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Abstract: In this paper, a feedforward neural network (FNN) approach is employed to optimize three local mass

models (GK, GKs, and GK+J). It is found that adding physical quantities related to pairing effect in the input layer

can effectively improve the prediction accuracy of local models. For the known masses in AME2012, the FNN re-

duces the root-mean-square deviation between theory and experiment for the three mass models by 11 keV, 32 keV

and 623 keV. Among them, the improvement effect of light mass region with mass number between 16 and 60 is
better than that of medium and heavy mass regions. It also has good optimization results when extrapolating
AME2012 to AME2020 and the latest measured masses after AME2020. Based on the improved mass data, the sep-
aration energies for single- and two-proton (neutron) emissions, and a-decay energies are obtained, which agree well

with the experiment.
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I. INTRODUCTION

Atomic mass (or mass for short) is one of the funda-
mental quantities of a nucleus. Atomic mass data are cru-
cial in nuclear physics, astrophysics, and nuclear techno-
logy [1, 2]. They reveal the interaction mechanisms
between nucleons, including strong interactions, weak in-
teractions, and electromagnetic interactions [3], as well as
the resulting shell effects [4, 5] and deformations [6, 7].
Although significant advances have been made in the
measurement of mass [8§—11], the mass-of many unstable
nuclei far from the f-stability line is unknown, such as
most nuclei involved in the rapid neutron capture process
(r-process) and many short-lived neutron-rich radioactive
nuclei [12, 13].

Mass prediction has been one of the hot topics in nuc-
lear structure theory. Generally speaking, theoretical
mass models can be divided into global type and local
type. Global mass models describe masses by consider-
ing the macroscopic and/or microscopic properties of the
nucleus, such as the liquid drop model (LDM) [14], the
Bethe-Weizsidcker (BW) model [15, 16], the relativistic
mean-field (RMF) model [17—19], the Duflo-Zuker (DZ)
model [20], the finite-range droplet model (FRDM) [21],
the Skyrme-Hartree-Fock-Bogoliubov (SHFB) theory
[22—24], the modified Weizsicker-Skyrme (WS) mass
formula [25—28], and so on. Local mass models are char-
acterized by having fewer model parameters and simpler
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calculations, allowing them to accurately describe and
predict the masses of nuclei near the fS-stability line, such
as the Audi-Wasptra extrapolation [8—11], the Garvey-
Kelson (GK) mass relation [29-31], the generalized GK
mass relations (GKS) [32], the improved Jidnecke mass
formula (GK+J) [33], and the mass relations based on
proton-neutron interactions [34, 35]. For a comprehens-
ive review, see Ref. [36].

Using the Machine Learning (ML) to analyze and
predict nuclear data is one of the focuses in the field of
nuclear physics, which is helpful to further understand the
nuclear structure and reaction mechanism [37—40]. In the
literature, neural networks have made significant pro-
gress in optimizing global mass models [41—54], as well
as predicting a-decay half-life [55], level density [56],
charge density [57], and so on. For example, the feedfor-
ward neural network (FNN) reduced the root-mean-
square deviations (RMSD) of the LDM from 2.38 MeV
to 196 keV using multiple hidden layers [41]. The
Bayesian neural network (BNN) was performed to im-
prove the nuclear mass predictions of six global mass
models and better predictive performance can be
achieved if more physical features are included [43]. By
combining the global nuclear mass model and local fea-
tures, the convolutional neural network (CNN) achieved
good optimization results in both training sets and extra-
polating new masses [47]. Because the RMSD of local
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mass models are low (mostly tens to hundreds of keV),
there is little research on the optimization of local mass
model by neural network. We note that back-propagation
(BP) neural network was applied to improve the local
mass relations which connect with the proton-neutron in-
teractions for nuclei with A > 100 [58]. Although the im-
provement to the local mass model is modest, it has the
advantage that there is no increase in RMSD in a larger
mass region [58].

