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Abstract: The measurement of the bound-state 8 decay of ***TI at the Experimental Storage Ring (ESR) at GSI,
Darmstadt, has recently been reported, with substantial impact on the use of *’Pb as an early Solar System chrono-
meter and on the low-energy measurement of the solar neutrino spectrum via the LOREX project. Owing to the tech-

nical challenges in producing a high-purity 2 TI**

secondary beam, a robust statistical method was developed to es-
timate the variation in the contaminant 2°*Pb*'"* produced in the fragmentation reaction, which was subsequently
transmitted and stored in the ESR. Here, we show that Bayesian and Monte Carlo methods produce comparable es-
timates for the contaminant variation, each with unique advantages and challenges given the complex statistical
problems for this experiment. We recommend the adoption of such methods in future experiments that exhibit un-

known statistical fluctuations.
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I. INTRODUCTION

Bound-state g~ decay (B, decay) has proven to be a
rare but consequential decay mode in astrophysical events
because it has the potential to vastly alter the decay prop-
erties of certain nuclei [1, 2]. In this decay mode, the 8
electron is created in a bound-state of the daughter nucle-
us, which can significantly enhance the Q value of the de-
cay for very high charge states. Takahashi et al. [3] were
the first to catalogue key isotopes where bound-state 8
decay had a large impact on the decay rate, and this was
soon supported by the first measurements at the Experi-
mental Storage Ring (ESR) at GSI Helmholtzzentrum fiir
Schwerionenforschung in Darmstadt, Germany [4—7].
The technical challenges involved in storing millions of
fully-stripped ions for several hours mean that, presently,
the ESR is the only facility capable of directly measuring
bound-state 8 decay [8—10].

Recently, we reported on the first measurement of the
By decay of *TI®* [11, 12]. This measurement was cru-
cial in establishing the weak decay rates of ***TI and **Pb
in the core of Asymptotic Giant Branch (AGB) stars, the
nucleosynthetic site for the cosmochronometer *Pb that
is valuable in early Solar System studies. Additionally,
the B,-decay rate of **TI®'" was required for the Loran-
dite Experiment (LOREX), which aims to use the TI-
bearing mineral lorandite to achieve the lowest-threshold
measurement of the solar neutrino spectrum, sensitive to
E, >53keV [13].

An accurate estimation of uncertainties in experi-
mental measurements is paramount in nuclear astrophys-
ics, especially when trying to determine whether discrep-
ancies originate from nuclear data or astrophysical mod-
eling. For the B, decay of **TI®", our experimental half-
life is 4.7 times longer than the values presently used in
the astrophysical community [14], although it agrees with
modern shell-model calculations [15—17]. Therefore, an
accurate uncertainty was crucial to assess the impact of
the experiment. The analysis we presented in Refs. [11,
12], with further details in the theses [18, 19], was not-
ably complex, involving four corrections and a fit with
experimentally measured parameters. This analysis de-
manded careful handling of the correlations between data
points and a fit to a model with uncertain parameters,
which in turn required more sophisticated methods than
the traditional y?> minimization. Furthermore, we identi-
fied in Refs. [11, 12] that the measured uncertainties on
the corrections, which we refer to as the "raw uncertain-
ties," do not sufficiently describe the scatter in the data.

CSTR: 32044.14.ChinesePhysicsC.49114001

To address these issues, we developed a Monte Carlo er-
ror propagation that included a method for self-consist-
ently estimating the "missing uncertainty" and including
it in the determination of the model parameters, namely
the decay-rate of 2 TI®"*,

This Monte Carlo method extends a frequentist
framework to handle experimentally determined paramet-
ers and missing uncertainty; however, Bayesian methods
also naturally address these issues in a self-consistent
manner. In this paper, we compare the two approaches for
decay-rate estimation. Additionally, we explore how the
Bayesian approach can efficiently handle outlier data
points, which we had to exclude manually in our original
analysis. To further investigate the origin of the missing
uncertainty, we also present a new, dedicated analysis of
the statistical uncertainties. Owing to the presence of
beam losses, this analysis is not trivial and has been fur-
ther developed to account for the Poisson nature of the re-
corded signals. In Sec. II, we briefly introduce the experi-
mental method. Given that the experimental method and
analysis corrections have been described elsewhere, we
refer interested readers to the provided references for fur-
ther details. The Monte Carlo uncertainty estimation
method is presented in Sec. III, with Poisson counting
statistics described in Sec. IV. The alternative Bayesian
analysis is then presented in Sec. V, followed by a discus-
sion comparing the methods in Sec. VI and a conclusion
in Sec. VIIL.

