(k)/av
2, (A3)

p = 0which can be used at  as well. At the same time, the
nuclear contacts defined relatively these two types of the
universal distributions are recalculated as follows: 

C̄A
pp = av(pp)

2 CA
pp, (A4)

C̄A
pp

ρ̄

A1 A2

where  is a nuclear contact corresponding to the distri-
bution . This property shows that the ratios of the nucle-
ar contacts for two nuclei  and  are the same for both
distributions:
 

C̄A1
pp

C̄A2
pp
=

CA1
pp

CA2
pp
. (A5)
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