The purpose of this paper is to improve the local mass
models of GK, GKs and GK+J within the framework of
the feedforward neural network (FNN). Among various
machine learning methods, the FNN has the advantages
of simple architecture, strong ability to handle low-di-
mensional inputs and non-spatial features, high inter-
pretability, and powerful function approximation capabil-
ity [41, 42, 55, 56, 59, 60]. Therefore, the FNN is selec-
ted to optimize the local mass models in this paper. By
carefully designing the input layer, hidden layer and out-
put layer of the FNN, the prediction accuracy of the three
models has been significantly improved. For known
masses in AME2012, the RMSD from experimental val-
ues of GK, GKS, and GK+J are reduced by 11 keV, 32
keV, and 623 keV, respectively. For the new masses from
AME2012 to AME2020, the RMSD reduction for the
three models is 44 keV, 20 keV and 963 keV, respect-
ively.

This paper is organized as follows. In Sec. 2,7a brief
introduction to the FNN is given. In Sec. 3, four neural
network structures are designed and the optimal network
structure of three local mass models is discussed. Our im-
provements in both descriptions and predictions of mass
excess are investigated. In Sec. 4, one/two-proton/neut-
ron separation energies (S ,,S2,,5,,52,), and a-decay en-
ergies Q, are investigated. In particular, the a-decay en-
ergy of nuclei with proton number Z from 82 to 108 and
its odd-even staggering (OES) are discussed. The sum-
mary and conclusions are given in Sec. 5.

II. THEORETICAL FRAMEWORK

Neural network is a type of computational model that
emulate the operational principles of the human brain,
consisting of multiple layers of nodes (neurons), which
typically include an input layer, hidden layers, and an
output layer. Each neuron receives input signals from the
previous layer, applies an activation function after
weighted summation, generates output signals and passes
them to the next layer.

The FNN neural network constructed in this paper
contains an input layer, one hidden layer, and an output
layer. The activation function is chosen to be the hyper-
bolic tangent function. Let x={x;} be the input of the
neural network, #; be the output value of the hidden lay-
er node j, and § be the output of the neural network.

Then, we have [60]

H
Y(x;w)=a+ Zw(jz)hj,

J=1

(1)
with

I
I’lj = tanh (b/ + ZWEPX,‘) .

i=1
Here, w= {a9bj,W5‘2) denotes the neural network
parameter. a is'a constant term that helps to adjust the
output layer's prediction; b; is the bias term for the hid-
den layer neurons, which is used to adjust the activation
values; W;}) and Wi-z) are the weight matrices representing
the connections from the input layer to the hidden layer
and from the hidden layer to the output layer, respect-
ively, and determine the strength of the connections
between layers. H and [ refer to the number of hidden
layer neurons and inputs, respectively. During the initial-
ization process of the parameter w, a and b; are set as
zero vectors, W_%) and W;Z) are generated through Xavier
initialization based on a normal distribution. To ensure
reproducibility of the results, a random seed strategy is
adopted to keep the weight matrices generated during
each initialization consistent.

Given a training set P ={(x;,y;))|i€{1,2,...,N}} con-
sisting of NV data points and a loss function, the paramet-
ers w of the neural network can be trained. For a neural
network regression prediction problem, the RMSD func-
tion is typically chosen as the loss function, which is
defined as follows.

(1)
s Wi }

L(y,9) = 2)

The neural network optimizes the parameter w by minim-
izing the value of the loss function, learning to reduce the
gap between the predicted values and the actual values to
improve prediction accuracy. Here, the Adam algorithm
[61] is adopted to optimize the neural network. It effect-
ively improves the training efficiency and performance of
the neural network by avoiding gradient issues, accelerat-
ing convergence, and utilizing prior knowledge to en-
hance model performance. During the training process, a
back-propagation algorithm is used to calculate the error
and propagate the error from the output layer back to the
hidden and input layers layer by layer, gradually adjust-
ing the weights to optimize the performance of the net-
work.
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III. MASS PREDICTION

