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Abstract: Gravity is identical to curved spacetime. It is manifested by the curvature of a Riemannian spacetime in
general  relativity but by torsion or non-metricity in teleparallel  gravity models.  In this paper,  we apply these mul-
tiple  options  to  the  spacetime  perturbation  theory  and  seek  the  possibilities  of  representing  the  gravitation  of  the
background and that of the perturbation in separate ways. We show that the perturbation around a Riemannian back-
ground can be described by torsion or non-metricity, so that we have teleparallel like actions for the perturbation.
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I.  INTRODUCTION

General  relativity  (GR)  provided  us  a  picture  that
gravitation is identical to curved spacetime, and is formu-
lated  by  Riemannian  geometry.  With  this,  gravity  is
manifested  by  the  curvature  which  is  constructed  from
the Levi-Civita connection (or Christoffel symbol) and in
turn  from the  metric.  However,  Riemannian geometry  is
not the unique approach to gravity theories.  Sample the-
ories  based  on  non-Riemannian  geometries  include  the
Einstein-Cartan theory, the metric-affine theory, the tele-
parallel gravity, and so on. Usually in these theories, the
connection is  not  limited to be the Levi-Civita  type,  and
has no a priori dependence on the metric. For the telepar-
allel  gravity  [1−3], the  curvature  obtained from the  con-
nection vanishes and gravity is manifested by other geo-
metric quantities:  torsion  in  the  metric  teleparallel  grav-
ity (MTG), or non-metricity in the symmetric teleparallel
gravity (STG) [4]. Within both frameworks one can build
models  equivalent  to  GR.  This  means  treating  the  same
thing in different pictures.

Since GR is a highly non-linear theory, it is not easy
to get exact solutions. In many cases, we have to resort to
perturbation theory [5], where physical  quantities are di-
vided  into  the  background  parts  and  their  perturbations.
Both  the  physical  and  background  spacetimes  are
Riemannian  geometric  and  solved  the  Einstein  equation.
More often than not,  the background spacetime has high
degree of symmetry and its form is assumed to be already

known, for instances, the Schwarzschild solution and the
Friedmann-Robertson-Walker  universe.  For  the  physical
spacetime,  however,  its  exact  form  is  not  available.  But
we know it is close to the background and the deviation is
treated as small perturbation.

After separation, both the (curved) background space-
time and the perturbation around it manifest gravitational
interactions. As mentioned above, gravity may be depic-
ted  in  multiple  ways:  curvature,  torsion  and  non-metri-
city. In this paper, we seek the possibilities of mixed pat-
terns.  More  concretely,  we  ask  the  question  whether  the
gravity identified  with  the  background  spacetime  is  rep-
resented  by  the  curvature  of  Riemannian  geometry,
meanwhile the gravitation from the perturbation is repres-
ented by torsion or non-metricity, even though the whole
physical  spacetime  (background  plus  perturbation)  is
fully Riemannian geometric? We will show that such pic-
tures of quasi-teleparallel gravity for spacetime perturba-
tions are possible.

This  paper  is  organized  as  follows:  First  we  will
briefly  introduce  the  teleparallel  gravity  in  Section  II,
then discuss  the  ways  of  formulating  the  spacetime  per-
turbations  with  non-metricity  and  torsion  respectively  in
Section III and IV, and conclude in Section V. 

II.  TELEPARALLEL GRAVITY

Teleparallel  gravity can be considered as constrained
metric-affine models, so we start from the general metric-
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gµν
Γ̂ρµν

affine gravity theory [6] where the metric tensor  and
the affine connection  are considered to be independ-
ent.  From  the  metric  tensor  one  can  construct  the  Levi-
Civita connection, 

Γρµν =
1
2

gρσ(∂µgσν+∂νgµσ−∂σgµν) , (1)

Γρµν = Γ
ρ
νµ

∇ρgµν = ∂ρgµν−Γαρµgαν−Γαρνgµα = 0
Γ̂ρµν

T ρµν ≡ Γ̂ρµν− Γ̂ρνµ
Qρµν ≡ ∇̂ρgµν = ∂ρgµν− Γ̂αρµgαν− Γ̂αρνgµα

Cρµν ≡ Γ̂ρµν−Γρµν
Γ̂ρµν Γρµν

which  is  torsion  free: ,  and  metric-compatible:
.  Usually  this  is  not  the

case  for  the  general  affine  connection ,  its  lack  of
these  properties  are  characterized  by  the  torsion  tensor

 and  the  non-metricity  tensor
. With  these  defini-

tions,  the  distortion  tensor , which  meas-
ures the difference between  and , can be decom-
posed as 

