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Abstract: The Glauber-type model for description nuclear fragmentation in light targets at the energies below 100
A-MeV is suggested. It is developed on the basis of the Glauber model within the nucleon transparent limit where

the Lorentz invariant phase space factor is introduced to account for the energy and momentum conservation laws.
The region of applicability of the model is discussed. The longitudinal momentum distributions of the most neutron

rich nuclei, '’Be, °Li, *He, produced in few nucleon removal reactions in the "'B fragmentation in the Be target at the

beam energies 10, 30, and 100 A-MeV are calculated. The results of the calculations are compared with predictions

of statistical models of fragmentation such as the Goldhaber model. Within the new model, the asymmetric longitud-

inal momentum distributions at low energies are explained by the kinematical locus and geometry of the reaction.
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I. INTRODUCTION

In-flight method is widely used in experimental nuc-
lear studies for radioactive ion beam production. The
primary beam is used to generate a specific nucleus in a
target, and this nucleus should be separated from other
products in a fragment separator. For effective operation
of the fragment separator knowledge of the longitudinal
momentum distributions of the nucleus is of importance.

There are many nuclear research centers working with
low-energy (E <100 A-MeV) radioactive beams using
the in-flight method, such as FLNR (JINR, Russia) [1],
FRIB (Michigan State University (MSU), USA) [2],
GANIL (France) [3], RNC (RIKEN, Japan) [4], and IN-
FN-LNS (Italy) [5]. These are the energy ranges where
studies of the exotic nuclear structure in direct reactions
are available.

Experimental data show a significant qualitative dif-
ference in the momentum distributions of fragments at
low energies compared to those obtained at higher ener-
gies. The distributions exhibit asymmetry and the posi-
tion of the maximum of the distributions changes with
different fragments. In this context, understanding of
mechanisms of fragmentation becomes particularly im-
portant.

Note that the in-flight method is based on the assump-
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tion that the longitudinal momentum P,,,, distributions
of the fragments are narrow and focused around the lon-
gitudinal momentum corresponding to the beam velocity.
This paper demonstrates that, at low energies the longit-
udinal momenta of the fragments may significantly devi-
ate from Py,,,. Thus, an approach is needed to relate the
width and position of the longitudinal momentum distri-
bution peak to the transferred momentum. The next ex-
ample illustrates this problem. At the energy 30 A-MeV
typical for the beams in FLNR, the longitudinal emit-
tence of the initial beam 2% leads to that of about 20%
after the fragmentation [1], and the fragments are accep-
ted into the secondary beam within a narrow region of the
longitudinal momentum distribution. The optimal accept-
ance is achieved when the fragments momenta are close
to the peak of the longitudinal momentum distribution
[6].

The Glauber model is the most widely used universal
approach for this kind of calculations which provides a
satisfactory description of experimental data at intermedi-
ate and high energies, E > 100 A-MeV. At energies be-
low 100 A-MeV the applicability of the Glauber model
becomes ambiguous. For now, the experimental data on
the nuclear fragmentation at the energies £ < 100 A-MeV
are accumulated, different parametrizations are sugges-
ted for description of the fragment energies and angular
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distributions, that call for a simple model of the Glauber
type extended for the calculations at the energies, where
the transferred momentum and the beam momentum are
of the same order of the magnitude. We propose an ap-
proach based on the Glauber model that accounts for en-
ergy and momentum conservation laws while maintain-
ing its simplicity and transparency.

In this approach, it is possible to get an analytical ex-
pression for the amplitude of the process, and correct it
using the Lorentz invariant phase volume, thus account-
ing for the conservation laws.

In the present paper we introduce this model, analyze
the region of its applicability, and apply the suggested ap-
proach for the calculations of the ''B fragmentation in the
Be target.

Note that ''B is the lightest nucleus for which a few-
proton removal process leads to the production of
"Be,’Li, and *He fragments. All these nuclear fragments
have been thoroughly studied experimentally, providing
input parameters for our approach. We analyze the
changes in the phase volume and the longitudinal mo-
mentum distributions as functions of the beam energy and
the mass number of the fragments. We compare the mo-
mentum distributions with those obtained using systemat-
ics widely used fragmentation calculations (see Refs. [7,
8.