In order to study the description and prediction of
mass excess in different neural networks, four neural net-
work structures are designed. Since the neural network
with a single hidden layer is easier to understand, more
economical in terms of computational resources, and also
reduces the risk of overfitting, a single hidden layer neur-
al network is adopted. Specific structural parameters, in-
cluding input variables, number of hidden layer neurons
H, output, and the total number of neural network para-
meters w (denoted by N) are presented in Table 1. The H
values of the four structures are changed to ensure that
total number of parameters in the neural network is con-
sistent. Here, N and Z represent the neutron and proton
numbers, respectively. P =N,N,/(N,+N,) with the
valence proton number N, and valence neutron number
N, is the average number of interactions of each valence
nucleon with those of the other type, which is a useful in-
dicator of the pairing versus p-n competition [62]. Z., and
N,, are related to the pairing effect. If Z (N) is even, Z,
(Neo) equals to 1; otherwise, they equal to zero. Ny, and
Zgen represent the shell model orbitals of the last proton
and neutron [63], associated with the shell effects. The
values of Ngen and Zg.; are defined as 1, 2, 3, 4, or 5, de-
pending on whether the proton or neutron number falls
within the specified ranges [8,28], [29,50], [51,82],
[83,126], and [127,184], respectively. The output is
AM = M>® — M™ that is, the deviation between the ex-

Table 1. Input variables, number of hidden layer neurons H,
output, and total number of parameters N in four neural net-
work structures. Here, one hidden layer is-used.

perimental data and the theoretical prediction of mass ex-
cess.

The neural network is trained based on the AME2012
experimental database, for nuclei with N >8 and Z > 8.
The distribution of the training set and the test set on the
nuclear chart is presented in Fig. 1. Here, the ratio of the
number of known masses contained in the training set to
the test set is 9 : 1. The partitioning of these two data sets
is random, but it is required that the data cover all re-
gions of the nuclear chart. The nuclei in the test set are
distributed both at the edges and within the interior of the
nuclear chart, which guarantees the effectiveness and reli-
ability of the testing process. Since the number of known
masses in AME2012 described by GK, GKs and GK+J
models is 2265, 2318 and 2310 respectively, the training
sets and test sets of the three models are not completely
consistent, but they all meet the requirement of 9: 1. The
sum (of the test set and the training set is called the full
dataset.-To evaluate the extrapolation capability of the
neural network, one extrapolation set (denoted by "12-
20") 1s constructed based on the AME2020, including ex-
perimental masses that appear in AME2020 but are ab-
sent in AME2012. Since the vast majority of nuclei in the
extrapolation set spanning from AME2012 to AME2016
are already contained in the 12-20 dataset, only one 12-20
extrapolation set is constructed in this paper. We also ex-
periment with partitioning ratios of 7:3 and 8:2. The
results indicate that while different ratios yield similar
RMSDs on the training and test sets, the 9: 1 ratio per-
forms optimally on the extrapolation. Because the nuclei
in the extrapolation set are mainly distributed at the edge
of the nuclear chart, the performance of extrapolation is
related to the distribution of the training set in the bound-

Structure Input Variables i Output N ary region. Compared with 7:3 and 8:2, the 9: 1 ratio
A N,Z 30 AM 121 makes the training set contain more edge samples, which
B N.ZP 24 AM 121 can help the model learn the boundary behavior better,
c N.ZNeo. Zoo 20 M 1 thus strengthening the? extrapolation abl}lty.

» 5 The steps to predict mass excess with the FNN are as
b NoZ Nt Zatel AM 121 follows. Firstly, we construct a neural network using the
Training set = Testset =* Extrapolation set
100~ 1 [ (b)GKs &1 F(0)GKH A
80 . - .
N 60 = - = -
40 . - .
20t 1 - .
20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160
N
Fig. 1. (Color online) The training set, test set, and extrapolation set on the nuclear chart for the GK, GKs, and GK+J models.
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training set. The input variables are shown in Table 1.
The output of the neural network is uniformly given by
AM(N,Z) = M®™(N,Z)— M{(N,Z). Here, MY represents
the theoretical predicted values of local mass model.
Secondly, the optimal hyperparameters are determined
through a grid-based parameter tuning process. For the
GK, GKs, and GK+J models, the learning rates are set to
0.0094, 0.0095, and 0.0115 respectively, with correspond-
ing training iteration counts of 50000, 60000, and 50000.
Thirdly, once the input, output, and hyperparameters are
determined, neural network parameters
w = {a,b;,w’,w}’} can be obtained by using Eq. (1). Fi-
nally, the predicted deviation AM’(N,Z) of mass excess
by the FNN is reconstructed by Eq. (1). And the pre-
dicted value of the FNN is expressed as
M (N,Z) = AM'(N,Z)+ M"(N, Z).

