Chinese Physics C  Vol. 49, No. 4 (2025)

Off-equatorial deflections and gravitational lensing. I1. In general stationary

and axisymmetric spacetimes”

Xinguang Ying (Jf5)7)"  Junji Jia (552 k)"

'School of Physics and Technology, Wuhan University, Wuhan, 430072, China
“Department of Astronomy & MOE Key Laboratory of Artificial Micro- and Nano-structures, School of Physics and Technology,
Wuhan University, Wuhan, 430072, China

Abstract: In this work, we develop a general perturbative procedure to find the off-equatorial plane deflections in
the weak deflection limit in general stationary and axisymmetric spacetimes, allowing the existence of the general-
ized Carter constant. Deflections of both null and timelike rays, with the finite distance effect of the source and de-
tector taken into account, are obtained as dual series of M/ry and ro/rs,. These deflections allow a set of exact
gravitational lensing equations from which the images' apparent angular positions are solved. The method and gener-
al results are then applied to the Kerr-Newmann, Kerr-Sen, and rotating Simpson-Visser spacetimes to study the ef-
fect of the spin and characteristic (effective) charge of the spacetimes and the source altitude on the deflection angles
and image apparent angles. It is found that, in general, both the spacetime spin and charge only affect the deflections
from the second non-trivial order, while the source altitude influences the deflection from the leading order. Because
of this, it is found that, in gravitational lensing in realistic situations, it is hard to measure the effects of the space-
time spin and charge from the images' apparent locations. We also presented the off-equatorial deflections in the ro-
tating Bardeen, Hayward, Ghosh, and Tinchev black hole spacetimes.
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I. INTRODUCTION

Deflection of light rays in gravity has been extens-
ively studied from the very early stage of General Re-
lativity [1, 2]. Nowadays, gravitational lensing (GL) has
developed into a powerful tool in astronomy, ranging
from measuring the mass of galaxies or their clusters [3],
studying distributions of dark matter [4], properties of su-
pernovas [5] and even testing alternative gravitational
theories [6, 7].

The simplest scenario of signal deflection and GL is
that of light rays in static and spherically symmetric
(SSS) spacetimes, or in the equatorial plane of stationary
and axisymmetric (SAS) spacetimes in the weak deflec-
tion limit (WDL). With the fast developments of astro-
particle physics [8, 9], gravitational wave detection [10],
and black hole (BH) imaging [11, 12], enormous effort
has been devoted to the extension of the deflection and
GL of timelike signals [13—18], with finite source and de-
tector distance [19], and in the strong deflection limit
[20—22]. Different analytical methods were also de-
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veloped, including the perturbative methods [22—-25] and
the more recent Gauss-Bonnet theorem-based methods
[16—-18, 26].

However, extension to the non-equatorial deflection
and GL in SAS spacetime is still rare (in SSS spacetime
essentially there is no non-equatorial motion), except in
Kerr [27-33] and Kerr-Newmann (KN) [34, 35] space-
time. Due to the complexity of the motion equations for
the off-equatorial trajectories, only a few works have
studied the deflection and GL in quasi-equatorial motion
of null rays [36, 37] or only numerically in the general
non-equatorial case [38, 39] in other spacetimes, let alone
the deflection of both null and timelike rays. In Ref. [33],
the general non-equatorial deflection and GL in Kerr
spacetime were studied perturbatively for the first time
for both null and timelike rays in the WDL, with finite
distance effect taken into account. One of the motiva-
tions of the current work is to study the condition under
the form of SAS spacetime for the perturbative method to
be feasible for non-equatorial deflection and GL. We will
show that for many SAS spacetimes satisfying a separa-
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tion condition that allows a generalized Carter constant
(GCC), the perturbative method is always valid for both
null and timelike rays with the finite distance effect auto-
matically taken into account. The second motivation is to
reveal the effects of various spacetime parameters on
such deflections and GL. Spacetimes will be considered
include the KN, Kerr-Sen (KS) [40], rotating
Simpson—Visser (RSV) [41] and a few other ones
[42—45].