All the calculations of the momentum distributions
and cross sections were performed using the Monte-Carlo
method.

II. MODEL DESCRIPTION

In general case, the differential cross section of the
process with z bodies in the final state is expressed as

T 2
dor = gy
1%

(M

where T denotes the T-matrix, v is the beam velocity, and
dV™ is the phase volume of the n-body system of frag-
ments.

We propose an approach where, instead of the T-mat-
rix, we use the inelastic scattering amplitude obtained in
the Glauber method, while preserving the Lorentz-invari-
ant phase volume. Using this procedure, we formally
provide the conservation of energy and momenta;
however, we expect a qualitative description of the cor-
relations and momentum distributions. Nevertheless, such
an approach may describe the influence of the Q-value
and other purely kinematical effects (which may be signi-
ficant at low energies) on the momentum distribution of
the fragments.

We consider the process of fragmentation of the pro-
jectile (P) in the target (7) (Figure 1) assuming that the
projectile consists of the n fragments, which are relat-

Initial State

N N
N
T b
Core K

Target
Final State A

K
Fig. 1. (color online) Kinematical scheme of the fragmenta-

tion reaction and kinematical variables in the projectile rest
frame used in the model.

ively -heavy core (C) and nucleons. We consider this
problem in the projectile rest frame.

A.

The inelastic scattering amplitude of this process can
be written as the integral over impact parameter b and the
coordinates of the preformed clusters r;:

k , ‘
o iQb 2 3
7f,—f2m‘/e db/gdrk
[Is,(b-t)-1

j=1

Inelastic scattering amplitude and factorization

< ¥, @

where §; is the profile function of the fragment-target
(core-target j=C and nucleon-target j= N) interaction
obtained using the optical model potential (see Eq. (9));
t; is the projection of the r; on the impact parameter plain
(orthogonal to K)

ti=r,-(r;-K)K/K?%
P, is the projectile initial state wave function (WF) of the

relative motion of the fragments with coordinates r; (in-
dices j denote the core and nucleon fragments)

LI1/ E\Pl(r]""’rn);

W is the final state WF defined by the fragments' co-
ordinates and momenta.

‘IIF E\PF(rlw--,1':19(]1,---,(]n)-

As we consider the problem in the projectile rest
frame, K and K’ are the initial and final target momenta,
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respectively. Q represents the target transferred mo-
mentum, while q; are the fragment momenta after scatter-
ing in the projectile rest frame. Additionally, q; can be
interpreted as transferred momenta of the fragments.

With the single scattering approximation in Eq. (2)
we get sum:

Fri =ij(Q) / (‘I’F)*eiQrJ‘PIHdSl‘kv 3)
=1 k=1

where f;(Q) is the fragment-target elastic scattering amp-
litude [9]. And in the transparent nucleon limit Sy =1 Eq.
(3) reduces to the form:

Fri =fe(Q) / ¥y ey, [[dr.

k=1

“)

Our next assumption concerns the factorization of the
WEF of the initial and final states

N
¥, — Hlplj(rj)
j=1
and
N N
Yr — H\PF_f(l‘j,qJ‘) - HCXP[iI'jq/']-

j=1 j=1

Introducing the functions

Fj(quls“'»qn): /dBr]elQr'llp*Fj(rjsq])\Plj(r])

[T [ @nimartum.

k#j

and assuming that the final state WFs can be approxim-
ated by plane waves, we obtain

Fi(Q.qi,...,qy) = /d3rje_i<qj_Q)rj\Plj(rj)

XH/d3l’k€_iqkr’\P1k(l'k)

k#j

= Fi(q;-Q [ [ Fu(aw.

k#j

(6)

Substitution of Eq. (6) into Eq. (4) gives the amplitude of
inelastic scattering, written as

Fri = fe(@QFc(ac—Q [ [ Fu(aw), ()
k

Note that Q and q; in Eq. (2) are assumed to lie in the
plane orthogonal to the momentum K. However, if we as-
sume F; and the core-fragment potential to be central-
symmetric one, the dependence of ¥, on the directions of
Q and q; should be minimal, making the use of Eq. (7)
reasonable.