The performance of four neural network structures in
predicting nuclear masses are evaluated on the training
set, test set, and the full dataset for three local mass mod-
els, as shown in Fig. 2. Here, oy and o represent the mass
RMSD between theory and experiment initially and after
FNN training, respectively. If the ratio o/o is less than
1, it indicates that the prediction of the theoretical model
has improved after FNN training. One sees that based on
the known masses in the AME2012, the FNN-neural net-
work performs optimally with the C structure for the GK,
GKs and GK+J models. Furthermore, Fig. 3 shows the
extrapolation of these neural networks over the mass
from AME2012 to AME2020, where the optimal net-
work structure coincides with those identified in Fig. 2.
This indicates that the pairing effect is the most effective
correction in improving the GK, GKs and GK+J models.
It is known that the GK mass relations are constructed in
such a way that the neutron-neutron, proton-proton, and
neutron-proton interactions are canceled at the first order.
In fact, the GK mass relations are not strictly zero. In the
literature [34, 64], it has been found that for different par-
ity combinations of neutrons and protons, the GK rela-
tions have an odd-even staggering pattern with respect to
the average deviation from zero, which is dominantly ori-

ginated from the pairing interaction. Therefore, the result
that the"pairing effect" as the physical input is the optim-
al network structure is consistent with the above conclu-
sion.

Table 2 shows mass RMSDs of the three local mass
models under the network structure C for the training set,
test set, and full set in AME2012, as well as the results of
extrapolation set from AME2012 to AME2020 (denoted
by "12-20"). Here, A =0(—o0 represents the improve-
ment of the RMSD after FNN training. N is the number
of nuclei in the corresponding dataset. One sees that, for
the known nuclei in AME2012, the RMSD of full dataset
is reduced by 11, 32, and 623 keV for the GK, GKs, and
GK+J, respectively; for the extrapolation set from
AME2012 to AME2020, A= 44, 20, and 963 keV, re-
spectively. These results demonstrate that the FNN can
significantly improve the prediction accuracy of local
mass ~models. For the GK model, the improvement
achieved by the FNN on the test set is minor (A = 2 keV).
We have experimented with altering the division between
the training set and the test set. Although this adjustment
can appropriately increase the improvement on the test
set, the optimal improvement for the full dataset remains

GK-+FNN [TIGKs+FNN EE=GK+J+FNN

1 ’ O I v I b
— N N |
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Fig. 3. (Color online) Same as Fig. 2 except for the extrapol-
ation set from AME2012 to AME2020.
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Fig. 2. (Color online) Mass RMSD ratios (o/0) of four network structures of local mass model GK, GKs, and GK+J. Results of the

training set, test set, and full dataset are presented by blue, yellow and red, respectively.
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Table 2.

Mass RMSDs (in keV) of the GK, GKs, and GK+J in the neural network structure C for the training set, test set, and full set

in AME2012, and extrapolation set from AME2012 to AME2020 (denoted by "12-20"). Here, o and o represent the RMSD between
theory and experiment initially and after FNN training, respectively. A = oo —o. N is the number of nuclei in the corresponding dataset.