The paper is organized as follows. In Sec. II A, we
first introduce the basic setup of the problem, establish
the equations of motion, and study a condition for the
perturbative method to work. In Sec. III, we explore a
perturbative method to solve the deflection angle in both
6 and ¢ direction. The off-equatorial GL equations are
then solved in Sec. I'V to obtain the apparent angles of the
lensed images. The method and deflection and GL res-
ults are then applied to the KN, KS, and RSV spacetimes
in Sec. V, and the effects of their characteristic paramet-
ers are studied. We conclude the paper with a summary
and discussion in Sec. VI. Throughout the paper, we use
the natural unit G=c=1 and the spacetime signature
(=, +,+,+).

II. GENERAL FRAMEWORK

In this section, we will derive the deflection angles in
the # and ¢ directions for SAS spacetimes. We will show
that this is always possible when the metric functions sat-
isfy certain conditions, such that a proper separation of
variables in the equations of motion, or equivalently the
existence of a GCC, can be accomplished.

A. Preliminaries

We start from the most general SAS spacetime,
whose metric can always be expressed in the following
form

ds® = —Adr* + Bdtdg + Cd¢* + Ddr* + Fd#?, (1)
where 1,1, 0, ¢ are the Boyer-Lindquist coordinates and
A, B,C, D, F are functions of » and 8 only. This metric al-
lows two commutative Killing vectors

- (B w-(8) oo

where the spacelike ¢* corresponding to the rotation
symmetry and timelike & to the time translation. These
Killing vectors correspond to two conserved quantities of
the motion

1.
E = Ai~ > Bj, Q)

L= %Bt’ +C¢. 3)
Here the dot stands for the derivative to the proper time
or affine parameter A of the motion and £ and L can be in-
terpreted as the energy and angular momentum of the
particle (per unit mass) respectively. In asymptotically
flat spacetimes, E can also be related to the asymptotic
velocity v of the particle through

1
Vi

E =

4)

The asymptotic velocity v here stands for the magnitude
of the spatial component of the four-velocity of the test
particle. From these equations, one can obtain two first
derivatives

. 2BL+4EC

" B4aAC ©
. 4AL-2BE

= B raAC ©

Now for the equations of motion of the » and 8 co-
ordinates, we can simply write out their geodesic equa-
tions. However, they are second-order equations that are
very complicated to simplify. In this work, we will limit
our choices of the SAS spacetimes, i.e., putting condi-
tions on the metric functions, such that the motions allow
a third conserved constant, i.e. the GCC [46]. We note
that unlike the Kerr spacetime case, which not only con-
tains a Carter constant [47] but even second-order Killing
tensors [48], the existence of GCC is not guaranteed in all
SAS spacetimes. For those SAS spacetime without GCC,
many of them are non-integrable systems and even the
geodesics are chaotic, such as Johannsen-Psaltis space-
time [49], Zipoy-Voorhees spacetime [50] and so on. We
will not study these spacetimes in this work.

To see what the existence of such GCC requires, and
to obtain (simpler) equations of motion for » and 6, we
will use the Hamiltonian-Jacobian approach. Our starting
point is the action of the free particle for a separable solu-
tion, which reads

S = _%K/l—Et+L¢+S(r)(F)+S(0)(9), ™)

where x=0,—1 fornull and timelike particles respect-
ively. Here and hereafter, any function with an (r) or (6)
superscript is a function of 7 or 8 only. The Hamilton-Jac-
obi equation is given by
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2g Ax" x’ EK =0. ®)
Substituting Eq. (7), this becomes
1 <d5<r>>2+ 1 (ds<9>>2_ 4AL* - ABEL-ACE® _
D\ dr F\ do B2 +4AC B
©))

We then seek metrics that allow this equation, after multi-
plied by some proper total factor function G(r,6), to be
separable into » and @ dependent parts. This can be ac-
complished if the metric functions A, B,C, D, F, and
factor G can cast the left-hand sides of the following
equations into their right-hand sides [46]

G(r,0) G(r,6)