Cρµν = Kρµν+Lρµν , (2)

where 

Kρµν =
1
2

(T ρµν−T ρ
µν −T ρ

νµ) , (3)

is the contortion tensor, and 

Lρµν =
1
2

(Qρµν−Q ρ
µν−Q ρ

νµ) , (4)

gµν

T ρµν = −T ρνµ
Qρµν = Qρνµ

is the disformation tensor. To get these relations, we have
used  the  metric  and  its  inverse  to  lower  and  rise  the
tensor indices, and considered the properties that the tor-
sion tensor is antisymmetric  but the non-met-
ricity  tensor  is  symmetric  under the  inter-
change  of  the  last  two  indices.  Besides  the  metric,  the
contortion tensor  only  depends  on  torsion,  but  the  dis-
formation  tensor  only  depends  on  non-metricity.  The
Riemann curvature tensor can be obtained from the con-
nection  and  its  derivatives.  Since  there  are  two  kinds  of
connections, we will have two different curvature tensors.
One is from the general connection, 

R̂ρσµν = ∂µΓ̂
ρ
νσ−∂νΓ̂ρµσ+ Γ̂ρµαΓ̂ανσ− Γ̂ρναΓ̂αµσ , (5)

and another is from the Levi-Civita connection, 

Rρσµν = ∂µΓ
ρ
νσ−∂νΓρµσ+ΓρµαΓανσ−ΓρναΓαµσ . (6)

Cρµν
The difference  between  these  two  curvature  tensors  de-
pends on the distortion tensor  in Eq. (2) and in turn

on the torsion and non-metricity, 

Rρσµν = R̂ρσµν−∇µCρνσ+∇νCρµσ−CρµαC
α
νσ+CρναC

α
µσ , (7)

∇µhere again the covariant derivative operator  is associ-
ated  with  the  Levi-Civita  connection.  Then  we  have  the
Ricci tensor 

Rµν = R̂µν−∇ρCρνµ+∇νCρρµ−CρραC
α
νµ+CρναC

α
ρµ , (8)

and the curvature scalar 

R≡ gµνRµν = gµνR̂µν+∇µ(C ρµρ −Cµρρ)−CρραC
αµ
µ+CρµαC

α
ρµ . (9)

R̂ρσµν = 0

Teleparallel  gravity  can  be  obtained  by  imposing  on
the general  metric-affine models  the teleparallelism con-
straint,  i.e.,  the  curvature  tensor  from  the  general  affine
connection  vanishes: .  So  that  the  curvature
tensor from the Levi-Civita connection is totally determ-
ined by the distortion tensor and the metric itself, 

Rρσµν = −∇µCρνσ+∇νCρµσ−CρµαC
α
νσ+CρναC

α
µσ . (10)

The curvature scalar, which now takes the form 

R = ∇µ(C ρµρ −Cµρρ)−CρραC
αµ
µ+CρµαC

α
ρµ , (11)

plays  an  important  role  in  general  relativity  where  the
Einstein-Hilbert action for gravity is given by 

S GR =
1
2

∫
d4x
√−gR , (12)

gµν
8πG = 1
here g is  the  determinant  of  the  metric  and  the  unit

 was adopted.

