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Abstract: Physics-Informed Neural Networks (PINNs) have emerged as a powerful tool for solving high-dimen-
sional partial differential equations, demonstrating promising results across various fields of physics and engineer-
ing. In this study, We present the first application of PINNs to quantum tunneling in heavy-ion fusion reactions. By
incorporating the physical laws directly into the neural network's loss function, PINNs enable the accurate solution
of the multidimensional Schrodinger equation, whose wavefunction has substantial oscillations. The calculated
quantum tunneling probabilities exhibit well agreement with those obtained using the finite element method at the
considered near barrier energy region. Furthermore, we demonstrate a significant- advantage of the PINN approach to
save and fine-tune pre-trained neural networks for related tunneling calculations, thereby enhancing computational

efficiency and adaptability.
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I. INTRODUCTION

Quantum tunneling is a fundamental phenomenon in
quantum mechanics, where particles exhibit a finite prob-
ability of traversing potential barriers-that exceed their
kinetic energy [1]. First introduced in the context of al-
pha decay by Gamow [2], tunneling has evolved into a
cornerstone concept with profound implications across
various domains of physics and chemistry. In nuclear
physics, tunneling is the main process of nuclear reaction
phenomena such as fusion and fission, where particles
overcome potential barriers at sub-barrier energies [3].
The study of tunneling between two nuclei offers valu-
able insights into phenomena related to power generation,
astrophysical evolution, and the synthesis of superheavy
elements. However, accurately modeling the tunneling
process remains challenging due to the complexity of
nuclear reactions, which involve multidimensional
quantum tunneling by coupling the radial motion to the
nuclear collective vibrations, single-particle excitations,
transfer couplings, and so on.

The Numerov method is a widely used finite differ-
ence approach for theoretically describing tunneling pro-
cesses involving real or imaginary nuclear potentials. Dif-

Received 16 March 2025; Accepted 16 May 2025

ferent modified versions of this method have employed to
solve the multidimensional coupled-channels equations in
programs such as CCFULL, CCqel and Fresco [4, 5]. The
coupled matrix is typically constructed by accounting for
the collective vibrations and/or rotations of the projectile
and target. However, this method is known to exhibit nu-
merical instabilities in the classically forbidden energy re-
gion, where wave functions can differ by orders of mag-
nitude, leading to a loss of linear independence [6].

In addition to the usually used Numerov method, oth-
er sophisticated and high-accuracy numerical methods
have been developed recently, including the Lagrange-
mesh improved Numerov algorithm used in breakup reac-
tions [7, 8], advanced complex scaling method [9, 10],
the R-matrix method (RM) and the finite element method
(FEM). The complex scaling method adopts a single set
of reduced bases, allowing for efficient and simultaneous
emulation across multiple channels and potential para-
meters of direct reactions. The RM solves the coupled-
channels equations using Lagrange basis functions and
the propagation method, which are capable of handling
elastic scattering, breakup reactions, and transfer reac-
tions of light nuclei [11—14]. This approach allows for
straightforward calculations of matrix elements. Addi-
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tionally, the propagation method is employed to save
computation time when there is only local potential.

The FEM is recognized for its superior numerical ac-
curacy compared to the Numerov method [15—17]. An ef-
ficient finite element program, KANTBP, has been de-
veloped to calculate the reflection and transmission
matrices, and corresponding wave functions by solving
coupled Schrodinger equations. Leveraging the program's
high accuracy and careful consideration of non-diagonal
matrix elements, it has successfully reproduced astro-
physically significant deep sub-barrier fusion cross sec-
tions and their experimental S-factors [18—21]. Recently,
an algorithm has been devised to solve the scattering
problem in complex potential and single channel approx-
imation, facilitating more accurate barrier distribution
analyses of quasi-elastic reactions [22].

The aforementioned numerical techniques discretize
the spatial domain and approximate Schrodinger equa-
tions, enabling the computation of wave functions and en-
ergy levels. However, in multidimensional quantum tun-
neling, effectively incorporating single-particle excita-
tion and transfer coupling remains challenging. One of
the core difficulty lies in the inherently high-dimensional
nature of these problems, which leads to the curse of di-
mensionality [23, 24]. This underscores the urgent need
for the development of novel solution methods. Deep
learning, a subset of machine learning, exhibits enhanced
capabilities in representing and simulating complex func-
tions through its multi-hidden-layer architecture, making
it particularly suitable for addressing high-dimensional
problems.