Fc and Fy in Eq. (7) represent the form factors de-
termined by the nucleus size. Thus, the amplitude of in-
elastic scattering is defined by the elastic scattering amp-
litude of the core f:(Q).

With the oscillator WF

54\ 5, 32
(&) 7renl-35)

we obtain expression for the form factors F;

32 :
F./'(Q) =1\ Eﬂ(rj>6e’%qz<’/>“;

where (r;) is the root mean square (RMS) distance of
fragment j from the center of mass of the projectile.

Note that the parameters of the approach include the
RMS radii of the fragments and the related RMS dis-
tance between each fragment and the center of mass of
the projectile.

(®)

B. Profile functions

The elastic scattering amplitudes f-(Q) and fy(Q) are
calculated in the Glauber model using the corresponding
core-target profile function § ;.

In our calculations, the profile functions of the core-
target interaction are derived using the model potential:

S (b) = exp —%/szj(\/b2+zz) ,

—00

)

where r= Vb2 +7z2 and V,(r) is the optical model poten-
tial for the core-target or nucleon-target interaction, b is
the impact parameter of the center of mass of the frag-
ment (see, for example, Refs. [10, 11]), v is the beam ve-
locity, and z is the coordinate along the beam axis.

To perform the calculations over a wide energy range
(from 10 to 100 A-MeV), we use the standard parametriz-
ation of the nucleon-nucleon interaction potential with the
parameters from Refs. [12, 13], which are valid for the in-
cident energy range from 10 to 2000 A-MeV. The optical
potential of the core-target interaction is found as the
folding [14] of the potential with the core density distri-
bution.

The core-target interaction potential is expressed by:
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Ve(r) = / Acpe(® Ve - dr’, (10)

where A is the core mass number, p¢ is the core density
distribution and V¢(|r—r’|) represents the effective inter-
action potential, and:

— i
Ver(r—r')) = —EthrpT(lr—r’I)UTN (11)

The density distributions of the interacting nuclear
systems are approximated by the Gaussian distribution
[15] as

p(x) = poexp(—ax’), (12)
-1, e

where @ = [3(r?)] " is the density distribution parameter

related to RMS radius of the nucleus (+?)!/2, and p(x) is

normalized to unity. oy 1S the nucleon-nucleon cross-

section averaged over the number of neutrons and pro-

tons involved in the interaction (for more details see Ref.
[12, 13]).

II. RESULTS AND DISCUSSION

Studying fragmentation of ''B, we consider three re-
actions leading to production of the '"Be, °Li, *He iso-
topes

"B+’Be —»? Be+''Be + p,
"B+Be =’ Be+’Li+2p,
B 19Be —° Be+8He+3p,

which illustrate the "path" towards the neutron dripline.
Calculations are performed for the beam energies 10, 30,
and 100 A-MeV, demonstrating the changes in the differ-
ential elastic cross section and the longitudinal mo-
mentum distributions of the core fragment as functions of
the incident energy. The Monte-Carlo method is used to
calculate the corresponding momentum distributions.

A. Elastic cross sections

Figure 2 illustrates the differential elastic cross sec-
tion as a function of the transferred momenta ¢; for pro-
tons (j = p) and the core fragments (j = C, where C cor-
responds to '°Be, °Li, and *He, respectively) on a Be tar-
get for the incident energies 10, 30, and 100 A-MeV. The
calculated proton cross sections are smaller than the core
cross sections by a few orders of magnitude and the cor-
responding amplitudes satisfy f. > fy, indicating that the
core-target interaction dominates over the nucleon-target
interaction. One can also see from Figure 2 that the nucle-
on transfer can occur with the momentum transfer signi-
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Fig. 2. (color online) Differential elastic scattering cross sec-

tions as functions of the transferred momentum ¢ for protons
and heavy ions ("°Be, °Li, and *He) scattered on a °Be target at
different projectile energies (see legends in the panels).

ficantly exceeding the value corresponding to the first
diffraction minimum. In the calculations of the elastic
scattering, we assume that the dominant contribution to
the elastic scattering cross section corresponds to the
transferred momenta smaller than those at the first dif-
fraction minimum (see Figure 2).