II. EXPERIMENTAL METHOD

In our experimental analysis, the sources of uncer-
tainty for each datum depend on the method for produ-
cing and detecting the ions. To measure the B, decay of
295T], jons need to be stored in the storage ring in the
fully-stripped charge state, given that only 3, decay to the
K shell of the daughter nucleus is energetically allowed.
To do so, a secondary **TI®'* beam was created via pro-
jectile fragmentation of a primary *°Pb®”* beam using the
entire accelerator chain at GSI. The main contaminant of
concern was “*Pb*'*, given that it has only a 31.1(5) keV
mass difference compared to **TI®'" and is also the -
decay daughter product, which directly confounds the de-
cay signal. To minimize this contamination, the Frag-
ment Separator (FRS) was used, in which an aluminium
energy degrader produced a spatial separation at the exit
of the FRS via the Bo—AE—Bp method [20]. With this
setting, *’Pb*'* contamination was reduced to ~ 0.1%.

Approximately 10° *TI*"* ions were accumulated in
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the ESR from over 100 injections from the FRS. These
ions were then stored in the ring for various periods up to
10 hours to accumulate **Pb*!" decay products. Ions in
the ring were monitored with a non-destructive, resonant
Schottky detector [21, 22]. Because of the very small
mass difference, 2T and 2*Pb®" ions revolve on
nearly identical orbits in the storage ring, so the *’Pb®'*
decay daughters were mixed within the **TI*" parent
beam. To count the **Pb*'* decay daughters, the stored
25T1/Pb*"* beam was forced to interact with an argon gas-
jet target with a density of ~ 10'> atoms/cm? that stripped
off the bound electron, revealing the *’Pb daughters in
the 82+ charge state; these daughters could then be coun-
ted with the Schottky detectors. The Np,s:+/Nysi+ ratio at
the end of the storage period could subsequently be de-
termined from the measured Nps:/Npsi+ ratio after gas
stripping [23].

The Npysi+ /[Npsi+ ratio at the end of the storage period
is given by

NPb(ts) — SAPb(ts) 1 L el"l(ts) Osir + Orecr
NTl(ts) SATl(tx) SC(ts) RC EPb(ts) Tstr

(M

This equation features four corrections that were re-
quired to successfully extract the ratio:

1) a saturation correction S C(z,) to account for a mis-
matched amplifier in the Schottky DAQ employed in this
experiment;

2) a resonance correction RC to account for the reson-
ance response of the Schottky cavity at different revolu-
tion frequencies;

3) the interaction efficiency e(z,) to determine the ex-
tent to which both species interacted with the gas target;
and

4) a charge-changing cross section ratio (og+
Orear)/ 05w that accounts for 2°Pb%'* ions lost to electron
recombination rather than stripping.

This experimental protocol is covered in Refs. [11,
12] with extensive details on the analysis corrections giv-
en in the theses [18, 19], including validation and quanti-
fication of each correction to the total uncertainty. The in-
termediate and result data for this experiment are pub-
licly available at Ref. [24] and the analysis script is also
available at Ref. [25].

It has been established in previous B,-decay experi-
ments [4], and derived explicitly in Ref. [19], that as the
storage time increases, the daughter/parent ratio will in-
crease pseudo-linearly according to

Npy(t,) _ @
NTl(ts) Y

1
1 S (R - A

Npy(0)
Nn(0)

exp [(AF° — Aty )

where Ny is the number of 2*Pb or 2®TI ions, ¢, is the
storage time, A, is the B,-decay rate of **TI*", and
v =1.429(1) is the Lorentz factor for conversion into the
laboratory frame. The initial *’Pb*"" contamination, writ-
ten here as Np,(0), must be scaled by the storage loss
rates A%, which are slightly different for Pb and TI.
Thus, Eq. (2) is the physical model that describes data.

