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Abstract: We consider two-loop planar contributions to a three-body form factor at the next-to-leading power in

the high-energy limit, where the masses of external particles are much smaller than their energies. The calculation is

performed by exploiting the differential equations of the expansion coefficients, both for facilitating the linear rela-

tions among them, and for deriving their analytic expressions. The result is written in terms of generalized polylogar-
ithms involving a few simple symbol letters. Our method can be readily applied to the calculation of non-planar con-
tributions as well. The result provides crucial information for establishing sub-leading factorization theorems for

massive scattering amplitudes in the high-energy limit.
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I. INTRODUCTION

The Standard Model (SM) of particle physics contain
a couple of massive particles at the electroweak scale, in-
cluding the Higgs boson, the top quark and the elec-
troweak gauge bosons. An important quest of particle
physics is to study the properties of these particles at the
energy and luminosity frontiers with high precision, and
probe new physics beyond the SM. This requires high
precision theoretical predictions for the production pro-
cesses involving these massive particles. However, the
calculation of scattering amplitudes involving massive
particles is generally much more difficult than the calcu-
lation of massless scattering amplitudes. On the other
hand, due to the high energies of the Large Hadron Col-
lider (LHC) and future colliders, the masses of the
particles are often small compared to other kinematic in-
variants in the scattering processes. With such scale hier-
archies, the perturbative scattering amplitudes and cross
sections can develop large logarithms involving the ra-
tios between the small masses and the large kinematic in-
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variants in the high energy limit.

The standard way to deal with scale hierarchies is the
method of factorization. Such factorization can be organ-
ized into different orders in an expansion parameter
A~m?/E?*, where m denotes the low scale of the small
masses, while £ denotes the high scale of other kinemat-
ic invariants. The leading power (LP) corresponds to or-
der 2°. The factorization formula at the LP has been well-
understood [1—10]. It has been shown in [10] that a
massive scattering amplitude in the high energy limit can
be factorized into a massless amplitude, a soft function
and several collinear functions (one for each external
leg). Such a factorization formula can be used to predict
the structure of the large logarithms of the form In(m/E)
at higher orders in perturbation theory, and also allows
the resummation of these logarithms to all orders.

Given the importance of the factorization approach, it
is essential to investigate the behavior of the massive
amplitudes at sub-leading powers in A. On one hand, this
allows us to learn about the typical size of power correc-
tions, and therefore provides an uncertainty estimate of
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calculations based on the LP factorization formula. On
the other hand, once we understand the factorization
structure at sub-leading powers, we can extrapolate the
high-energy approximations to intermediate energy
ranges, and eventually combine them with low-energy
approximations based on threshold/soft factorization.
This will lead to an adequate description of the scattering
amplitudes in the whole phase space.

During the past years, studies of small-mass factoriza-
tion at the next-to-leading power (NLP) in A have
emerged in the literature [11-28], either within the frame-
work of soft-collinear effective theory (SCET) [29-35] or
based on diagrammatic analysis. The analysis of sub-
leading soft emissions has been carried out in [12]. The
construction of an easy-to-use helicity operator basis has
been studied in [13—15]. Anomalous dimensions of sub-
leading power N-jet operators have been calculated in
[17, 19]. Based on power counting and region analysis,
the NLP factorization formula in the small-mass limit has
been proposed for the Yukawa theory [18] and for
quantum electrodynamics (QED) [22, 27]. An important
ingredient in the QED factorization formula, the NLP jet
function, has recently been computed in [28]. However,
the NLP factorization formula has not been generically
proven.

An important validation of the factorization formula
is to compare its fixed-order expansion with a direct com-
putation of some massive scattering amplitudes or form
factors in the small-mass limit. The 1 — 2 massive quark
form factor has been computed at two loops [36—38], and
three-loop calculations are in progress [7, 39—49].
However, 1 — 2 kinematics does not capture all possible
structure at the two-loop order and beyond. In this paper,
we initiate a study of a two-loop 1 — 3 massive form
factor at sub-leading powers. At two loops, non-trivial
correlations can only occur among at most 3 external
particles. Therefore, the structure extracted from 1 — 3
form factors is generic enough to be applied to other form
factors and scattering amplitudes. To this end, our ulti-
mate goal is to study the QQg form factor in quantum
chromodynamics (QCD), where Q represents a massive
quark, and g is the gluon. Due to the complexity of this
problem, we will begin with a simpler one in QED, i.e.,
the e*e™y form factor.