Do) - D(r), 00 - F(0), (10a)
X(rn0)Gn0) _ ®

Biaic = X0 +X9), (10b)
G(r,0) = G+ G9(9), (10c)

where X € {A, B, C}. Note here that the condition (10c) is
for the separability of the x = —1 case and unnecessary for
null signals. Condition (10a) implies

F(r,6) _ D(r)
D(r,0) ~ F(O)

(11)

In practice, the functions on the right-hand sides of Eq.
(10) as well as G(r,0) can be read off from the left-hand
sides and Eq. (11). One might also notice that there is a
freedom of a multiplicative constant in functions D(r)
and F(0), and additive constant freedom in each pair of
functions X and X@. Indeed one can show that these
freedoms will be canceled out in the final equations of
motion (17) and (18) and therefore not affect the physics.
Let us also point out that many SAS spacetimes, includ-
ing the Kerr spacetime, satisfy these conditions (10).

A few comments about the variable separation condi-
tion (10) might be useful for their clear understanding
here. What will be shown in this work is that the space-
times satisfying the condition (10) can always be treated
using our method, while those spacetimes not satisfying
(10) are not treatable by the method developed in this
work. In this sense, condition (10) is both a sufficient and
necessary condition for the applicability of our method.
However, Eq. (10) is only a sufficient condition for the
separability of the equations of motion and we are not
able to prove that it is also a necessary condition, al-
though we can not provide any counter-example either.

That is to say, it is unclear to us whether there exist
spacetimes (unknown to us) that do not satisfy condition
(10) but still allow the separation of its variables.

Using conditions (10) in Eq. (9) and separating the r
and 0 dependent parts, we obtain

- ds®™\?
417°A" — kG —4ELB" —4E*C" + D(r) ( 5 )
p
ds@\?
=kG? —41°A® + 4ELBY + 4E*C® — F (0) ( 0 )

=K, (12)

where the assigned constant X is the GCC we are looking
for. Note that this GCC also allows some constants be-
cause we can always add or multiply some constant to
both sides of the first equal sign in Eq. (12). However,
these additive or multiplicative constants will not affect
the dynamics and therefore can be chosen freely. Eq. (12)
then can be split into two equations

(dS g )2 kG —4I2A® + 4E2CY + 4ELB + K

=R
dr D(r) .
(13)
(dS ®) )2 _ KG® —412A® + AE°C + 4ELBY — K _ )
do /) F(6) - ’
(14)

where we have defined two compact functions R(r) and
O(0) to simplify the notation. Once the metric functions
are known, these two functions are determined too. The
function S and S therefore can be solved and the ac-
tion (7) becomes

1
S =-kA-Et+Lp+ +, VRdr+ [ +,V0do,  (15)

where +, and +, are two signs introduced when taking
the square roots in Eqs. (13) and (14). The motion equa-
tions for  and 6 coordinates then are found using

oS

o = Pu=gnd’ (16)
to be
_+ VR
"T Doy (a7
A ) (18)
F(r,0)
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B. Defining the deflection A¢ and A9

One of the main goals of this work is to find the de-
flection angles of the trajectory in the WDL. Denoting the
source and the detector coordinates as (r,¢,,0,) and
(ra,94,6,) respectively, this goal is equivalent to finding

Ap=¢,—¢p,and AO=06,+6,—n. (19)
In the WDL, it is reasonable to assume that during the
propagation of the signal, it only experiences one periap-
sis with radius ro> M, where M is the characteristic
length scale of the spacetime, and one extreme value of
the azimuth angle 6,,. L.e.,

Flyry = 0, Blg—g, = 0. (20)
The existence of such 6,, means it is either closer to 0 or =
than both 6, and 6,, and therefore we always have

|cos8,| >|cosb,,l. From Egs. (17) and (18), we see that
the above can be inverted to find

ro=R(0), 6, =07'(0). 20

After substituting Eqgs. (13) and (14), this yields the more
explicit relation

7 O =
_EB"+B )+s2\/:’ )
2(A% + Afn)
2E (A" B — A% B") [E (BY + B™) +5, VE|
k= (A0 + Abn)?
K (A0GO — AP G") +4E? (A" CO — A% C™)
" A+ Al ’
(23)
where