It is important to note that the uncertainties in the
Schottky intensities and the interaction efficiencies were
determined for each storage period and are thus statistic-
ally independent, while the uncertainties in the saturation
correction, resonance correction, charge-changing cross
section, and storage losses were determined globally for
the entire data set and are thus entirely correlated between
data points. As a result, it was not straightforward to in-
corporate those uncertainties into the fit of Eq. (2). Fur-
thermore, the fit itself contains parameters with experi-
mental uncertainties that need to be included. This can-
not be handled by a simple xy* minimization, given that
the y? assumption considers that the data points are stat-
istically independent. To handle these correlations
between the data and fit, and to take into account the un-
certainties of the parameters in Eq. (2), the Monte Carlo
error propagation method was chosen.

III. MONTE CARLO APPROACH

Monte Carlo (MC) error propagation is a well-estab-
lished method used when an uncertainty distribution or
physical model is too complicated to compute the uncer-
tainties analytically [26—28]. It simulates "m runs" of the
experiment, where the underlying uncertainty distribu-
tions are randomly sampled and then that sampled data
set is used to fit the physical model. In our case, the un-
derlying uncertainty distributions are the experimental
uncertainties coming from the thermal and electronic
noise in the Schottky detectors and the evaluated uncer-
tainties of the experimental corrections, which are mostly
Gaussian (details in Ref. [18]). Because some of the ex-
perimental corrections were applied globally to all 16
data points (resonance correction, charge-changing cross
section, etc.), their uncertainties are correlated and this
correlation was included in the MC simulation because
these corrections were sampled only once and applied to
all data points for a given run. Additionally, we sampled
the uncertainties of the experimentally determined para-
meters of the physical model. The physical model is giv-
en by Eq. (2); to fit a sampled data set with this equation,
we used least squares to obtain a best fit value for the de-
cay rate Az, . The distribution in the final model paramet-
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ers is then representative of the underlying uncertainty
distributions and the correlations between uncertainties,
and even the "nuisance" model parameters are naturally
handled by the MC simulation.

Figure 1 presents a flowchart that summarizes our im-
plementation of the MC method, which can be broken
down into five steps:

1) Randomly sample each measured quantity (Schot-
tky intensities, corrections, efc.) and calculate the correc-
ted Npy/N1 ratio with Eq. (1) to produce 16 data points.

2) Randomly sample the y*(v =14) distribution and
determine a value for oy for that run (see discussion be-
low for motivation).

3) Add a randomly sampled value to each data point
from a Gaussian distribution with mean zero and stand-
ard deviation oy to simulate the contamination vari-
ation.

4) Randomly sample the uncertain model parameters
(A'° rates) to construct a model from Eq. (2) for that MC
run.

5) Use least squares to fit the sampled model and ob-
tain a best fit value for A5, and Np,(0)/Nri(0).

This method was repeated 10° times to produce a dis-
tribution of final model parameters. Our code for the MC
method is also available publicly in Ref. [25].

The strength of the MC method is that it is straight-
forward to apply to an arbitrarily complex analysis while
simultaneously handling correlations between inputs,
even if the input uncertainties have highly unusual distri-
butions; this was the primary motivation for our analysis.
The weakness is that it is a numerical method, so the pre-
cision of the model parameter distributions is determined
by the number of MC runs m, which can be a significant
limitation if the analysis is computationally expensive.
Typically, m > 10* is considered sufficient, and for our
relatively simple model fit, we were able to achieve a MC
accuracy of 0.02% with m = 10° MC runs.

Figure 2 shows the experimental data, with each data
point representing the ratio derived at the end of a stor-
age run with the error bars representing the "raw statistic-
al error" derived from the median and 1o intervals of
the MC simulation for that ratio. This figure also shows
the best fit results from 100 sample MC runs, with the in-
set showing the histogram of the MC best fit results of the
By decay rate.

Analyzing the residuals in Fig. 2, it is clear that the
"raw uncertainty" from the corrections cannot explain the
scatter in the data, indicating that not all of the experi-
mental uncertainty was accounted for. In particular, the

/1) sample data distributions A
’ \8
-
€T1 Ostr + Orec
RC epp(t Ostr

J
X to ocv map 3) sample CV dist)

width
X =ocv

NPb {

ratio(ts) = N + Ac\/
Tl

4) sample model param. dists.