As noted above, in our model, the projectile nucleus
"B is treated as a system of a pre-formed heavy cluster
and valence protons. The structure of ''B is characterized
by the form factor Fc(qc) in Eq. (8), which is determined
by the RMS distance of the core in ''B. In our calcula-
tions, we use the RMS distance of proton (r,) =2.43 fm
determined by the standard charge radius systematics
1.2x A3, As a first approximation, the RMS distance of
the core (rc) can be calculated assuming to be a point
particle.

In the general case, the core WF in ''B may be more
complex, resulting in variations in {r¢). To demonstrate
the sensitivity of our results to this parameter, we vary
(rc) (see Table 1) from the minimal value, corresponding
to a more central impact, to the maximal value, represent-
ing a more peripheral interaction. The values of (r¢) are
presented in the Table 1.

B. Momentum distributions
Figure 3 shows the correlation plots of the target

transferred momentum (Q) versus the projection ¢gc, of
the core momentum g¢ on the z-axis, coinciding with the
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Table 1. The RMS distances of heavy fragments used in the
calculations. (r.) is the default value; min(r.) represents the ra-
dius for the 'more central' reaction; max(r.) represents the radi-
us for the 'more peripheral' reaction. All values are given in

fm
Fragment (re) min(r.) max(r.)
“Be 0.24 0.12 0.49
°Li 0.49 0.24 0.97
8He 0.73 0.36 1.46

beam direction. The calculations are performed for beam
energies 10, 30, and 100 A-MeV and for different core
fragments '’Be, °Li, and *He.

It can be observed that at low beam energies (10 and
30 A-MeV), the variables Q and g, exhibit strong correl-
ation. This correlation weakens with increase in of re-
moved nucleons.

Note that the kinematic locus includes only non-
zeroth transferred momentum Q, since part of the beam
energy is spent on nucleon knock-out. Therefore, the Ser-
ber model, introduced in Ref. [16], which is valid in the
limit Q =0 MeV/c, is not applicable in this case, and the
core fragments appear to move slower than the beam nuc-
lei. The Serber model describes the fragmentation pro-
cess as a sudden removal of nucleons from the nucleus. In
this model, the longitudinal momentum-distribution of the
fragments is determined by the initial wave function of
the system, represented through the form factor of the ini-
tial state. One can see that (7) for the case of Q < g¢ re-

duces to the Serber model.

At high energy (100 A-MeV), the effect of "slowing
down" is less pronounced, and the correlation becomes
more symmetric with respect to g¢, =0, approaching to
the predictions of the Serber model. However, the case
0 < ¢qc 1s still not realized. We plan to discuss the kin-
ematic conditions under which our approach is reduced to
the Serber model in perspective works.

In Figure 4, we present the correlation between the
two projections of the core momentum in the projectile
rest frame (gc, and g¢,).

The kinematical loci of the fragments are clearly vis-
ible in these plots, and the loci of gc, are asymmetric rel-
ative to the beam momentum (g, = 0). This indicates a
tendency for the fragments to "slow down" at low ener-
gies relative to the beam velocity, which is related to the
reaction kinematics.

This result demonstrates significant changes in the
shape of ‘the longitudinal momentum distributions with
varying the beam energy, highlighting the importance of
considering momentum and energy conservation laws.
From this view point, the models assuming the sudden re-
moval with Q — 0, such as the Serber model and the tra-
ditional eikonal approximation of the Glauber model,
provide only a qualitative description of the momentum
distributions. At high energies, these models offer a good
quantitative description of the cross sections; however, at
energies below 100 A-MeV, they do not provide a cor-
rect description of the momentum distributions.