GK+FNN GKs+FNN GK-+J+FNN
bata Train Test Full 12-20 Train Test Full 12-20 Train Test Full 12-20
oo 131 142 132 355 154 300 174 348 750 1073 788 1496
o 118 140 121 311 118 274 142 328 151 261 165 533
A 13 2 11 44 36 26 32 20 599 812 623 963
N 2039 226 2265 61 2087 231 2318 118 2079 231 2310 113

at around 11 keV, and the extrapolation performance is
inferior to the existing results. As can be seen from Table
2 (and Fig. 4 below), the original predictive accuracy of
the GK model is already quite high, with a RMSD of 142
keV on the test set. Achieving an overall improvement of
11 keV based on such a precise dataset is our current best
result. To further validate our results, we replace the mass
values in the AME2012 full dataset with the updated val-
ues from AME2020 and recalculate the RMSDs in Table
2. The obtained improvements A by the FNN for the three
models are very close to those in Table 2. This indicates
that the optimization effect of the FNN is almost unaf-
fected by the version update of experimental data.

To evaluate the performance of the FNN in optimiz-
ing local mass models in different mass regions, the
RMSDs in light (16 <A < 60), medium (60<A < 120)
and heavy (A > 120) mass regions of full dataset in the
AME2012 are given in Table 3. The initial mass devi-
ation AM, = M — M of the three models and the mass
deviation AM, = M®*' — M after FNN improvement
are also shown in Fig. 4. It can be seen that in the light
mass region, the FNN greatly improves the three mass
models, reducing the RMSD between the predicted and
experimental values by 44,108 and 1802 keV, respect-
ively. In the medium and heavy mass regions, because the
local mass models themselves perform well (the mean
RMSD about 151 keV in the medium region and about
76 keV in the heavy region), the improvement of the
FNN is not as significant as in the light mass region.

Finally, it is worth looking at the accuracy of our pre-
dictions for the new measured masses after the
AME2020. Since the release of AME2020, the masses of
about 100 more atomic nuclei have been measured exper-
imentally. GKs and GK+J models can predict 20 of these
[65—75], while GK can predict 7. The mass RMSDs after
FNN improvement are shown in Table 4. It can be seen
that the improved ability of the FNN is robust and can re-
duce the predictive RMSD of the three models by 16, 27,
and 408 keV, respectively.

In Table 5 and Fig. 5, the specific predicted values
and corresponding mass deviations AM of the three mod-
els for 20 new masses are respectively presented and
compared with the predictions in AME2020. Here, for the

150 200 250

A
Fig. 4. (Color online) Mass deviation AM (in MeV) of the
GK, GKs and GK+J models in the full dataset of AME2012.
Here, AMy = M — MM represents the deviation of the model
itself; AM; = M‘”‘F"—M‘FhNN refers to the results after the FNN

improvement.

same nucleus, the predicted value with the smallest devi-
ation from the experiment is expressed by "FNN-Best" in
Table 5. According to Table 5 and Fig. 5, the three local
mass models optimized by the FNN exhibit excellent per-
formance in extrapolation. For these 20 nuclei, the
RMSD between the predicted and experimental values of
AME2020 is 195 keV. Of the three models, the GKs
model performs best, with a RMSD of 181 keV between
its predicted and experimental values, which is 14 keV
lower than that of the AME2020. Further, if the optimal
prediction value "FNN-best" is taken, the RMSD between
the theoretical and experimental value is reduced to 159
keV.
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Table 3. Mass RMSDs (in keV) for different mass regions
of the AME2012 full dataset. The definitions of oy, o, A, and
N are the same as in Table 2.

Region oo o A N
GK+FNN
16 <A <60 257 213 44 297
60<A <120 133 133 0 634
A>120 80 79 2 1334
GKs+FNN
16 <A <60 414 306 108 300
60<A <120 134 131 3 632
A>120 75 74 1 1386
GK+J+FNN
16 <A <60 2183 381 1802 295
60<A <120 185 142 42 636
A>120 73 73 0 1379
Table 4. Same as Table 2 except for the RMSDs (in keV)
for the new measured masses after AME2020.
Data GK+FNN GKs+FNN GK+J+FNN
a0 199 208 770
o 183 181 362
A 16 27 408
7 20 20

IV. APPLICATION OF PREDICTED MASSES

The mass excess (M) is closely related to various
forms of nuclear energy, such as single- and two-
proton/neutron separation energies (S ,, S2,, Su, S2,), and
a-decay energy Q,, defined by

Sip(Z,N)=M(Z~-i,N)+iMy—M(Z,N),

Siu(Z,N)=M(Z,N—-i)+iM,— M(Z,N),

Q.(Z,N)=M(Z,N)—M(Z—-2,N —2)— May,.