A
model(ts) = %ts [1 + 1(/\1055 )\loss) ]

Npy,(0)
N11(0)

'

/5) fit model to data

exp ()\1055 Alosa) s

[ Ag, =3.240 x 1078 571
Npy,(0)
N1 (0)

=1.048 x 1073

E )
Jcpeat 10° times
\A A
Npy,(0)
A, Nn(0)

B

Fig. 1. (color online) A flowchart outlining the proposed
MC method following the five steps described in the text. The
yellow bin schematically suggests that the corresponding

value was the sampled value for that MC run. The distribu-
tions in blue are uncorrelated between the 16 measurements,
while distributions in red are correlated. Multiple distribu-
tions stacked indicates that the corresponding individual val-
ues were used for this variable for each of the 16 measure-
ments, whereas a single distribution indicates a single value
for all measurements.
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Fig. 2. (color online) *Pb/**Tl ratios for all storage peri-

ods, including the "raw uncertainty" from the corrections,
alongside a sample of 100 MC fits (red) and the median MC
fit result (blue), which represents the median value of the MC
histogram of the final model parameters. The residuals (lower
panel) highlight that some statistical variation is missing to ac-
count for the scatter in the data. The inset shows the MC his-
togram for Az, with the Gaussian fit used to extract the model
parameter distribution.

value of y? for the data in Fig. 2 is 303, whereas the 95%
confidence interval for a y? distribution with 14 degrees
of freedom is [6.6, 23.7]. The first remedy for missing
uncertainty should always be the careful examination of
the data and the identification and quantification of the
unaccounted-for uncertainty. For this purpose, we sur-
veyed a list of possible sources of systematic effects; the
details are provided in §3.3.1 of Ref. [18]. Notably, Pois-
son "counting statistics”" cannot account for all the miss-
ing uncertainty, providing variation at approximately the
3% level (see Sec. IV for a deeper discussion). By exclu-
sion of all other possibilities, we concluded that this vari-
ation most likely arose from fluctuations in the field
strengths of the FRS magnets between storage periods.
Given the FRS-selected a > 30 tail from the **Pb frag-
mentation distribution, it is likely that such fluctuations
could produce the missing uncertainty of ~ 6% in the
2%ph contamination level that was observed.

Given that there was no method to measure this con-
tamination variation from the FRS because it was per-
fectly confounded with our signal, the missing uncer-
tainty must be quantified by analyzing the scatter in the
data. While bootstrapping by random re-sampling of the
data is a self-consistent method with minimal assump-
tions that was used in earlier stages of this analysis, our
simulations have shown that it is only accurate if more
than 50 data points are available. With only 16 data
points, we were forced to turn to other methods.

We first considered the well-known Birge ratio meth-

od [29]. Discussed at length in a recent publication of
ours [30], the Birge ratio is used to globally increase all
error bars by a factor &; = Rpo; with

where 7 is the number of data points (x;,y;) being evalu-
ated and k is the number of parameters @ of the model.
This has the effect of globally inflating the error bars un-
til x* = n—k. However, inflating the error bars maintains
their relative size, which in our case underweights the
long storage time measurements that contain most of the
signal from B, decay. Specifically, the uncertainty com-
ing from the corrections is much smaller for short stor-
age times, while the contamination variation from the
FRS should affect all data points equally. For this reason,
we chose to add additional uncertainty ocy in quadrature
rather than to inflate the raw uncertainties, yielding a
value of y? expressed as

(i —f[x,-lc?])z
Xz = Z 0—2 + (CX /lloss _ /lloss 2°
" Oistat pLAT”® = Ap" )] X oev)

4)

Note that the contamination variation ocy must be multi-
plied by the storage loss factor exp[(A\%* —Als)t,] to ac-
count for the evolution of the contamination with storage
time.