The scattering amplitudes involving massive elec-
trons in QED are phenomenologically interesting on their
own. In the future plans of high-energy physics experi-
ments, various high-energy and high-luminosity e*e™ col-
liders have been proposed [50—56]. On these machines, it
is important to understand the standard QED processes as
precise as possible. These processes provide crucial in-
puts for the calibration of the detectors, and for a better
understanding of beam parameters. The studies in this
work are therefore useful for these applications.

The remainder of the paper is organized as follows:

we introduce the notation in Section 2, and describe the
method to determine independent coefficients in the
small-mass expansion in Section 3. In Section 4, we
demonstrate the solution of the differential equations sat-
isfied by the independent coefficients, and discuss the fi-
nal results. We briefly summarize in Section 5 where an
outlook for future works is also described.

II. SETUP OF THE CALCULATION
We consider the 1. — 3 QED process

Y (ps) = € (p)+ e (p2) +y(ps). (1)
The independent kinematic variables are
siz=(p1+p2),  s;3=(p2+ps),
siz=(pr+p2+p), pi=py=m’, (2)

where m is the mass of the electron. For convenience, we
define the following dimensionless variables

m2

X = s y = s
—5123 S123

S12

7== (3)

S123

The results for the tree-level amplitude M©® and the
one-loop amplitude M® have been well-established [57,
58]. In this work, we are concerned with the two-loop
amplitude M®. We generate the relevant two-loop dia-
grams and the corresponding amplitudes using QGRAF
[59]. These diagrams can be categorized into eight integ-
ral families: five planar and three non-planar. We only
consider the planar families in this work. The amplitudes
containing Lorentz and Dirac indices can be decomposed
into an appropriate basis with scalar coefficients (form
factors). For simplicity, in this work we demonstrate our
method using the the interference term in the squared-
amplitude F@ = (MOIMP) where the indices are
summed over. We use FeynCalc [60—63] and FORM [64,
65] to manipulate the expressions, and express the results
in terms of two-loop scalar integrals. These scalar integ-
rals can be expressed as

4)

Ak % o 1
=—I,, = 2€VE (— ‘H’/ —”—,
la) = € (=5123) iﬂ% B L] D

d
in: ;

where a =5,a;, and we have multiplied an appropriate
power of (—s1,3) to make the scalar integrals dimension-
less. Each set {D,} defines an integral family. There are 5
planar families involved in this work. The corresponding
{D;} are given by
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{kf - mz,(kl —Pl)z, (k1 —p1 —P2)2 - mz,(kz —P1- P2)2 - m2, (ko= p1—p2 —P3)2 - m27k§ - mz, (ki — kz)za

(k= p1—p3)* (ko= 1)},

(5a)

{k% —mz,ki,(kl —k2)2 _mz,(kl _Pl)z,(kl — P —P2)2 _mz,(kl —P1— P2 —P3)2 —mz,(kz —1?1)2 —mz,(kz —Di —Pz)z,

(kx=p1=p2—p3)’},

(5b)

{kf —m?, k5, (ki — ka)* —=m®, (ky — p2)*, (ki — pa = p3)*, (ki = pr = pa = p3)* —m?, (ko — p2)* —m?, (ko — po — p3)* —m?,

(ky—p1—p2—p3)},

(5¢)

{k%—m2,k§,(k, —kz)z,(kl _pl)z,(kl — D1 —Pz)z—mz,(kl —P1 —Pz—Pa)z—mz’(kz—Pl)z,(kz —Di —172)2—"12,

(ky—p1—pa—p3)* —m’},

(5d)

(ki —m* kg —m?, (ki — ko), (ky — p1)*, (ki = pr = p2)> =m?, (ki = p1 = ps = p3)" —m*, (ks — p1)*, (ko — p1 — o),

(ky—p1—pa—p3)* —m*}.