In recent years, machine learning techniques, particu-
larly deep neural networks, have emerged as promising
tools for the solving partial differential equations (PDEs),
with profound implications in physics, mathematics, and
related fields [25—27]. Physics-Informed Neural Net-
works (PINNs) [28] represent a framework by integrat-
ing physical laws directly into the neural network's loss
function. By encoding PDEs, initial conditions, and
boundary conditions into the training process, PINNs en-
able the network to learn solutions that inherently satisfy
the governing equations [29]. This approach has demon-
strated promising applications in various fields, includ-
ing fluid mechanics [30], characterization of internal
structures and defects in materials [31], molecular dy-
namics and so on [32]. Recently, PINNs have been dir-
ectly applied to solve the Schrédinger equation under har-
monic oscillator and Woods-Saxon potentials, yielding
ground state wave functions and energy levels [33]. Addi-
tional developments include Pauli Net [34] and Feynman
Net [35], which employ deep learning approaches to
solve multi-electron stationary Schrodinger equations,
and also Feynman Net specifically addressing isospin-de-
pendent nuclear many-body equations [36].

Despite these advancements, the application of PINNs

to quantum scattering problems, particularly multidimen-
sional quantum tunneling, remains relatively unexplored.
This work aims to address this gap. The structure of the
paper is as follows: Section II provides a detailed theoret-
ical framework, including the formulation of the multidi-
mensional Schrédinger equation and the implementation
details of PINNs. Section III presents results for both the
Eckart and Gaussian potentials, including comparisons
with analytical solutions and FEM results. Finally, Sec-
tion IV concludes the paper by summarizing the results
and discussing the potential future directions.

II. THEORETICAL FRAMEWORK

A. Coupled-Channels Equations

Quantum tunneling is governed by the Schrodinger
equation. For one-dimensional systems, the tunneling
probability can be calculated analytically only for a lim-
ited number of potentials. For most realistic one-dimen-
sional and higher-dimensional channels, numerical meth-
ods are required. In a multidimensional tunneling prob-
lem, for each channel n, the coupled-channel (CC) equa-
tion is expressed as:

e N
" St + Z Won(P@(r) = E¢ (1), (1)

where ¢,(r) represents the radial wavefunction, r is the
radial distance, M is the total number of coupled channels,
h is the reduced Planck's constant, and u is the reduced
mass of the system. The term W,,(r) denotes the coup-
ling potential between channels n and m, and E is the in-
cident energy of the system.

In tunneling problems, when the potentials approach
zero at large distances, a plane wave boundary condition
can be applied. At ry;,, an incoming wave is present only
in the first channel, and waves may be reflected back in-
to each channel. At r,,,, waves are transmitted into each
channel, as described by:

G (Fmin) = ekntming 4 R o HknTmin
n n,ng n
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)
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where ny typically corresponds to the first channel
(np=1). The coefficients R, and T, are complex num-
bers representing the reflection and transmission coeffi-
cients for channel n, respectively. The wave number for
channel 7 is given by k, = \/2uE,/h*, where E, = E —¢,
and ¢, is the channel energy. For the first channel,

Kny = /2UE[R,
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The derivatives of the wavefunction at the boundary
points are:

do, D i . ik
% . = ik, e'knTmin 5MO —ik,R,e lknrmm’ 4)
de, .

2 = ik, T,e . )
dr r=Tmax

In tunneling problems, the transmission (tunneling)
probability, which quantifies the likelihood of a particle
penetrating a potential barrier, is often of interest. The
total reflection and transmission probabilities,

R=Y"0, klff"oanlz and T =Y, ](%'TnP, can be obtained by
solving Eq. (1) while ensuring the continuity of the
boundary wavefunction and its derivative.

B. Physics-Informed Neural Networks (PINNs)

Physics-Informed Neural Networks (PINNs) provide
an alternative approach by approximating the solution
¢o(r) using a neural network [28], where 6 represents the
set of all trainable parameters (e.g., weights and biases).
The key idea is to incorporate the physical laws govern-
ing the system directly into the loss function used to train
the neural network.