The Birge ratio also breaks down for small numbers
of data points because the y? distribution distribution can
no longer sufficiently constrain the missing uncertainty.
Consider our case with n—k = 14 where the 95% confid-
ence interval of the associated y? distribution is [6.6,
23.7]. Using the Birge ratio to achieve a final y? value of
14 is not well motivated over other values in this range,
which has led to criticism of the method over the years.
However, this problem can be naturally solved by the
Monte Carlo propagation method because for each MC
run, a different target value for y* can be chosen. Spe-
cifically, we constructed a mapping between the ocy
value and the minimum y? value for that oy value. Us-
ing this mapping, we could then randomly sample a x?
variate for that MC run and determine how much contam-
ination variation to add to the data for that MC simula-
tion run. This allowed us to naturally incorporate the un-
certainty with which the data can constrain the missing
statistical variation identified by the y?> goodness of fit
test, solving a key weakness of the Birge ratio through the
unique framework of the Monte Carlo method. The map-
ping between the value of x? and oy is represented in
Fig. 3 along with the y*(v = 14) probability distribution
that was sampled.

The histogram of best fit values for 1;, —shown in the
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Fig. 3. (color online) Mapping (in blue) between the x> vari-

ate and the estimated contamination variation ocy required to
achieve that value for our data and model. The y?(v=14)
probability distribution is also represented (in red) to visually
convey how often a given value was sampled.

inset of Fig. 2—gives the final uncertainty distribution for
the parameter: Ag, =2.76(28)x107*s7!, as reported in
Refs. [11, 12]. This distribution includes the raw statistic-
al error as well as the correlated systematic errors and es-
timated contamination variation.

Another well-known weakness of the y? minimiza-
tion method is the sensitivity to possible outliers [30—32].
A single outlier can dramatically increase the calculated
value of y?, thus increasing the estimated missing uncer-
tainty as well as biasing the result. We observed this ef-
fect in our data analysis as a result of the outlier tagged in
the bottom-left of Fig. 2. When included in the analysis, it
increased the slope of the fit and doubled the uncertainty,
giving a final distribution of A4, = 3.13(47)x 107* s7'. This
outlier was 6.70- away from the best fit prediction, even
with the missing uncertainty included, so we discarded
this data point for the above MC analysis. This case high-
lights a further weakness of using y? to estimate missing
uncertainty. It must be paired with judicious data selec-
tion to provide reasonable results, which can be slow and
painstaking work when done carefully.

IV. IMPACT OF COUNTING STATISTICS

It was quickly determined that the uncertainty arising
from counting a finite number of decays, otherwise
known as "counting statistics", could not explain the
missing variation in our data (producing ~ 3% variation,
whereas 6% was missing). Given that the variation from
the counting statistics is automatically included in the es-
timation of the contamination variation in the MC meth-
od, we did not differentiate between these two sources in
the analysis reported in Refs. [11, 12, 18, 19]. This suf-
ficed for an accurate determination of A4 ; however, as
we shall see, an in-depth treatment of counting statistics
is necessary to compare the MC method with a Bayesian
analysis.

In a typical decay counting experiment, the impact of
counting statistics is accounted for via the Poisson uncer-
tainties on the counting bins or, ideally, via the Maxim-
um Likelihood Estimator, where each data point is con-
sidered individually. The B,-decay measurements are
atypical because the ions cannot be identified at the time
of decay given that they are mixed with the parent ions
owing to the small Q value of the decay. Thus, ions must
be counted at the end of the storage period. The number
of ions that decay during a given storage period follow a
Poisson distribution; furthermore, the ions are affected by
beam losses and the initial ion population in this experi-
ment arose from projectile fragmentation, both of which
are also Poisson processes. Fortunately, the sum of two
independent Poisson variables X ~ P(1) and Y ~ P(n) is
itself a Poisson variable with X+Y ~ P(1+1n), so the
Poisson variation from all of these processes is just de-
termined by the number of ions at any given time. It is
worth noting that while the parent and daughter popula-
tions are 100% correlated for radioactive decay, the loss
constants 1" are three orders-of-magnitude larger than
Ag, , so the variance of the Ny, and Np, populations are not
correlated in this experiment.