At higher energies, where the transferred momentum
is much smaller than the beam momentum and can be
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Fig. 3. (color online) Correlation between the transferred momentum of the target (Q) and the longitudinal component of the core mo-

mentum (g¢;) in the projectile rest frame, obtained using the Monte Carlo method for different fragments (columns) and the ''B beam
energies (rows). The color palette indicates the number of events in the Monte Carlo calculations.
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jectile rest frame, obtained using the Monte Carlo method. The layout is the same as in Figure 3. The color palette indicates the num-

ber of events in the Monte Carlo calculations.

neglected, our model approaches the results obtained in
the Glauber model in the transparent proton limit.

The sensitivity of our calculations to the (r¢) para-
meter is illustrated in Figure 5, where we present the
characteristics of the longitudinal momentum distribu-
tions such as the peak position, standard deviation (SD),
and skewness of the g, distribution.

One can see that the peak position in the momentum
distributions shifts to higher values with increase in the
mass of the fragment. The skewness decreases as the
fragment mass increases. The standard deviation of the
longitudinal momentum distribution varies depending on
the type of fragment.

The plots indicate that in peripheral reactions, the
fragment can move faster than the projectile. Addition-
ally, a narrowing of the g, distribution is observed. In
central interactions, the gc, distribution becomes wider
and more asymmetric. Thus, more peripheral reactions
produce faster fragments, while central reactions result in
slower fragments relative to the beam velocity.

Finally, in Figure 6, we compare the calculated
widths of the longitudinal momentum distributions of the
fragments with predictions from the widely used Gold-
haber model [7]. Following the approach outlined in this
article, the standard deviation

KA-K)

SD= Vo? =
Vo 7

meT

where 4 is the mass of the incident particle ''B, and K is
the mass of the fragment ('°Be, °Li, *He). The temperat-
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Fig. 5. (color online) The mode (peak position), standard de-

viation (SD), and skewness for different values of (r¢c) (see
Table 1).

ure T and Boltzmann constant k define o describing both
the mean excitation energy transferred to the fragment
during nuclear decay and the width of the fragment mo-
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Fig. 6. (color online) Comparison of the standard deviation
(SD) of gc, obtained in our calculations (points) with the pre-
dictions of the model from Ref. [7] (lines). The values of kT’
for the beam energies E, = 100 4 MeV and E, =30 4 MeV are
shown in the panels

mentum distribution.

For high beam energies (E, = 100 4 MeV and E, = 30
A MeV), our results show reasonable agreement with the
predictions of Ref. [7]. At low beam energy (E, =10 4
MeV), the dependence of the longitudinal momentum
distribution widths on the fragment mass number in our
calculations qualitatively differs from that in Ref. [7],
highlighting the limitations of the Goldhaber model and
emphasizing the applicability of our proposed approach.

IV. SUMMARY
We suggest an approach based on the Glauber model,

modified to account for energy and momentum conserva-
tion laws.

Using the example of ''B fragmentation, we calculate
the longitudinal momentum distributions of the '°Be, °Li,
and *He fragments. All results are obtained within the
transparent proton limit. At the energies above
100A-MeV, our model produces results close to those
obtained in the transparent proton limit (Sy =1) of the
eikonal approximation of the Glauber model. Addition-
ally, the precision of the approach improves with in-
crease in the heavy fragment mass.

At low energies, the peak position of the longitudinal
momentum distribution increases as the core mass de-
creases. We also show that at energies below 1004 -MeV,
the fragments move slower than the beam nuclei, as
defined by the kinematic locus, whereas at higher ener-
gies (E >100A-MeV), the fragments may move either
faster or slower depending on the reaction geometry.

Account the energy and momentum conservation
laws leads to significant changes in the shape of the lon-
gitudinal momentum distributions, causing asymmetry,
where the low-momentum tail forms due to the large
transferred momentum. Thus, compared to the Glauber
model, our approach describes fragmentation over a
wider range of momentum transfer.

Comparison with calculations from other models and
parametrizations shows that at energies below
100A -MeV, kinematical loci and energy-momentum con-
servation laws must be taken into account when planning
experiments and determining optimal conditions for frag-
ment production.
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