Γ̂ρµν

Qρµν = 0 Cρµν = Kρµν

As mentioned  before,  there  are  two  kinds  of  fre-
quently  studied  teleparallel  gravity  models:  MTG  and
STG. In the MTG model, besides the teleparallelism con-
straint,  the  metric-compatibility  is  also  required  for ,
i.e., , so that . In this case, the curvature
scalar  from  the  Levi-Civita connection  in  Eq.  (11)  be-
comes 

R = TµT µ−
1
4

TρσµT ρσµ−
1
2

TρσµTσρµ+2∇µT µ ≡ T+2∇µT µ ,
(13)

Tµ = T ννµ Twhere  is the torsion vector and the defined  is a
torsion  scalar  and  is  in  quadratic  form  of  the  torsion
tensor. With these, one can construct a model equivalent
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to general relativity within the framework of MTG. Such
a model depends heavily on torsion tensor (denoted by T)
and is equivalent to general relativity, we may call it TGR
model. It has the action 

S TGR =
1
2

∫
d4x
√−gT , (14)

S GR

f (T)

Γ̂ρµν

Γ̂ρµν

Γ̂ρµν

ea
µ gµν = ea

µe
b
νηab

ηab = diag(−1,+1,+1,+1)
a,b, ...

Γ̂ρµν

ω̂a
bµ Γ̂ρµν = θ

ρ
a(∂µea

ν + ω̂
a
bµe

b
ν) θρa

θρaea
σ = δ

ρ
σ θρaeb

ρ = δ
b
a

T ρµν = Γ̂
ρ
µν− Γ̂ρνµ

it is the same as  after integrating out the total derivat-
ive  term in  Eq.  (13).  Other  MTG models  are  considered
as extensions to TGR, such as the  model [7−10] and
the  Nieh-Yan  modified  Teleparallel  Gravity  (NYTG)
model [11−14], and so on. The MTG model gives a pic-
ture  that  gravity  is  manifested  by  torsion  in  stead  of
curvature. Please note that in MTG, the affine connection

 or  the  torsion  tensor  are  not  fundamental  variables.
The  teleparallelism  constraint  determines  that  can
neither have a general form nor be varied freely when us-
ing the  variation  principle.  Furthermore,  torsion  is  re-
quired to be existent, so that one cannot simply set all the
components  of  to zero to fit  the teleparallelism con-
straint. To find the true building blocks of the MTG mod-
els, it is convenient to make use of the tetrad formulation.
With this language the metric is built from the the tetrad
(or  veilbein)  through  the  relation ,  here

 is the Minkowski metric and the
Latin  letters  are the  Lorentz  indices,  used  to  de-
note the tensor components at the local flat space. The af-
fine  connection  is  constructed  by  the  tetrad  and  the
spin  connection  as ,  here  is
the  inverse  of  the  tetrad:  and .  Then
with the definition , it is straightforwardly
to obtain the expression of the torsion tensor 

T ρµν = θ
ρ
a(∂µea

ν −∂νea
µ+ ω̂

a
bµe

b
ν − ω̂a

bνe
b
µ) . (15)

ω̂a
bµ = (Λ−1)a

c∂µΛ
c
b Λa

b

ω̂a
bµ = 0

T ρµν = θ
ρ
a(∂µea

ν −∂νea
µ)

The spin connection,  under the teleparallelism constraint
and  the  requirement  of  metric-compatibility, can  be  ex-
pressed as , here  is the position de-
pendent Lorentz transform. For the TGR model (14), it is
safely  to  adopt  the  Weitzenböck  condition ,  so
that ,  and  the  TGR  model  itself  can
be considered as a pure tetrad model, where only the tet-
rads are considered as fundamental fields and the torsion
which  contains  derivatives  of  tetrad  is  considered  as  the
strength field.

Γ̂ρµν

Cρµν = Lρµν

In the STG model,  the general  affine connection 
is constrained  to  be  torsionless  besides  the  teleparallel-
ism  constraint,  so  that .  In  this  case,  the
curvature  scalar  from  the  Levi-Civita  connection  in  Eq.
(11) becomes 

R = − 1
4

QρσµQρσµ+
1
2

QρσµQσµρ+
1
4

QµQµ−
1
2

QµQ̄µ

+∇µ(Q̄µ−Qµ) ≡ Q+∇µ(Q̄µ−Qµ) , (16)

Qµ = Qµνν , Q̄µ = Qν µν
Q

where  are two non-metricity vectors,
and  the  defined  is  a  non-metricity  scalar  which  is  in
quadratic form of the non-metricity tensor. Similarly, one
can  construct  a  model  equivalent  to  general  relativity
within  the  framework  of  STG.  Such  a  model  depends
heavily  on  non-metricity  tensor  (denoted  by Q)  and  is
equivalent to general relativity, we may call it QGR mod-
el. It has the action 