For the first two B,-decay experiments [4, 5], the
fully-stripped B,-decay daughters were counted with
particle detectors. Therefore, the number of ions was
known immediately. For **TI*"", we chose to measure the
ratio of Schottky noise power densities—proportional to
the ion number according to the Schottky theorem —to
avoid introducing systematic errors when calibrating the
Schottky detectors. While the Schottky noise power dens-
ity has its own uncertainty, it does not account for the

— updated MC fit result:
Agp = 2.78(30) x 1078 s7*

— raw correction uncert.
+ Poisson statistics
—— + contamination variation
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Fig. 4. (color online) Updated MC method with error bars

indicating the variance included for Poisson statistics and up-
dated contamination variation. The example of 100 MC fits is
again represented in red with the median fit result used to cal-
culate the residuals. The pie chart shows the contribution of
each source to the total uncertainty, highlighting that the dom-
inant uncertainty for the experiment remains the contamina-
tion variation from the FRS.
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variance introduced by the Poisson statistics. The Pois-
son uncertainty in the ratio R = Np,/Ny 1is just
or = VR/Ny (see Appendix A for derivation). Using this
expression, we can add Poisson uncertainty to each data
point using the MC method in the same manner that we
added the contamination variation. The results are shown
in Fig. 4. As can be seen from the residuals, Poisson stat-
istics alone are not enough to account for the missing un-
certainty, although they do explain a third of the unac-
counted-for variation. However, as expected, the final
result from an updated MC analysis is g, =2.78(30)X
10~8 57!, almost identical to the published result, indicat-
ing that the Poisson variation had been included in the
contamination variation. Despite this, explicitly model-
ing Poisson statistics is essential when comparing the MC
method with the Bayesian analysis because we are
primarily interested in the behaviour of the methods when
estimating the missing uncertainty.

V. FULLY BAYESIAN APPROACH

The fully Bayesian approach, similar to the previ-
ously described MC method, properly evaluates the like-
lihood by accounting for the uncertainty of the model
parameters. For this purpose, each experimental datum
was evaluated as a Gaussian probability distribution
centered at the mean value with a standard deviation
equal to the associated uncertainty. However, differently
from the method described in the previous section, it does
not simply minimize the likelihood but efficiently ex-
plores the allowed parameter space taking into account
possible multimodalities. Unlike the Monte Carlo meth-
od, the dependence between data is ignored. The posteri-
or probabilities were obtained by evaluating the likeli-
hood function over the parameter space using the nested
sampling method [33, 34] and, more specifically, the
NESTED_FIT code [35—37]. The nested sampling is a re-
cursive search algorithm using an ensemble of sampling
points that evolves during the algorithm execution. It is a
method normally used for Bayesian model selection in
which, in addition to finding the maximum of the likeli-
hood function, a probability for each model is evaluated
from the integral over the parameter space of the model
(via the calculation of the Bayesian evidence). In this
study, however, the NESTED FIT code was not used for
the Bayesian model selection but only for the powerful
exploration features of the nested sampling and the cap-
ability of NESTED _FIT to treat multimodal solutions and
to use non-standard likelihoods.

The standard procedure builds the likelihood function
by considering a normal (Gaussian) distribution of the ex-
perimental data with respect to the model value, with the
mean equal to the experimental value y; and the standard
deviation equal to the value of the error bar o;. The max-
imization of the likelihood thus corresponds to the min-

- - - Gaussian
—— Conservative

N o o
> ) )
—T— 77—

Normalised probability

o
)
———

0.0F .
-10.0 -5.0 0.0 5.0 10.0
(y —yiloj

Fig. 5.  (color online) Standard Gaussian distribution com-
pared to the distribution derived by the Bayesian conservative
method for each single data point y; with standard deviation

oi.

imization of the associated y? value. Alternatively, we
considered also the approach proposed by Sivia [38], re-
ferred here to as the conservative approach, for a robust
analysis. For each data point, the error bar value is in-
stead considered as a lower bound on the real unknown
uncertainty o7 that includes unevaluated systematic con-
tributions. After marginalization over the possible values
of o (considering a modified version of non-informative
Jeffreys prior), for each datum the corresponding distri-
bution is no longer a normal distribution but now fea-
tures lateral tails decreasing as 1/(y—y;)* (see Fig. 3),
where y =y, — f[x;|@] is the theoretical expected value for
the modeling function f[x;|@]. More precisely, the final
likelihood function L is now given by

0i=/Txild)?