Note that an integral family may contain several topo-
logies, where a topology is defined according to which
D;'s appear in the denominator of Eq. (4) (i.e., a; >0).
The topologies belonging to each of the 5 families are il-
lustrated in Fig. A1 of Appendix A.

For each family, we use Kira [66, 67] to reduce the
scalar integrals to a set of MIs 7;(x,y,z) by solving integ-
ration-by-parts (IBP) relations. The contribution from this
family to the two-loop squared-amplitude can then be de-
composed as

2 2e
FP 5 (“—) Zﬂi(e,x,y,z)f i(x,y,2), (6)

—8123

where u is the renormalization scale, while the coeffi-
cients A; are rational functions, and can be easily expan-
ded in the limit of small x. The remaining task is then to
compute the master integrals in the high-energy limit
x — 0, while keeping the exact dependence on the vari-
ables y and z. To illustrate our method, we focus on the
family (5¢). There are 123 MlIs in this family. In the high-
energy limit, these MIs admit the asymptotic expansion
00 M3 max

Ti(x3.0= > > Cimmm2)€" X2 log"(x). (7)

n1=—2n3=0 n3=0

The purpose of this work then reduces to the calcula-
tion of the coefficients as a function of y and z. Note that
the two-loop integrals considered in this work have no
soft-collinear overlapped divergences, and the minimal
power of € is —2. The integrals also have no power-like
singularities in the limit m — 0, and therefore the minim-

(5¢)

[
al'power of x is 0. The maximal power of log(x), 73 max,
depends on the value of n; and n,. In practice, we will
truncate the series in € and x for the purpose of calculat-
ing the squared-amplitude @ up to x' and €°. This cor-
responds to the next-to-leading power (NLP) in the high-
energy expansion. Nevertheless, our method can be used
to compute higher power terms as well.

III. DIFFERENTIAL EQUATIONS AND INDE-
PENDENT COEFFICIENTS

To compute the coefficients, we adopt the method of
differential equations [68—70]. From the IBP reduction,
we can construct the differential equations of the Mls 7;
with respect to the variable ¢ € {x,y,z}:

1,

(1) (1)
7)1,1 7)1,123 I,

= S : : . (8)

0 )
at . .
(1) (1)
I3 123,1 P123,123 UATS

where Pf? are rational functions of €, x, y and z. The dif-
ferential equations with respect to x lead to relations
among the coefficients. Therefore, we only need to com-
pute a set of independent coefficients, which is conceptu-
ally similar to the master integrals. After determining the
set of independent coefficients, we can employ their dif-
ferential equations with respect to y and z to obtain their
analytic expressions.

A. Determination of expansion orders

We apply the expansion (7) into the differential equa-
tions (8) with 7 = x. We note that
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0
6—){’2 log" (x) = x7! [nylog™ (x) + n3log™ ' (0)] . (9)
x

That is, taking derivative with respect to x always de-
creases the power of x, but may or may not decrease the
power of log(x). On the other hand, the matrix elements
SDE,? may also contain poles at x = 0. Therefore, the differ-
ential equations with respect to x lead to linear relations
among the coefficients C;,, »,.;(y,2). From these linear re-
lations, we can determine a set of independent coeffi-
cients. We will refer to these independent coefficients as
"master coefficients" (MCs), and express the remaining
coefficients as linear combinations of the MCs.

Before solving the linear relations (there are an infin-
ite number of them), we need to constrain the highest val-
ues of the integers n; and n, for each i, i.e, the maximal
powers of € and x in the expansion of the master integral
I; (note that the maximal power of log(x) is naturally de-
termined given the values of n; and n,). The first con-
straint comes from the required orders in the expansion of
the squared-amplitude ¥®. As we have mentioned, we
truncate the expansion in x up to the NLP, i.e., order x'.
In addition, we truncate the expansion in € up to order €.
These requirements impose constraints on n; and n, for
each master integral ;. However, we find that these con-
straints are too tight for our purpose: the MCs determ-
ined from these constrained linear relations are not closed
under differentiation. The reason is that there are-cancel-
lations among different topologies in a family when their
contributions go into Eq. (6).