S QGR =
1
2

∫
d4x
√−gQ . (17)

S GR

f (Q)

Γ̂ρµν = 0 Qρµν = ∂ρgµν

It is the same as  after integrating out the total deriv-
ative  terms  in  Eq.  (16).  Other  symmetric  teleparallel
gravity models are considered as extensions to QGR, for
example the  model [15−20] and the model with par-
ity-violating  extensions  [21, 22].  The  STG  model
provides a picture that gravity is ascribed to the non-met-
ricity.  In  this  picture,  the  metric  is  fundamental.  For  the
QGR model (17), it is safely to adopt the so called coin-
cident  gauge  where ,  so  that  and  the
model is a pure metric one. 

III.  SPACETIME PERTURBATION VIA NON-
METRICITY

gµν
Γρµν
ḡµν

Γ̄ρµν =
1
2 ḡρσ(∂µḡσν+∂νḡµσ−∂σḡµν)

R(Γ) R̄(Γ̄)

gµν
Γ̄ρµν ḡµν Γρµν

From now on,  we  address  to  the  question  of  how to
formulate gravitations  from the  background and the  per-
turbation with  separate  pictures  in  the  perturbation  the-
ory. We first consider this problem within the metric for-
mulation.  With  this  language,  we  have  a  metric  for
the physical spacetime and its Levi-Civita connection 
defined in Eq. (1). At the same time we have a metric 
for the background spacetime and its corresponding Levi-
Civita  connection .  Both
the physical and background spacetimes are of Riemanni-
an geometries, and manifest respective gravitational inter-
actions through respective curvatures,  and . The
spacetime perturbation arise from the difference between
these two metrics, this leads to the mismatch between 
and , or between  and .

Γ̂ρµν = Γ̄
ρ
µν

Qρµν = ∂ρgµν− Γ̄αρµgαν− Γ̄αρνgµα
Cρµν = Γ̄

ρ
µν−Γρµν = Lρµν

R̄ρσµν

From the viewpoint of metric-affine theory, it is con-
venient to  choose  the  hatted  connection  in  previous  sec-
tion as the background Levi-Civita connection: ,
so  that  the  torsion  vanishes  but  the  non-metricity

 does  not.  The  distortion
tensor  is  determined  by  the  non-
metricity tensor as indicated in Eq. (4). Different from the
full  STG  model,  here  the  curvature  tensor  induced
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Γ̄ρµνby  represents the curvature of the background space-
time and does not vanish unless the background is flat. Its
exact form  is  assumed  to  be  already  known  in  the  per-
turbation  theory.  Then  we  have  the  Riemann  curvature
tensor for the physical spacetime 

Rρσµν = R̄ρσµν−∇µLρνσ+∇νLρµσ−LρµαL
α
νσ+LρναL

α
µσ

≡ R̄ρσµν+δR
ρ
σµν , (18)

and the Ricci tensor 

Rµν = R̄µν−∇ρLρνµ+∇νLρρµ−LρραL
α
νµ+LρναL

α
ρµ ≡ R̄µν+δRµν .

(19)

δRρσµν
δRµν

These have been written in  the form of  separating back-
ground  and  perturbation.  The  perturbations  and

 are ascribed to non-metricity.
The  curvature  scalar  for  the  physical  spacetime

changes to 

R = gµνR̄µν+∇ρLµµρ−∇ρLρµµ+LρµνL
ν
ρµ−LρρνL

νµ
µ

= gµνR̄µν+Q+∇µ(Q̄µ−Qµ) , (20)

Q

S = (1/2)
∫

d4x
√−gR

where  the  non-metricity  scalar  is  exactly  the  same  as
that in the STG model defined in Eq. (16). If the underly-
ing theory for the physical spacetime is GR, the Einstein-
Hilbert  action  of  gravity  is rewrit-
ten as 

S =
1
2

∫
d4x
√−g(gµνR̄µν+Q) , (21)

ḡµν = ηµν Γ̄ρµν = 0
R̄µν = 0 Qρµν = ∂ρgµν
S = (1/2)

∫
d4x
√−gQ

after removing  the  total  derivative  terms.  Now  we  ob-
tained a QGR like action for the spacetime perturbations.
If  the  background  spacetime  is  flat, , ,

 and ,  the  full  action  becomes
,  going  back  to  the  action  of  the

QGR model (17) under the coincident gauge.