20
i

o l-e
L=
H Var | 0= flxld)?

)

Because of the slower drop-off at extreme values of y,
such a distribution is naturally more tolerant to outliers
and, more generally, to inconsistency between error bars
and data dispersion.

By using the NESTED _FIT code, different estimates
for the B, decay constant were extracted by analyzing the
same data as in Ref. [11] ("raw uncertainties") or with the
Poisson statistical additional contribution discussed in
Sec. IV. In addition, we considered the entire available
data set ("all") with and without the outlier in the bottom-
left of Fig. 2 that was excluded from the MC method. Fi-
nally, we considered both standard Gaussian and conser-
vative distributions. The different results are presented in
Fig. 6. For all different cases, the uncertainties of the
parameters A1 and A5 were taken into account by con-
sidering Gaussian prior probabilities with the parameter
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Fig. 6. (color online) Comparison between the different stat-

istical analysis. The grey band corresponds to the reported
value in [11]. The other approaches, indexed in the legend
with three possible variations, are described in the text.

uncertainty as standard deviation (and its nominal value
as mean). Owing to the very small relative uncertainty
(1073), no priors were considered for y, which is con-
sidered as exact. Slice sampling [39] was used for the
search of the sampling points in NESTED FITbecause of
its superior performance with respect to other methods
(for example, random walk; see [37]). Typical computa-
tion times were in the order of a few seconds on a stand-
ard laptop PC.

As expected, the presence of outliers significantly in-
troduces bias in determining the decay constant when the
standard likelihood is used, even when considering uncer-
tainty evaluations from the Poisson statistics of the ions.
Once the outlier is excluded, the obtained decay value is
consistent with the MC method reported in Ref. [11],
where the uncertainties were globally increased to justify
the residual scattering.

When the conservative method is adopted, no differ-
ence is observed whether the outlier is included or not,
demonstrating the robustness of the method. However,
the corresponding uncertainties are larger than in the oth-
er cases because the conservative method assumes miss-
ing systematic uncertainty contributions for each data
point. It is notable that, for the conservative method, even
if the error bars of the raw data are underestimated, the fi-
nal evaluation of the decay constant is close to the value
obtained by eliminating the outlier and artificially inflat-
ing the error bars using the Monte Carlo method dis-
cussed in Sec. III (grey band in Fig. 6). The use of a more
tolerant probability distribution (Fig. 5) leads, in fact, to a
final uncertainty that depends on the data dispersion. This
is not completely the case for standard y? minimization
methods. See Ref. [30] for a more extended discussion on
this aspect, but applied to weighted averages. Among the
different approaches, the preferable option is the one with
the least working hypotheses considering the best of our
possible knowledge at present. This corresponds to con-
sidering the entire set with the Poisson statistics uncer-
tainty resulting in the parameter estimate of A4 =
2.62(32)x 1078 571,

VI. DISCUSSION

As seen in the previous sections, the different robust
statistical approaches reassuringly yield very similar res-
ults, even when the statistical uncertainty is underestim-
ated.

The Monte Carlo method is a robust technique for
handling underestimated uncertainties in small data sets
while respecting the uncertainty in the ability of the data
to constrain the missing uncertainty, namely the fluctu-
ation in the x? distribution. Simultaneously, it takes into
account correlations in the data and uncertainties in the
nuisance parameters of the model, making it a flexible
tool. An outstanding weakness is that outlier detection
must be done manually to ensure an accurate estimate of
the missing uncertainty.

The Bayesian method is simpler in that it requires
fewer assumptions about the data. Taking advantage of
the Bayesian framework, uncertain parameters can be
represented with experimentally determined prior distri-
butions, and that uncertainty is naturally incorporated
when these parameters are integrated out in the final es-
timation. The implemented missing uncertainty estima-
tion is also optimized to handle outliers, making it a very
flexible tool. However, correlations between data points
cannot be considered in the current likelihood construc-
tion. This does not appear to be a limitation in this ana-
lysis, as the uncertainty is dominated by uncorrelated
contamination variation and Poisson counting statistics.