The neural network employed in this study consists of
multiple fully connected layers. The input layer receives
the spatial coordinates » and incident energy E, while the
output layer produces the approximated wavefunction for
each channel. A schematic diagram of the adopted phys-
ics-informed neural network is shown in Fig. 1. Com-
plex-valued outputs are handled by treating the real and
imaginary parts separately.

The SIREN (Sinusoidal Representation Networks) ac-
tivation function is particularly effective for learning
functions with high-frequency components [37]. The
neurons are combination of o(r) = sin(wyr + b), where w
is the frequency parameter and b is a bias term. Proper
initialization is critical for training networks with period-
ic activation. Initialization schemes have been shown to
be crucial in the training procedure of deep neural net-
works, and the weights here are initialized using the spe-
cial uniform distribution as the same as in Ref. [37].

The key advantage of SIREN lies in the property that
its derivatives remain compositions of SIRENs. This is
due to the fact that the derivative of the sine function is
the cosine function, which is itself a phase-shifted sine
wave. Unlike conventional activation functions such as
the hyperbolic tangent (tanh) or the rectified linear unit
(ReLU), the sine function is periodic. This periodicity,
combined with the smooth and continuous nature of si-
nusoidal activation, enables SIRENs to effectively model
complex, high-frequency patterns and fine-grained de-
tails. Empirical evidence demonstrates that this unique

Schrédinger Equation

Neural Network

Done

ﬁTotal =
MSE < %
5 ‘CPDE + [:Flux + ‘CBoun(lary

Fig. 1.  (color online) Schematic diagram of the adopted
physics-informed neural network.

characteristic of SIRENS significantly enhances their rep-
resentational capacity, particularly in tasks requiring pre-
cise modeling of signals, images, or physical phenomena.
The loss function in the neural network training incor-
porates several physical constraints to ensure that the
learned wavefunctions ¢,(r) satisfy the Schrodinger equa-
tion and the imposed boundary conditions. The first com-
ponent is the PDE residual loss Lppg, which enforces that
the wavefunctions satisfy Eq. (1) across the sample do-
main:
Y hz d2¢n(ri)
_Z dr?

1
Lepe = N

N

i=1 n=1
2

N
+ Y Wan(r)gu(r) — Egu(r)| (6)

m=1

where N; is the number of collocation points r;.

The second component is the boundary derivative loss
Lpoundary» Which ensures that the derivatives of the wave-
functions at the boundaries match the expected physical
behavior:

N‘
: d¢n i . 2
E ; ik Fini . ik o
LBoundary = H dr -~ — (lkné’ n mmdn,no _ lk,,R,,e n mm)
n=1 —fmin
2

dé, A
—+ — lkn Tnelkn Tmax .

dr 1r=rmax

(N

The third component is the flux conservation loss
Lrx, which enforces the conservation of probability flux,
ensuring that the total incoming flux equals the sum of re-
flected and transmitted fluxes across all open channels:

N 2
Liix = (Z,f"(mnfﬂnﬁ)—l) : (8)

n=1 "0
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Combining all components, the neural network's ob-
jective is to minimize the total loss:

©

LTOtaI = LPDE + -EFlux + -EBoundary'

Finally, the wavefunctions for each channel, as well
as the reflection and tunneling probabilities, can be ob-
tained by minimizing the total loss. The Adam optimizer
with a learning rate scheduler is employed to train the
neural network. The training process involves iteratively
updating the network parameters to minimize the total
loss function.

III. RESULTS AND DISCUSSION

In the following studies, we present the results of one-
dimensional and multi-channel cases, where the network
structure is consistent, with the only difference being the
number of output neurons corresponding to the number of
channels. For example, in the one-dimensional potential
case, the network has 2 output neurons (real and imagin-
ary parts of the wavefunction), while in the three-channel
potential case, it has 6 output neurons (2 for each of the 3
channels). The PINN architecture and training hyperpara-
meters are described as follows:

1. Network Structure:

- Input Layer: 2 neurons for spatial coordinate » and
incident energy E.

- Hidden Layers: 2 fully connected layers with 128
neurons each, using the SIREN activation function.