√−gQ

gµν ḡµν√−ggµν

gµν

Please note that in the action integral (21), spacetime
perturbation  is  not  totally  described  by  the  second  term

,  the  first  term  also  contributes  to  the  action  for
perturbation because the perturbation arises from the de-
viation  of  from  the  background  metric  and  the
product  itself  contains  perturbation.  Now  we
consider  the  expansion  of  the  action  as  the  perturbative
series. Firstly, we use the exponential map to describe the
deviation of  from the background metric: 

gµν = (eϵ)ρµ (eϵ)σν ḡρσ , (22)

ϵµν

gµν = ḡµν+hµν
gµν = ḡµρ

(
eh
)ρ
ν

eϵ

gµν
ḡρσ

hµν

ϵµν+ ϵνµ ϵµν ≡ ḡµρϵρν
hµν

where  E  is  a  small  matrix  and  its  elements  are con-
sidered as the basic perturbation variables. This paramet-
erization  of  the  perturbation  is  not  conventional,  but  for
our purposes  in  this  paper  it  has  some  advantages  relat-
ive  to  the  conventional  parameterization  of  the  metric
perturbation,  such  as  or  the  exponential
form .  With  the  parameterization  of  Eq.
(22),  has  the  meaning  of  transfer  matrix  for  the  map
between the physical spacetime and the background. It is
the same with the parameterization of the tetrad perturba-
tion, which will be discussed in the next section. In addi-
tion,  this  parameterization  automatically  guaranteed  the
symmetric property of  as long as the background met-
ric  is symmetric. As a comparison, in the convention-
al  method,  one  should  presuppose  the  symmetry  of .
But with the parameterization of Eq. (22), the linear per-
turbation to the metric  is  with ,  which
corresponds  to  in  the  conventional  parameterization.
With Eq. (22), one can obtain that
 

√−ggµν =
√
−ḡeTrϵ

(
e−ϵ

)µ
ρ

(
e−ϵ

)ν
σ

ḡρσ . (23)

Q

Qρµν
Q

S = S (0)+S (1)+S (2)+ . . .

Secondly,  we  know  is  in  quadratic  form  of  the  non-
metricity tensor  and the latter is at least a first order
perturbation quantity, so  should be at least a second or-
der quantity. With these we expand the action (21) up to
the second order: , with
 

S (0) =
1
2

∫
d4x
√
−ḡR̄ , S (1) = −

∫
d4x
√
−ḡḠµνϵ

ν
µ , (24)

and
 

S (2) =
1
2

∫
d4x
√
−ḡ[(R̄µνḡρσ+R̄ρνδ

σ
µ−R̄σνδ

ρ
µ−Ḡσνδ

ρ
µ)ϵ
µ
ρϵ
ν
σ+Q] .

(25)

ḡµν
R̄ = ḡµνR̄µν , R̄νσ = ḡµνR̄µσ Ḡµν = R̄µν− (1/2)R̄δµν

S (0)

Ḡµν = T̄ µν T̄ µν ∫
d4x
√−ḡT̄ µνϵ

ν
µ

S (1)

S (2)

Ḡσν

In above  equations,  the  lowering,  raising  and  contrac-
tions of the background spacetime indices are done by the
background  metric  and  its  inverse,  so

,  and  is  the
background Einstein  tensor.  The zeroth  order  action 
leads  to  the  Einstein  field  equation  for  the  background:

 and  is  the  energy-momentum  tensor  when
matter  couplings  are  included.  At  the  same  time,  matter
couplings  contribute  a  linear  order  term ,
which cancels  out  in  Eq.  (24)  when the  background
equation holds. The same reason is valid for  in which
the term involves  would be canceled out by the mat-
ter action.  So the quadratic action for the spacetime per-
turbation is
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S (2) =
1
2

∫
d4x
√
−ḡ[(R̄µνḡρσ+ R̄ρνδ

σ
µ− R̄σνδ

ρ
µ)ϵ
µ
ρϵ
ν
σ+Q] . (26)

Q

ϵµν

The quadratic  action  is  a  central  element  for  the  lin-
ear perturbation theory. One can see from Eq. (26) that all
the derivatives of perturbations are contained in the non-
metricity scalar ,  The background curvature,  appearing
as  coefficients,  merely  contributes  to  the “potential” of

. The dynamics of the perturbation is mainly governed
by the non-metricity. 