Here, S;, and S, represent the i-proton and i-neutron
separation energies, respectively.

Using the predicted mass excess, we evaluate the sep-
aration energies for single- and two-proton (neutron)
emissions, as well as the a-decay energies. The RMSDs
between predicted values of three local mass models and
the experimental values are listed in Table 6, for nuclei
with N > 8 and Z > 8. Meanwhile, the results of FRDM12
[21] and WS4 [28] are also listed in the table for compar-

ison. Here, the definitions of oy, o, A, and N are the
same as in Table 2. It can be seen that after the optimiza-
tion of FNN neural network, the three local mass models
have been effectively improved. The RMSDs of the five
energies of GK, GKs and GK+J are reduced by A =12.8
keV, 49.8 keV and 265.6 keV on average, respectively. In
addition, the prediction accuracy of the three local mod-
els improved by FNN is significantly higher than that of
FRDM and WS4 models. This indicates that the FNN can
effectively improve the local mass models, and our pre-
diction results have certain competitiveness.

Next, it is of interest to focus on the a-decay energy
of heavy nuclei. The predicted Q, values for nuclei with
proton number Z ranging from 82 to 108 are presented in
Fig. 6. Since "GKs+FNN" has the highest prediction ac-
curacy fora-decay energy among the three local models,
we only draw the results of GKs+FNN in the figure.
Meanwhile, results of the FRDM, WS4 and experimental
data are also compared. As shown in the figure, the Q,
values predicted by the GKs+FNN, FRDM and WS4
models are in excellent agreement with the experimental
values (with the RMSD 97 keV, 276 keV and 269 keV,
respectively). For experimentally unknown nuclei, the
three theoretical models (GKs+FNN, FRDM, and WS4)
predict roughly the same trend. That is, for nuclei with
N < 126, Q, of each isotopic chain increases as the num-
ber of neutrons decreases; for nuclei with N > 126, Q,
decreases as the number of neutrons increases. Notably,
for the isotopes with Z = 82,84 ~ 87, the predicted values
of the three theoretical models have slightly different
trends for the lightest and/or heaviest mass regions.

Recently, an interesting phenomenon has been ob-
served: Q, energies of nuclei with Z>82 and N <126
exhibit a distinct odd-even staggering (OES), which is
caused by a combination of pairing correlations and
blocking effect of unpaired nucleons [76]. The OES of
Q. with the number of neutrons (denoted by AQ,) or pro-
tons (denoted by AQ,) can be quantitatively studied by
the following formula [77—79]:

1
AQy =S [20.N.2) = Qo(N = 1.2) = Qo(N + 1, 2)],

1
AQy = S [20:(N.2) = Qo(N.Z= 1) = Qu(N.Z+ )]

Our predicted AQ, for Rn, Fr, Ra, Ac, Th, Pa, and U
isotopes and AQ, for N =115~ 125 isotones are presen-
ted with hollow symbols in Fig. 7 (a) and (b), respect-
ively. The experimental values in the figure are represen-
ted by corresponding solid symbols. In order to avoid
overlapping, each chain is translated upward by a certain
amount, and the value of the translation is shown in the
number beside each chain. It can be seen that our results
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Table 5. Theoretical predicted values of the newly measured mass excess. The predictions in AME2020 and experimental values are
listed for comparison. Here, for the same nucleus, the value with the smallest deviation from the experimental value in the three mod-
els is labeled "FNN-Best".