- Output Layer: 2N neurons for real and imaginary
parts of wavefunctions across N channels (e.g., N =1 for
Eckart potential, N =3 for three-channel Gaussian poten-
tial).

2. Initialization Strategy:

- Weights: For the first layer, the uniform distribution
U(-1/d, 1/d) is used, while for subsequent layers, the
weights are initialized from a uniform distribution
U(-V6/d/w,, \6/d/w,), where d is the input dimension-
ality of each layer and the frequency parameter w, = 30.

- Bias Initialization: The biases in all layers were ini-
tialized from a uniform distribution U(~1/ Vd, 1/ Vd).

- Learning Rate: Initial value is 10™*. A dynamic
learning rate scheduler was employed to ensure stability
during optimization.

The detailed training methodology is as follows:

1. Boundary Wave Function Calculation: The wave
function values at boundary points ry;, and ry, are dir-
ectly computed from the neural network's output. The de-
rivatives are calculated via automatic differentiation of

the neural network outputs with respect to 7.

2. Collocation Point Distribution: The collocation
points are uniformly sampled across the spatial domain
[7mins 'max] With 2x 10* intervals.

3. Stopping Criteria: Training was terminated when
the total loss Ly improvement is smaller than 10~> for
every 3000 epochs.

4. Complex-Valued Outputs: Complex-valued wave-
functions were handled by splitting the output layer into
two channels for real and imaginary parts.

A. One-Channel Eckart Potential

The Eckart potential is a well-known one-dimension-
al potential with an analytical solution [38]. In this sub-
section, we adopt the same potential form as in our previ-
ous work [39]:

Vg

W(r)=V(r) = m,

(10)

where Vi and Rp represent the potential barrier height
and radius, respectively.

For the case where 8uVy/h* > 1, the analytical solu-
tion for the transmission coefficient is given by:

T(E) = sinh?(7tk) 1
sinh® (k) + cosh® [ L7 \/8uV/i2 — 1] (1
where k= \/2uE/h*. For simplicity, we set

2u/h? = 1MeV~'fm™, Rz =0fm, and Vz=20MeV. The
shape of the potential is illustrated in Fig. 2.

Fig. 3 compares the tunneling probabilities computed
using PINN with the analytical solution. The analytical
solution, given by Eq. (11), is represented by the solid

30 T T T
— V3=20MeV
R 20 - .
>
]
2
S 10 |- .
~
0
Il Il 1
-10 -5 0 5 10
r (fm)
Fig. 2.  (color online) The Eckart potential V(r) from Eq.

(10) with Vp =20MeV and Rp =0fm.
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Fig. 3. (color online) Comparison of tunneling probabilities

for the Eckart potential between PINN (red circles) and the
analytical solution (blue solid line).

line. The close agreement between the PINN results and
the analytical solution across both above-barrier and be-
low-barrier energy regions validates the applicability of
the PINN approach for this one-channel tunneling prob-
lem.

The squared modulus of the wavefunction |4(r)?
could provide valuable and direct insights into the tunnel-
ing probability or the square of tunneling -coefficient,
based on Eq.(3). The |¢(r)]* obtained for the one-dimen-
sional Eckart potential under both below-barrier energy
E=11MeV and above-barrier energy E =25MeV are
given at Fig. 4 and Fig. 5. In each figure, the comparison
of the PINN and FEM are shown in panel (a), and the de-
viations are shown in panel(b). The |¢(rmu))* and the tun-
neling probability tend to be zero in below-barrier energy
at Fig. 4 (a), and one in above-barrier energy Fig. 5 (a),
respectively. As illustrated in Fig. 4 (a), the squared mod-
ulus of the wavefunction |¢(r)]*> exhibits a high degree of
oscillation, which is characteristic of quantum tunneling
phenomena. Meanwhile, The PINN method accurately
captures these oscillations, as evidenced by the close
agreement with FEM results shown in panel (a). The de-
viation plot in panel (b) reveals that the discrepancies
between PINN and FEM solutions are minimal, typically
within 0.01. The successful modeling of such features
across different energy regimes underscore the capability
of PINNs to handle intricate physical phenomena gov-
erned by the Schrodinger equation.