The two methods produce remarkably consistent res-
ults, as shown in Fig. 6, especially when considering they
handle the missing uncertainty in a fundamentally differ-
ent manner. The MC method adds the same additional
uncertainty to all data points, scaling the entire data set
together. This is appropriate if the unknown variation af-
fects all data points equally and has the advantage of not
treating any data point preferentially, though it reduces
the constraining power of the more precise points. The
Bayesian method, on the other hand, treats the missing
uncertainty for each data point individually. This optim-
izes the Bayesian method to handle outliers but also al-
lows for situations where the minimization may allow for
several optimising parameter values sets.

VII. CONCLUSIONS

The estimation of unknown statistical error is a com-
mon challenge in experimental physics, and while every
effort should be made to fully understand the uncertain-
ties of an experiment, sometimes sources of uncertainty
must be estimated from the data itself. The method used
to estimate this missing uncertainty should be as accurate
and unbiased as possible. One of the most common meth-
ods for estimating missing uncertainty has been the Birge
ratio. However, we have explained how it is biased to-
wards the most probable y? of the data and does not take
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into account the full range of possibilities for model para-
meters that are compatible with the data. We have presen-
ted two methods that provide an alternative to the Birge
ratio. The Monte Carlo method takes advantage of the
fact that it uses multiple trials, so the y? value that is rep-
licated can be varied with each trial. The Bayesian meth-
od takes advantage of the fact that Bayesian analysis can
self-consistently allow the data to constrain the missing
uncertainty. As a result, both of these methods improve
on the traditional Birge ratio and more reliably represent
the uncertainty of the measured parameters.

The application of multiple analysis methods also
provides a useful assessment on the variation in our final
value and uncertainty. We have shown here that across a
broad range of analysis methods, our final result for the
By decay rate is reliable and features a very reproducible
uncertainty. A correct treatment of the Poisson statistics
improves the coherence of the results by decomposing the
missing uncertainty into its Poisson and contamination
variation components explicitly. It is also reassuring to
note that this dedicated analysis resulted in only a 0.7%
or 0.070 increase on the final value reported in Refs. [11,
12]. Once counting statistics are included, which is essen-
tial for a fair comparison, the MC and Bayesian methods
agree on the reported value within 0.5 and provide al-
most identical estimates for the size of the parameter un-
certainty. This highlights the remarkable robustness of
our reported half-life value considering how different the
methods are.

The presence of the outlier (bottom-left in Fig. 2) also
tested the ability of the method to handle outliers. The
Bayesian method is clearly better suited to handle out-
liers because the missing uncertainty is evaluated indi-
vidually for each data point, allowing individual outliers
to be inflated without penalizing the entire data set. The
fact that the method can handle both the outlier and miss-
ing uncertainty out-of-the-box and yield a similar result
to that from the MC method, which required months of
work to perfect, demonstrates its versatility and reliabil-
ity in analyzing challenging data. As a result, we recom-
mend the use of the open-source NESTED FIT code
[35—37] for future experimental analysis. For those who

require an alternative to Bayesian methods, which can be
sometimes computational costly, or when strong correla-
tions in the data exist, we also recommend the Monte
Carlo method for easy error propagation and as a natural
mechanism for estimating missing uncertainty.
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APPENDIX A: ESTIMATION OF COUNTING
STATISTICS

To estimate the contribution of counting statistics to
our final data points, we aim to calculate the variance of
our ratio data points arising from the underlying Poisson
variables. Noting that the variance of a Poisson distribu-
tion is equal to its mean, the definition of the ratio
R = Np,/N, implies that the variance of R is given by

OR
Var(R) = | ——
ar(R) (aNP ONn
0 ) ( OR )
Cov(Npy, N-
+< aNee ) \ o, oV(Npy, N11)

1 Npp \*
= NPb+( ﬂ) Nt

- ) i Var(Npy) + (a—R ) ’ Var(Npy)
R

N; N
N
- Nfl;b ( vV pr> ( VNT1> Corr(Npy, N11)
Tl
R R R
= — 4+ —— — —— Corr(Npy, Ny). Al
No T NE T N orr(Npy, N1) (AD)
Given that R<«1 in our case, we have that

Var(R) ~ R/Nr,. Note that because we only measured the
ratio via Schottky detectors and Ny by the DC current
transformer [11, 12], we have expressed Var(R) just in
terms of these variables.
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