In order to obtain a closed system of differential equa-
tions, we need to slightly loosen the constraints. For that
purpose, we expand the coefficients in the differential
equations as well:

(0 _ (1) k.1
(Pi,j = Zgi,j,k,[(y’z)f X

kil

(10)

The lowest values of & and / are then crucial for the de-
termination of the highest expansion orders. As an ex-
ample, we consider the differential equations with re-
spect to x. The constraints from y and z can be similarly
studied. Plugging Egs. (7) and (10) into (8), we find that

ny Ci,nl.nz,m (y’ Z) + (1’13 + I)Ci,nl,n2,113+ 1 (_Yv Z)
= 8042 Clm k11 (32).

Jik,l

(11)

This is the master equation for relations among ex-
pansion coefficients. For this system to be closed, it is ne-
cessary that all coefficients contributing to a given
(m1,ny,n3) are incorporated in the above equation.

Let's focus on the equation with i =11, which arises
from the differential equation of 7; with respect to x. In

this case, one has je{1,8,11} on the right-hand side of
Eq. (11). For the NLP accuracy of the squared amplitude,
one requires both 7, and I, to be expanded to order x°,
since the minimal power of x in A; and Ay, is —2, which
means that we need to consider the equation with n, = 3.
However, the minimal value of / for i=11, j=1 is
[ = -2. Therefore, the coefficient with n,—1-1=4 will
appear on the right-hand side of the equation. For this
reason, we need to expand I, up to order x*.

Considerations similar to the above also applied to the
constrains on ny, i.e., the expansion orders in €. We need
to perform such analysis for each sector, and update the
constraints until -all equations are closed. As a final out-
come of such analyses, we provide the number of MCs
for each integral family in Table 1.

Table 1. The number of MCs in each integral family.

Integral families

Number of MCs

Fi
247

F>
359

F3
383

Fy
158

Fs
199

B. Solving the linear relations among coefficients

After obtaining a system of linear equations of the
coefficients, we can solve the equations to express all
coefficients in terms of the MCs. Before doing that, we
need to decide a set of rules for choosing the MCs. This is
similar to the rules for choosing the Mls in Feynman in-
tegral reduction. In practice, this requires to determine
between two coefficients which one is preferred over the
other.

The choice of MCs will greatly influence the process
of solving their differential equations with respect to y
and z. We would like them to have as simple analytic ex-
pressions as possible. From experience, this then corres-
ponds to selecting coefficients with smaller n;, smaller n,
and larger n;. Coefficients in lower sectors are also pre-
ferred over those in higher sectors.

After deciding the preference, we can solve the linear
system using the "user-defined system" functionality of
Kira. We can then construct the system of differential
equations of the MCs. For that we need to re-express the
derivatives of the MCs in terms of the MCs again. This
step can be accomplished by Kira as well. For example,
we write the differential equation of a MC with respect to

yas

0
701',711 12,13 ()’, Z) = Z Bgyk,/(y’ Z) Cj,nl —k,np—l,n3 ()’» Z) .

(12)
ay Jik.d

The above equation can be provided to Kira along with
other linear relations. One then obtains the left-hand side
expressed in terms of MCs. Finally, we arrive at the dif-
ferential equations
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0 :
7 C10n9) = > A .2Ci(02).
J

Lei00= Y #0000, (13)

J

where I=(i,ny,no,n3) and J = (j,m;,my,m3) denote two
subscript sequences that label the MCs.

IV. SOLVING THE DIFFERENTIAL EQUATIONS

After constructing the differential equations, we now
want to find the analytic solutions for the MCs. Ideally,
the solution procedure can be greatly simplified if the
connection matrices A7 (7,2) and A (,2) take a strictly
triangular form. In that case the solutions can be easily
written in terms of iterated integrals. This is similar in
spirit to the idea of canonical differential equations [71].
However, the existing tools [72—76] for finding canonic-
al differential equations do not easily adapt to the current
case. Fortunately, the connection matrices are already in a
block-triangular form with at most 3x3 blocks. These
can be iteratively converted to a strictly triangular form,
as will be demonstrated in the following.

A. Simple cases

We first consider the simple cases where the derivat-
ives of a MC only depend on itself and the already-solved
MCs:

0
ch@’z) =A,1.29C0.2)+G,(:2),

0
&ax@:%@@cma+@@w, (14)

where G, and G, come from the already-solved MCs. If
the coefficients A, and A, are both zero, the above equa-
tions can be easily solved by direct integration. This cor-
responds to a strictly triangular system discussed earlier.
We now consider the case where A, and A, are nonzero.