B. Three-Channel Gaussian Potential

Next, we consider a three-channel tunneling problem,
where the coupling potential is expressed as:

V(r) F(r) 0
W) =1 F(r) V(n+e  F() , (12)
0 F(r) V(r)+2e
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= |
= 4 . | 3
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>
O
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(200 816 -4 2 0 2 4 6 8
r (fm)

10 12

Fig. 4.
teristics under the one-dimensional Eckart potential at a be-
low barrier incident energy (E = 11 MeV). (a) Squared modu-
lus of wavefunctions (|¢(r)?) calculated using PINN and FEM.
The solid lines represent the PINN results, while dashed lines
denote the FEM solutions. (b) Deviation between the PINN
and FEM results represented by the solid line.

(color online) Comparison of wavefunction charac-
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Fig. 5. (color online) Same as Fig. 4, but for the above barri-
er incident energy (E = 25 MeV) under the one-dimensional
Eckart potential.

with
V()= Voe "1, (13)
F(r)=Foe 7, (14)
where V,=100MeV, F;=3MeV, and s=s;=3fm.

These parameters are chosen to simulate the potential
between two *Ni nuclei. The excitation energy € and the
reduced mass p are set to 2 MeV and 29 my, respectively,
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where my =938MeV is the nucleon mass. The multidi-
mensional WKB method and the symmetry WKB meth-
od have been tested on this three-channel tunneling prob-
lem [39, 40].

Due to the lack of an analytical solution, we compare
the PINN results with those obtained using high-accur-
acy FEM based on our recent developed KANTBP pro-
gram [16], as shown in Fig. 6. The results are presented
in both linear (upper panel) and logarithmic (lower panel)
scales to highlight the details. In the legend, SC and 3C
denote single-channel and three-channel coupling calcu-
lations, respectively. The upper panel reveals that the tun-
neling probability in the three-channel case (3C) is signi-
ficantly broader compared to the single-channel case
(SC). The PINN results closely match the FEM results
across the considered energy range. In the logarithmic
scale, the tunneling probability in the 3C case is notably
enhanced at the sub-barrier energy region due to the pres-
ence of coupling, which is shown in the lower panel of
this figure. The PINN results remain consistent with the
FEM results, demonstrating reliability across probabilit-
ies at the considered near barrier energy region.

Fig. 7 displays the real and imaginary parts of the
wave function computed using PINN at an above barrier
energy of E=107.0MeV. At this above barrier energy,
the tunneling probability is close to 1, and the wave func-
tion easily passes through the barrier, as evidenced by the

T T T T T
FEM (3C) .
FEM (SC) '\
PINN (3C)
PINN (SC)

41/ L 1 L L L L

100 102 104 106
E (MeV)

108

Fig. 6. (color online) Tunneling probability as a function of
energy for the three-channel Gaussian potential in linear scale
(upper panel) and logarithmic scale (lower panel). SC and 3C
represent single-channel and three-channel coupling results,
respectively. PINN results are shown as scatter points, and
FEM results are shown as lines.

amplitude increase in Channel 1 (upper panel). Due to the
high energy relative to the barrier height, the wave func-
tion can tunnel into other reaction channels, as seen in the
middle and lower panels, where the wave function amp-
litudes increase significantly after passing the barrier at
r=0 fm. As evident from the figure, the wave function
exhibits substantial oscillations, posing significant chal-
lenges for neural network training. Under our testing con-
ditions, only the SIREN neural network successfully
learns the correct results, whereas methods such as tanh
and ReLU prove to be ineffective.

For the Gaussian potential, the squared modulus of
the wavefunction-|¢(r)]* and the deviation computed us-
ing PINNs also’ demonstrate excellent agreement with
FEM solutions, as depicted in Figs. 8 and 9. At a below-
barrier energy of E =93MeV, the wavefunction exhibits
pronounced oscillations. The PINN produces near-
identical patterns to the FEM results (Fig. 8(a)). The devi-
ation plot (Fig. 8(b)) indicates that the differences
between the two methods are negligible. Similarly, at an
above-barrier energy of E =103MeV, the wavefunction
displays a relatively smooth transition through the poten-
tial barrier, with the PINN solution closely matching the
FEM outcome (Fig. 9(a,b)). These results collectively af-
firm the reliability of PINNs in solving the Schrédinger