IV.  SPACETIME PERTURBATION VIA TORSION

Γρµν Γ̄ρµν

Now we turn to the question of depicting the perturb-
ation with torsion. This is not easy in terms of the metric
formulation used in the previous section, because both the
affine  connections  and  are  Christoffel  symbols
and torsion free. So we switch to the tetrad formulation.

ea
µ θµa

gµν = ea
µe

b
νηab ωa

bµ

ea
µ ωa

bµ

We use the tetrad  (and its inverse ) to denote the
“square  root” of  the  physical  spacetime  metric,  i.e.,

. It matches the spin connection . That is,
with respect to , the spin connection  is torsion free: 

∂µea
ν −∂νea

µ+ω
a
bµe

b
ν −ωa

bνe
b
µ = 0 , (27)

ωabµ = −ωbaµ

Γρµν = θ
ρ
a(∂µea

ν +ω
a
bµe

b
ν)

gµν

and metric-compatible: , here the Lorentz in-
dices  are  lowered  by  the  Minkowski  metric.  The  affine
connection  is  just  the  Levi-Civita
connection of the metric .

ēa
µ

ω̄a
bµ

ḡµν = ēa
µē

b
νηab

Γ̄ρµν = θ̄
ρ
a(∂µēa

ν + ω̄
a
bµē

b
ν)

ea
µ

ω̄a
bµ

At  the  same time,  we  have  the  background  tetrad 
and  its  matched  spin  connection .  Their  exact  forms
are assumed to be known. Correspondingly, we have the
background  metric  and  its  Levi-Civita con-
nection .  However,  the  physical
spacetime  tetrad  does  not  match  the  background  spin
connection 1). This mismatching gives rise to the tor-
sion: 

T a
µν = ∂µe

a
ν −∂νea

µ+ ω̄
a
bµe

b
ν − ω̄a

bνe
b
µ , (28)

T ρµν = θ
ρ
aT a
µν

(ea
µ , ω̄

a
bµ)

Γ̃ρµν = θ
ρ
a(∂µea

ν + ω̄
a
bµe

b
ν)

Γρµν
Γ̄ρµν

T ρµν = Γ̃
ρ
µν− Γ̃ρνµ

and  relates  to  the  torsion  tensor  mentioned  at  Section  II
via  the  relation: .  Please  note  that  the  affine
connection  from  the  mismatched  pair  is

, which is neither the Levi-Civita af-
fine connection  for the physical spacetime metric nor
the Levi-Civita affine connection  for the background
metric. But it is precisely the antisymmetry of this affine
connection  that  gives  rise  to  the  non-vanishing  torsion:

.
Ma

bµNow  we  introduce  to  measure  the  difference

ω̄a
bµ ωa

bµbetween the spin connections  and , 

Ma
bµ ≡ ω̄a

bµ−ωa
bµ . (29)

ω̄abµ ωabµ

Mabµ = −Mbaµ

Since both  and  are antisymmetric under the in-
terchange  of  the  first  two  Lorentz  indices,  so  is  the M-
tensor: .

ωa
bµ

From the  torsion  defined  in  Eq.  (28)  and  the  torsion
free equation (27) for , one can obtain that the torsion
is determined only by the M-tensor, 

T a
µν =Ma

bµe
b
ν−Ma

bνe
b
µ =Ma

νµ−Ma
µν , T

ρ
µν =Mρνµ−Mρµν . (30)

Mρσµ = θ
ρ
aeb
σMa

bµ

Mρσµ = −Mσρµ

In the second equation above we have defined the tensors
 and so  on.  Combining  it  with  the  anti-

symmetric  property, ,  it  is  not  difficult  to
express the M-tensor with torsion as 

Mρµν = −
1
2

(T ρµν+T ρ
µν +T ρ

νµ) . (31)

ω̄a
bµ

The  curvature  for  the  background  is  determined  by
the spin connection  alone, 