For convenience, we introduce the following func-
tions:

AM%@=%M}/$M@@J,

M= exp (- / A (15)

Multiplying the MC by the two functions, the differential
equations Eq. (14) are transformed into:

0
Mygy(y’ 2), aiz (M;C(y, Z)) = Mzgz(ys 2).

(16)

d
% (M,C(,2)) =

One can see that only already-solved MCs appear on the
right-hand side of the above two equations. We would
like to find a transformation function 7 (y,z) such that

83 (TCH,2) =T G,1,2), g (TCY,2) =T G.(3,2).
'y 0z

(17

This is an example of a strictly triangular system of dif-
ferential equations, where the derivatives of the trans-
formed MCs only depend on already-solved ones. Com-
paring Eq. (17) with Eq. (16), one can see that

T(.2) =M, (3.2) f:(2) = M.(v.2) /() (18)

where the function f,(z) satisfies the differential equation

M :(3,2)

*1f() M(y)

(19)

and similar for f;(y). The fact that the right-hand side of
the above equation is independent of y follows from the
compatibility condition of Eq. (14):

90, M
ady 0z

M.
= 0. A, ~8,A. =0,
= A=

(20)
which further follows from the linear-independence of
C(y,z) with respect to G,, G, and their derivatives. From
the above analysis, we can write

0 In MZ(Y»Z)> )

T0.9= M0 / egmiied). en

Building on this result, we get general solution to the
differential equaiton (17):

Cv,2) = /'rg\dy+c @] = /TQ dz+C, (y)}

(22)

where C,(y) is a function that only depends on y, and sim-
ilarly for C,(z). These two functions are related by the
second equal sign in the above formula, and are only
fixed once the arbitrary constant terms of the indefinite
integrals are chosen. Using the fact that C,(y) is inde-
pendent of z, we can derive the differential equation of

C.(z) with respect to z:
0
Tgé——/(/'g\,dy.
0z :

which allows us to determine the analytic expression of

(23)
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C. (as well as C,) up to a constant of integration. This
constant should be fixed by a boundary condition, to be
discussed later.

The above procedure of transforming the differential
equations to a strictly triangular form can be naturally ex-
tended to 2x2 blocks and 3x3 blocks, as will be dis-
cussed in the following subsections.

B. 2x2 blocks

We now consider the 2 x2 blocks, where the differen-
tial equations take the form
01] . lgi’)] '
C 7

ﬂ([)
ﬂ(’)

where 7 € {y, z}, ﬂ,(-j-)'s are rational functions of y and z, and
G"'s come from already-solved MCs. To solve the equa-
tions, we would like to find a linear combination
C' =b,C, +b,C, with b; and b, being rational functions
of y and z, such that the derivatives of C’ only depend on
itself. Taking the derivatives, one has

ﬂ(’ )
ﬂ(t )

Ci

0
tcz

(24)

3,y + by A + b AY)

4.C = pC
t bl 1“1
, O+ by A + by A,
2T i‘ 202 | 051G 4 G0 ) (25)
2
We therefore require
,_Obi+b AN + b, AY) _ 9by +b, A + b, AY 26)

b by
Once we find a suitable pair of b, and b,, the differ-
ential equation of C’ becomes

0C =AC+G,, G=bG'+hG.  (27)
The above equation resembles the one studied in Section
4.1. We can employ the method there to get rid of the
term A,C’, and effectively transform the differential
equation to a strictly triangular form. After obtaining the
solution of C’, we can use it to derive analytic expres-

sions of C; and C,. Taking C; as an example, we have

ANby
oc, = atje + it - (-7 )
2
()

s g, (28)
by

Since C’ is known, the above equation can again be
solved using the method of Section 4.1. The expression of

C, can then be obtained from those of C’ and C;.

From the above discussions, it is clear that the task
boils down to finding a particular solution of »; and b,
satisfying Eq. (26). Note that Eq. (26) is actually a differ-
ential equation for the ratio b,/b;, which can be rewritten
as

+AY=0. (29)

bz) 0] ( & ) (1) (1)
a,(bl A5, + (A - AY)

This is the so-called Riccati equation. There are two ways
to find a solution.