T T T T T T T T T

Channel 1

MR

HHH‘HHM\”‘

(=]

- . Channel 2
St |
42 R ‘\"\IH"IJ\\'“I\!\!\JH’\’\“
B 0 PV AAAN// AN H“HHH“ HHHHH“\“‘ I‘H
5 | |
§_1_ ;“HH\.HH._
‘ éea] ' : T T T T !
I —— Imaginary
ok AAARAN

r (fm)

Fig. 7. (color online) Real (thick lines) and imaginary (thin
lines) parts of the wave function obtained using PINN for the
three-channel Gaussian potential at an above-barrier energy
E =107.0MeV. The barrier height is 100 MeV, and r=0 de-
notes the barrier position. The wave function is transmitted
from left to right.
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MeV.

(color online) Same as Fig. 4, but for the one dimen-

equation for potentials with varying shapes.

Finally, we examine the training time required for the
neural network parameters to converge. Fig. 10 shows the
number of epochs needed for different training policies of
PINN in the three-channel tunneling case as a function of
incident energies. Two training policies are adopted: (1)
training with reference to pre-trained wave functions at
previous energy point (labeled as "w r"), and (2) training
from scratch (labeled as "w/o r"). The results indicate that
higher incident energies require more epochs due to the
increased momentum and thus oscillations in the wave
function. The "w r" training strategy operates through the
following protocol. The proceeding of the training could
be in either ascending or descending energy order. In cur-
rent work, we use descending energy order as an ex-

50000 ‘ ‘ ‘
- PINN(wp)
45000 |- —e— PINN (w/or) |
5,
8 40000 |- .
=
=
£ 35000 |- .
<
Q
S
2. 30000 |- .
m
25000 |- .
20000 1 1 1 1 1 1
12 108 104 100 96 92 88
E (MeV)
Fig. 10. (color online) Epochs required for different training

policies of PINN in the three-channel tunneling case as a func-
tion of incident energies. Training with reference to pre-
trained wave functions (w r) is represented by squares and sol-
id lines, while training from scratch (w/o r) is represented by
circles and dashed lines.

ample. The neural network trained at energy E; serves as
the initial parameter set for training at E;,; with E; > E;,;.
This method preserves learned physical features while al-
lowing adaptation to new energy conditions, meanwhile
saving computational resources. The idea of such train-
ing strategy is due to that the wavefunctions at adjacent
energy points share similar physical features, and only
fine-tune is needed for the sequential energy points after
the first one. The "w r" policy significantly reduces the
number of epochs compared to the "w/o 1" policy,
demonstrating the advantage of PINN in reusing pre-
trained models. This feature is particularly advantageous
for calculations involving similar potentials or minor
parameter adjustments, such as those required in fusion
cross-section or quasi-elastic scattering calculations,
where computations across a range of energies and im-
pact parameters are essential. By leveraging pre-trained
models, PINNs could reduce the computational burden
associated with such batch calculations, enabling more
efficient simulations.

IV. CONCLUSION

We have presented the first application of PINN to
multidimensional quantum tunneling problems using the
SIREN activation function to simulate the wavefunction
with substantial oscillations. Through examples of the
Eckart and three-channel Gaussian potentials, we demon-
strated that PINNs achieve results comparable to tradi-
tional methods like FEM at the considered near barrier
energy region. The study of tunneling in complex and
realistic nuclear potentials [41] based on PINN will be
addressed in the subsequent works. While the current
computational speed of PINN is still much slower com-
pared to FEM, as also shown in Refs. [42, 43], PINNs



P. W. Wen, C. J. Lin, L. Yang et al.

Chin. Phys. C 49, (2025)

could be promising in offering significant advantages in
high-dimensional problems, where classical methods be-
come computationally prohibitive. Additionally, the abil-
ity to save and fine-tune trained neural networks for re-
lated calculations reduces computation time. This adapt-
ability allows for rapid reconfiguration of the model to
accommodate variations in nuclear properties or reaction
conditions without extensive retraining. Future work
could explore techniques such as adaptive resampling of

collocation points, alternative activation functions, resid-
ual connections, and stochastic gradient descent methods
to further improve the efficiency of PINNs and tackle the
curse of dimensionality [44, 45].
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