Nuclei GK+FNN GKs+FNN GK+J+FNN FNN-Best AME2020 Expt.
65cr ~28245 ~28993 —28245 -28310 ~28208 (45) [65]
9Fe ~39424 ~39208 ~38936 ~39424 ~39199 ~39504 (11) [66]
0Fe ~36845 -36855 -36855 ~36890 ~37053 (12) [66]
AN —48712 ~48527 ~48544 -48527 ~48700 —48451 (3.5) [67]
5Ni ~44068 ~43746 ~44068 —44240 —44056 (14.7) [67]
0Ca ~40019 ~39947 ~40019 ~39590 ~40005 (30) [68]
103Rp -33286 -33716 -33286 “33160 ~33049 (32) [68]
103, -47237 -47371 -47237 ~47280 ~47220 (29) [69]
104y ~43698 ~44030 ~43698 ~43760 ~43411 (33) [69]
105Gy ~38037 -37970 +37970 ~38190 ~37886 (44) [69]
120Rp ~58870 ~58636 ~58789 ~58636 ~58620 ~58614 (58) [70]
91, ~61410 ~61267 —61124 ~61410 -61376 ~61429 (77) [71]
1330, ~57403 ~57390 ~57198 ~57403 ~57690 ~57678 (41) [72]
1341, ~51390 -51328 ~51390 ~51970 ~51855 (44) [72]
1520 ~58969 ~58824 ~58806 ~58824 ~58980 ~58878 (23) [73]
153Ce ~54764 ~54860 ~54764 ~54910 ~54712 (24) [73]
154Ce ~52059 ~52044 ~52059 ~52220 ~52069 (24) [73]
150y -38727 -38738 -38727 ~38830 ~38635 (44) [74]
153y —47209 -47212 —47143 —47143 —47160 ~47102 (46) [74]
251N 82827 82780 82827 82849 82851 (23) [75]

o GK+FNN GKs+FNN GK+J+FNN * AME2020 * Expt.

15 1r 1r 1 4y 1 754 7
050, 9pe T0pe AN 5\

o * *
0F----6--- oo e ot I b g 08 e R -
1k 4 4 F 4k 4 .
1 — - — - - - -

60y 103p1 103g, 104g, . 105, .
0 F----G-A--- o] et ¥ boo- G- #o o] e o] Al -
*
= 1k 1k It ]k _
<
1 — — - - - -
120p, 91, 1331, 1347 152,
0k-ToAe RPN - —— B RPN ] TS —— *op ] LB L EP.
o
1k 4k 4 L 4 F 4 4
1 - — - — - - - - — -
153Ce 154Ce 150Yb 153Yb 251N0
0 f---¢-~- o bo--a- g ---0A F SR ) S L *op o oA *- A
1k 4 F 4 F 4+ 4 + -

Fig. 5. (Color online) Mass deviation AM = M — Mt (in MeV) of the GK, GKs and GK+J models for 20 newly measured masses.
The AME2020 prediction results are also drawn for comparison.
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Table 6. RmsDs (in keV) of single-neutron (S,), single-proton (S ), two-neutron (S,,), two-proton (S,,) separation energies, and o-
decay energy Q, with respect to the experimental data in AME2020. Here, the definitions of o, g, A, and N are the same as in Table
2.
GK+FNN GKs+FNN GK+J+FNN FRDM12 WS4
Energy
a0 4 A N [&0] 4 A N a0 4 A N a0 N 0] N
Sn 207 188 19 2181 249 198 51 2281 433 226 207 2282 350 2309 257 2309
Sp 202 187 15 2147 264 201 63 2252 416 215 201 2254 365 2281 273 2281
Son 177 168 9 2098 277 212 65 2203 688 233 455 2201 455 2223 266 2223
Sap 192 180 12 2008 292 227 65 2122 683 237 446 2144 470 2134 321 2134
(o 213 204 9 2198 188 183 5 2337 223 204 19 2298 552 2342 344 2342
—=—GKs+FNN * FRDM <«
12} (a) Even—z T 121
4 10 L
8 L
6l
4l
ol
= of
9 b B e —
% 90 100 110 120 130 140 150 160 90 100 110 120 130 140 150 160
o 12f ©Even-—z 12} (d)0dd-z '
10 % : 1ol &
8r 8t
61 6
4 4r
2r 2t
or or
90 100 110 120 130 140 150 160 90 100 110 120 130 140 150 160
Fig. 6. (Color online) The a-decay energies Q, (in MeV) for nuclei with proton number Z from 82 to 108. Panels (a,c) and (b,d) refer

to the results of even-Z and odd-Z nuclei, respectively. Experimental data are from AME2020.