Method one: brute-force solution. For the cases we
encounter in this work, the Riccati equation can be solved
with the help of Mathematica. As an example, we may
need to solve the system with

by
b,

y—1
Y(y+2z-1)
—y(3z+2)—-3z+2

O-Dyy+2z-1

y+z—1
y(y+2z-1)
yez+1)—(z-1)?
(y-Dy+2z-1)

AV = . (30)

For convenience, we can set b; = 1, and the Riccati equa-
tion with respect to y reads

9 ye+1)—(z-1)

a7 (-Dy+2-1 2

Loy
V(y+2z-1)

3+y2—4z—2y(2+z)
-Dyly+2z-1)

€2))

Using Mathematica, we can obtain a general solution of
the above equation, which involves arbitrary functions of
z. We require that the solution is rational, and also satis-
fies the corresponding equation with respect to z. This
give rises to a particular solution

12
by = % (32)

yyz+y+z-1)"

In practice, this method is sometimes slow, and we may
resort to the second method.

Method two: solution by ansatz. Since the equation
only constrains b,/b;, we can assume that both b, and b,
are polynomials of y and z with integer coefficients. We
can then make the ansatz

n n—i n n—i

1= 2 ey =) ) iy,

i=0 j=0 i=0 j=0

(33)

where the coefficients c

n, are yet to be determined.
We start with a small value of n, and substitute the

ansatz into Eq. (26). This then leads to a system of quad-

" and 6,, , as well as the degree
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ratic equations of the coefficients. If the system of equa-
tions only allows a trivial solution (i.e., all coefficients
being zero), it means that the value of # is too small. We
then increase the value of » until find a non-trivial solu-
tion.

For the example considered above, we find that a
non-trivial solution can be obtained with n = 3:

by =—y(yz+y+z—-1), by=-(y-1), (34)

which is equivalent to the result of the first method.

C. 3x3 blocks

Similar to the 2x2 cases, the differential equations
for 3 x3 blocks have the form

Ci A AL AY
al c |=| A A A
Cs AL A A
C GV
G |+| 6 (39)
Cs Gy

The method for dealing with this system is analogous.
First, we need to construct a. linear combination
C’ = b1C; +b,C, + b3Cs3, whose differential equations only
involve itself. This boils down to the following equation

_ Oy + b\ A + b A3 + by A

A b
_ Ouba+ by AL + by A + b3 A
)
_ Oyby + by A + by AY + by A (36)
= b .
This equation can be rewritten as
b2> b\’ b3\ b,
o <7 —ﬂ([) (7) + ﬂ(t) _ﬂ(f) _ﬂ(t)i s
4 b] 21 b] 22 11 31 b] b]
b
mg’;lf + AL =0,
b3 > bz 2 b2 b?
) <7 n (t)(i—) O _ gq® _ gnZ2 )73
"\ b, A b, + (A - A - Ay b ) b,
AL A =0 37
RIAS] b, +A=U. (37)

One can observe that the two unknowns b,/b, and b;/b,
are still coupled by the two equations, and this system is
challenging to solve by brute force. Fortunately, the
second method introduced in the previous subsection still
works, and offers an algorithmic way to tackle this kind
of problems. We make polynomial ansatz for b,, b, and
bs, and solve for the coefficients from Eq. (36). After
that, we can solve for C’ using the method of Section 4.1.
We are then left with a 2x2 system of C, and C,, which
can be solved following the strategy of Section 4.2.

Let's again demonstrate our approach using an ex-
ample, where

1 __ 2zl N S
1-y o-Dyy+z-1) -lyy+z—1)
AY = yz+1) )’(4yZ+y+3Z2—3Z—1)+(l—z)z (z-DQRy+z-1)

(38)
-D0O?+yQ2z-1)+(z—1)2)

-z

O0-DOo+2)  -Dy(*+yQz—1)+(z-1)2)
Z z(3y+2z-2)
y+z yO?2+yQ2z-1)+(z-1)2)

A particular solution can be found by using the ansatz
with n =2, and is given by

bi=yz, by=2z, by=y-z. (39)
This give rise to a decoupled differential equation
oc’ 1 ) : y
= —C'+yz26V +2:69 +(y-1HGY. (40)
dy y-1

We don't go into the details of the remaining steps

V2 +yQz-1D)+(z-1)z

[
here.