R̄a
bµν = ∂µω̄

a
bν−∂νω̄a

bµ+ ω̄
a
cµω̄

c
bν− ω̄a

cνω̄
c
bµ , (32)

Ra
bµν ωa

bµ Ra
bµν = ∂µω

a
bν−∂νωa

bµ+

ωa
cµω

c
bν−ωa

cνω
c
bµ Ma

bµ

there  is  a  same  formula  for  the  physical  spacetime
curvature  with ,  i.e., 

. Now with  defined in Eq. (29), one
can obtain the following relation, 

Ra
bµν = R̄a

bµν−DµMa
bν+DνMa

bµ−Ma
cµM

c
bν+Ma

cνM
c
bµ

≡ R̄a
bµν+δR

a
bµν , (33)

Dµ
ωa

bµ Γρµν
DµMa

bν = ∂µM
a
bν+ω

a
cµM

c
bν−ωc

bµM
a
cν−

ΓρµνM
a
bρ

Dµea
ν = ∂µe

a
ν +ω

a
bµe

b
ν −Γρµνea

ρ = 0
Γρµν = θ

ρ
a(∂µea

ν +ω
a
bµe

b
ν)

Dµθνa = 0

δR̄a
bµν

Ma
bµ

where the covariant derivative  is associated with both
the  spin  connection  and  the  affine  connection ,
for  example, 

.  According  to  the “tetrad  postulate”, the  covari-
ant  derivative  of  the  tetrad  vanishes  identically:

. This is consistent with the
relation: . It is easy to prove that the
covariant derivative of the inverse of the tetrad also van-
ishes  identically, .  This  fact  facilitates  us  to
freely move the tetrad and its inverse in and out of the co-
variant derivatives. The equation (33) has been written in
the form of separating background and perturbation. One
can  see  that  the  perturbation  to  the  curvature, ,  is
ascribed  to  which  comes  from torsion  according  to
Eq. (31).
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The  Riemann  curvature  tensor  with  all  components
are labeled by spacetime indices can be obtained through
Eq. (33) with the help of the tetrad and its inverse, 

Rρσµν = θ
ρ
aeb
σRa

bµν = θ
ρ
aeb
σR̄a

bµν−DµMρσν

+DνMρσµ−MραµM
α
σν+MρανM

α
σµ . (34)

θρaeb
σR̄a

bµν , R̄ρσµν
R̄ρσµν = θ̄

ρ
a ēb
σR̄a

bµν

We  should  note  that ,  the  latter  will  be
defined  as .  Then  we  have  the  Ricci
tensor  after  taking  the  trace  of  the  Riemann  curvature
tensor: 

Rµν = θρaeb
µR̄

a
bρν−DρMρµν+DνMρµρ−MραρM

α
µν+MρανM

α
µρ .

(35)

Finaly the curvature scalar of the physical spacetime 

R = gµνθρaeb
µR̄

a
bρν+Dµ(Mρµρ−Mµρρ)−MρσρM

σµ
µ +MρσµM

σµ
ρ ,

(36)

should be 

R = gµνθρaeb
µR̄

a
bρν+TµT µ−

1
4

TρσµT ρσµ−
1
2

TρσµTσρµ

+2∇µT µ = gµνθρaeb
µR̄

a
bρν+T+2∇µT µ , (37)

T

S = (1/2)
∫

d4x
√−gR

where  is precisely the one in MTG model, as defined in
Eq. (13). If the gravity theory for the physical spacetime
is  general  relativity,  the  Einstein-Hilbert  action

 after  integrating  out  the  divergence
terms is 

S =
1
2

∫
d4x
√−g(gµνθρaeb

µR̄
a
bρν+T) . (38)

ḡµν = ηµν ω̄a
bµ = 0 R̄a

bρν = 0 T a
µν = ∂µe

a
ν −∂νea

µ

S = (1/2)
∫

d4x
√−gR

Now we  have  got  a  TGR  like  action  for  the  space-
time  perturbations.  If  the  background  spacetime  is  flat,

, ,  and ,  the full
action  becomes ,  going  back  to  the
action of TGR model (14) under the Weitzenböck condi-
tion.