reproduce both neutron OES and proton OES patterns
very well. The RMSDs between the theoretical predic-
tions and the experimental values are 51 keV (for 70
known nuclei) in panel (a), and 31 keV (for 62 known
nuclei) in panel (b), respectively. In the literature [76], it
is pointed out that the typical amplitude of OES for a-de-
cay energy is about 70 keV for nuclei with Z > 82 and
N < 126. The mean values of |[AQ,| and |AQ,| predicted
by the GKs+FNN are 86 keV and 68 keV, respectively.
Our results agree well with the experimental observa-
tions.

V. SUMMARY

To summarize, we employed a feedforward neural
network (FNN) to improve three local mass models (GK,
GKs, and GK+J). The constructed neural network con-

sists of an input layer, a hidden layer and an output layer.
By comparing different combinations of input features, it
is found that the physical quantities Z., and N,, related to
pairing effect can effectively improve the predictive abil-
ity of the neural network, thus improving the prediction
accuracy of the three local mass models. Our improve-
ments in both description and prediction of mass excess
are investigated. For known masses in AME2012, the
FNN-improved GK, GKs, and GK+J models achieved
better agreement with experimental values, reducing the
RMSD to 121 keV, 142 keV, and 165 keV, respectively.
However, it is worth noting that the improvement made
to the GK model by the FNN is minor on the test set. For
the AME2012 to AME2020 extrapolation, the FNN ap-
proach reduced the mass RMSD to 311 keV, 328 keV,
and 533 keV. In addition, this approach successfully pre-
dicted 20 new masses measured experimentally after
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(Color online) The odd-even staggering (OES) pattern of a-decay energies: (a) neutron OES (AQ, in MeV) versus neutron

number N and (b) proton OES (AQ, in MeV) versus proton number Z. The theoretical values of GKs+FNN and experimental data are
represented by hollow and solid symbols, respectively. Most experimental data are obtained from the AME2020 [10, 11], except for
207.208Th [76] and 2'*217U[80]. The Q, energy of ®Th has no relevant experimental value, and the solid symbol plotted in the figure is
from the theoretical prediction [81]. To avoid overlapping, a small translation is-added to the AQ,/AQ, values of each isotopes/isotones

(the corresponding value is indicated next to each chain).

2020, reducing the RMSD predicted by the three local
mass models to 183 keV, 181 keV and 362 keV, show-
ing strong predictive power. Based on the improved mass
data, one- and two-proton/neutron separation energies
and a-decay energies are studied, and good optimization
results are also obtained. Finally, it should be pointed out
that the quantification and representation of model uncer-
tainty are important. Compared with the FNN, the BNN
can naturally provide the uncertainties in mass predic-
tions [43]. Therefore, we will consider using the BNN to
improve local mass models and evaluate model uncer-
tainty in the future research.

At present, there is little work to improve local mass
models based on the neural network, and the work in this
paper is a useful attempt. Our results indicate that neural
networks provide a new way to further improve the ac-
curacy of local mass model in describing and predicting
atomic mass related data in unknown regions. Although
this paper achieves high accuracy by applying the FNN to

improve three local mass models, there is still a gap
between local and global mass models in terms of de-
scribing and predicting masses far from known regions.
In view of this, an important future direction is to integ-
rate the advantages of local and global models (for in-
stance, incorporating global features into local mass mod-
els or embedding local features into global mass models)
and apply neural networks for improvement, so as to fur-
ther enhance the predictive capability for unknown
masses.
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