In this work, we do not encounter blocks more than
3x3. But as one can see, the method introduced above
can be applied to more complicated cases as well. This
proceeds in an iterative way: one first solves for a linear
combination whose differential equation is decoupled,
which then leads to a simpler system.

D. Boundary conditions and final results

To obtain the solution to the system of differential
equations, we still need to determine the boundary condi-
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tions for each coefficient. For that we use AMFlow [77] to
numerically compute the small-mass expansion of all MIs
at a specific kinematic point. During this process, all vari-
ables (except m? but including €), are set to exact values
(rational numbers). For each value of e, the output has the
following structure

Jmax

Z Z Wij(f) (mz) Jj+ai(e) i
Jj=0

(41)

i

where «;(e) is a linear function of €, w;;(¢) depends on €
and the kinematic variables (which we have suppressed),
and j.x 18 specified according the required expansion or-
der (in m?) of the MIs. By varying e with fixed kinemat-
ic variables, we can reconstruct the coefficients in «;(e),
as well as the function w;;(€) as a power series in e:

kmax

k
wij(€) = Z Aijk € .

k=Kmin

(42)

To determine the coefficients a;;, we need to sample at
least (kmax — kmin + 1) different values of e. Note that the
precision of the reconstructed a;; also depends on the
number of samples. Therefore, we need to choose an ap-
propriate number according to the required expansion or-
der (in €) of the Mls and the required precision for the
coefficients. In practice, this number is about 50.

With the reconstructed coefficients, we can reexpand
Eq. (41) in €, and obtain the small-mass expansion of the
MIs at the chosen kinematic point in the form

Ii(G’ -x) = Z ﬁ,rll,nz,n3 €n1 xﬂz logn3 (-x) .

ny,n2,n3

(43)

The minimal powers of € and x, and the maximal powers
of log(x) for a given pair (n;,n,) can be read off from the
above expansion. Note that f;,, ,,., is just the coefficient
Cinmn(0,2) at a particular kinematic point, and the gen-
eral solution of C;,, .,.,(y,2) has already been obtained
from the differential equations. Such a solution can be
written in terms of generalized polylogarithms (GPLs)
with the help of PolyLogTools [78],up to some un-
known constants. These constants can then be reconstruc-
ted as transcendental numbers by the PSLQ algorithm,
using the high-precision numbers (about 100 decimal di-
gits) of fi,, ... The transcendental basis is generated
from the elements {r,1n(2),,,48,Li4(1/2),45) up to
weight 5. It is worth mentioning that the DEs may de-
mand higher order coefficients in €, as discussed in Sec.
3.1. That's the reason why weight-5 functions and con-
stants appear, despite the fact that two-loop amplitudes up
to order € only require weight-4 at most. Note that the
form of the analytic expressions can be different in differ-

ent kinematic regions. We concretely work in the Euc-
lidean region where all planar MIs have no imaginary
part. The expressions in other kinematic regions can be
obtained via analytic continuation. Since our results are
written in terms of GPLs, their analytic structure is very
well understood. The branch cuts of GPLs are uniquely
fixed by their symbols, and whenever one analytic contin-
ues across a branch cut, an extra term proportional to +ix
is generated, where the sign of in depends on the direc-
tion of going across the cut. See, e.g., [79—81] for more
detailed discussions.

With the analytic expressions for the MlIs, we can
combine them to-obtain the planar contributions to the
squared-amplitude ¥® up to order x' and €. It can be
written in terms of GPLs up to weight 5, with the follow-
ing symbol letters:

1=y, »,0=-22,1-2y-2z,1-2,2-2,1-y-z,

1tz y+z, 1+y+z. (44)

There are two additional letters {1 —y, 2—y—z} appearing
in the MIs. But they cancel out in the final expression for
the squared-amplitude. Note that the original massive
amplitude involves elliptic integrals, but the expanded
amplitude can be expressed by GPLs up to the NLP. The
result for the squared-amplitude is very compact, with a
size of about 400 KB. We attach the expression as an
electronic file to this paper.