√−gT

gµν = (eϵ)ρµ (eϵ)σν ḡρσ

Similar as  before,  in  the  action  integral  (38),  space-
time  perturbation  is  not  totally  described  by  the  second
term ,  the  first  term  also  contributes  to  the  action
for perturbation. We will again consider the expansion of
the action as the perturbative series. To be consistent with
the exponential map  introduced in the
previous  section,  one  should  take  the  following  map
between the tetrads, 

ea
µ = (eϵ)ρµ ēa

ρ , θ
µ
a =

(
e−ϵ

)µ
ρ
θ̄ρa . (39)

With these considerations one can obtain 

√−ggµνθρaeb
µR̄

a
bρν =

√
−ḡeTrϵ

(
e−ϵ

)µ
ρ

(
e−ϵ

)ν
σ

R̄ρσµν . (40)

T
T ρµν

T

S = S (0)+S (1)+S (2)+ . . .

S (0) =
1
2

∫
d4x
√−ḡR̄ , S (1) = −

∫
d4x
√−ḡḠµνϵ

ν
µ

Again, we know that  is in quadratic form of the torsion
tensor  and the latter is at least a first order perturba-
tion  quantity,  so  should  be  at  least  a  second  order
quantity. After expanding the action (38) up to the second
order: ,  we  find  again  that

.  The  former
is  the  action  for  the  background  spacetime  and  leads  to
the background Einstein equation, the latter is the first or-
der  action  which  vanishes  if  the  background  equation  is
valid.  The  quadratic  action  from  (38)  after  using  the
background equation becomes 

S (2) =
1
2

∫
d4x
√
−ḡ[(R̄ρσµν+ R̄ρνδ

σ
µ− R̄σνδ

ρ
µ)ϵ
µ
ρϵ
ν
σ+T] . (41)

T

ϵµν

This quadratic action is the same as Eq. (26) but in a dif-
ferent form.  As  before,  all  the  derivatives  of  perturba-
tions  are  contained  in  the  torsion  scalar , The  back-
ground curvature,  appearing  as  coefficients,  merely  con-
tributes to the “potential” of . The dynamics of the per-
turbation is mainly governed by torsion. 

V.  CONCLUSIONS

Gravity  is  identical  to  curved  spacetime  and  can  be
manifested by curvature, torsion or non-metricity. Armed
with these multiple options, we in this paper revisited the
problem of  separating  the  physical  spacetime  into  back-
ground and perturbation in perturbation theory,  and con-
sidered the possibilities  of  formulating the gravitation of
background  and  that  of  perturbation  in  separated  ways.
We  showed  that  the  perturbation  to  the  curvature  of  a
Riemannian  spacetime  can  be  represented  in  terms  of
non-metricity  (in  the  metric  formulation)  or  torsion  (in
the  tetrad  formulation),  but  the  background  is  still  of
Riemannian  geometry.  With  these  separate  treatments,
we got teleparallel like actions for the spacetime perturb-
ation around a Riemannian background.

Torsion  and  non-metricity  have  applications  in  other
branches of physics. In the solid physics, topological de-
fects  caused by plastic  deformations to the ideal  crystals
can  be  also  formulated  in  the  differential  geometry.  In
this language, a kind of linear defects, called dislocations,
is  described  by  torsion  (see  the  section  3.9  of  Ref.  [2]),
and the point-like defects are described by non-metricity
(see Ref. [23] for an example). As an analogy, in this pa-
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per we want to provide a preliminary image in which the
spacetime perturbations are considered as point-like topo-
logical  defects  or  dislocations  randomly  distributed  over
the background spacetime.

f (R)

This formalism can be extended to some more gener-
al theories, such as the scalar-tensor theories in which the
Lagrangian density is a linear function of the Ricci scalar,
or the  theory which is equivalent to the former case
after  Legendre  transformation  and  field  redefinition.

These theories were originally formulated in the so-called
Jordan frame.  However,  through  conformal  transforma-
tion (or Weyl rescaling) they can be transformed into the
Einstein frame in which the action of gravity has the form
of  Einstein-Hilbert,  taking  the  price  of  introducing  non-
minimal couplings to the matter sector. Then the formula-
tion  presented  here  can  be  applied  to  these  theories  in
strait forward ways.
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