We have performed several sanity checks on our cal-
culation. We have applied our method to the one-loop
amplitude where the complete result can be easily ob-
tained. Upon expansion in the high-energy limit, the com-
plete result agrees exactly with our calculation. We have
also numerically computed the MIs at several different
kinematic points other than the chosen boundary point,
and find that the results agree with the outcomes from our
analytic expressions. In particular, we have verified kin-
ematic points beyond the Euclidean region, and find that
the imaginary parts agree as well. These checks demon-
strate the reliability of our method.

V. SUMMARY AND OUTLOOK

In this work, we initiate a study of the sub-leading
power contributions to the multi-parton massive form
factors in the high-energy limit, where the parton masses
are much smaller than their energies. These form factors
provide crucial information to formulate and validate sub-
leading power factorization theorems for generic scatter-
ing amplitudes. Such factorization theorems are import-
ant to resum the mass logarithms beyond the leading
power, and to generate approximate results for scattering
amplitudes at higher loops.

While the two-loop massive quark form factors are
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available, the 1 — 2 kinematics is not generic enough to
be extended to multi-parton scattering amplitudes. There-
fore, we focus on 1 —3 form factors where two-loop
multi-parton correlations can be studied. To establish the
calculational techniques, we start with the two-loop
planar contributions to a QED form factor y* — e*e™y in
this work. Although only two-particle correlations are
present in this case, it is enough to demonstrate that our
method is capable to obtain analytic expressions of the
relevant loop integrals as a small-mass expansion.

Our calculations are based on the differential equa-
tions satisfied by the expansion coefficients of the master
integrals. They can be derived up to an arbitrary order in
the power expansion using the differential equations sat-
isfied by the master integrals. The differential equations
with respect to the mass m are then utilized to derive lin-
ear relations among the expansion coefficients. Similar to
the IBP reduction, these linear relations can be solve to
express all coefficients in terms of a finite set of master
coefficients. The differential equations of the master
coefficients with respect to momenta invariants are then
employed to solve for their analytic expressions. The
solutions are expressed by GPLs, which are then com-
bined and lead to a compact analytic result for the planar
contributions to the form factor.

There are several obvious follow-ups to this work in
sight. A rigorous verification of factorization at NLP ne-

cessitates the inclusion of non-planar contributions to the
amplitudes. Our method can be readily applied to non-
planar contributions to this form factor. The main
obstacle in such a calculation lies in the IBP reduction.
We have attempted with the state-of-art reduction tools
such as Kira, NeatIBP [82, 83] and Blade [84], but have
not succeeded within a reasonable amount of time. It will
be necessary to develop more efficient reduction meth-
ods for such cutting-edge calculations. Another obvious
generalization is to consider the QQg form factor in
QCD, where genuine three-parton correlations can occur.
This involves more integral families, but the method es-
tablished in this work can still be straightforwardly ap-
plied. Finally, the differential equations for the master
coefficients are solved by brute-force in this work. It will
be interesting to’ investigate whether these differential
equations can be casted into a canonical form which can
be solved directly as iterated integrals. We leave these in-
vestigations to future works.

APPENDIX A: DETAILS OF THE INTEGRAL
FAMILIES

As mentioned in the main text, we have 5 integral
families, which contains 19 planar topologies in total, as
shown in Fig. Al. The Mls in each integral family are lis-
ted as follows:

-

(a) Fy topology 1.

(b) F; topology 2.

(¢) Fy topology 3.

(d) Fy topology 4.

(g) F> topology 3.

(j) F» topology 6.

(e) F» topology 1.

N}

(f) F» topology

(h) F» topology 4.

(i) F> topology 5.

(k) F» topology 7.

(1) F, topology 8.

(m) Fj5 topology 1.

(p) F5 topology 4.

(n) F3 topology 2.

0) F5 topology 3.

(q) F; topology 5.

(r) Fy topology 1.

(s) Fs topology 1.

Fig. Al

Two-loop planar topologies. Thick lines represent propagators with mass m or external legs with p? = m?. Thin lines repres-

ent massless propagators or external legs. Red lines represent external legs with p? = s123.
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