E= (A" +A") [K(G" +G ) +4E*(C™ +C))
+E*(B" + B™)?,
X" =X"(ry), X = X"(6,), X € (A, B, C. G},

and s, = #1 is introduced when solving a quadratic equa-
tion. These relations connect the motion constants
(E, L, K) with (ry, 6,). In Sec. III, we will use (ro, 8,,) to
replace (L, K) since the latter are less intuitive and usu-
ally harder to measure in astronomy. For example, r, for
the bending by the Sun can be approximated by the solar
radius.

To obtain the deflections A¢ and A8, we first trans-
form slightly the equations of motion (6), (17) and (18)

and show that they can be integrated. First of all, from
Egs. (17) and (18), one can find easily

- F dé
+,V0

D
dr

di=
+, VR

24

which after dividing G(r,6) and using Eq. (10a) yields

1 1

dr= de.
+, VYRD +, VOF

(25)

On the other hand, substituting Eq. (10b) into Eq. (6), we
have

_4LAY —2EB") + 4LA® —2EB?

d¢ G(r,0)

da.

(26)
After using Eqs. (10a) and (25), the » and 8 dependent
parts in this equation are separated

: 4LA" —2EBY 4LA® —2EB®

de. 27
+, VRD +, VOF @7
Integrating Eq. (27) we will directly obtain A¢
[T 4LA" —2EB"
no= | [+ [
=1, VRD
O (%] 4LA® —2EB®
+ 51 / + / —de. (28)
O S voF

Note that when integrating from r, to ro (or ry to ry), the
first term of Eq. (27) is expected to have +,=-1 (or
+, = +1). And when integrating from 6, to 6,, (or 6, to
04), £9=—1 (or +5=+1) if §,, is a minimum or +, = +1
(or +y=-1) if 6, is a maximum. These sign values
caused the extra s; =sign(cos(d,)) sign in front of the
second integral in Eq. (28). Similarly, integrating Eq. (25)
we will obtain the following relation between initial and
final € coordinates

{/m+/md} ﬁdr: 51 Mﬁ+/:]} Ede. (29)

This relation allows us to solve 6, once 6, the spacetime,
and other kinetic variables are known. Therefore from
this, we can find the deflection in the 6 direction as
defined in Eq. (19).

III. PERTURBATIVE METHOD AND
DEFLECTIONS

The integrations (28) and (29) which solve the deflec-
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tion angles however, usually can not be carried out to ob-
tain closed analytical forms. Therefore in this section, we
will develop the perturbative method to approximate
these integrals and then obtain the deflection.

A. The Perturbative Method

The main idea of the perturbative method is selecting
appropriate expansion parameter(s) and expanding the in-
tegrands into simpler series so that the integrations be-
come doable. In the WDL, there is a naturally small para-
meter 1/r, suitable for this purpose. When expanding the
integrands in Eqgs. (28) and (29), one can also anticipate
that the expansion coefficients will explicitly depend on
the asymptotic behavior of the metric functions. After a
short survey of the applicable spacetime metrics of our
method, we found the following expansions can be as-
sumed for the functions X* (u = r, 6) and D(r) and F(6)

=)

AV =50 402 , 30a
HZ; r 4sin* 60 (30a)
0N~ b Q)
B"=> -~  B?=0, (30b)
r-
n=2
[se] 2 . 2
0
cr=N\" o LMY 30
; rn—2 4 ( C)
=] dn
D= 5 TO=1 (30d)
n=0
GV = g—"z G? = a?cos? 0, (30e)
r-
n=0

where the constant a can be interpreted as the spacetime
spin, and without losing any generality, we can always
assume a > 0. Other coefficients a,, b,, ¢,,d,, g, can be
determined once the metric functions are known. Note
that for the @ functions of the above form, the relation
(20) between 6,, and other parameters becomes very ex-
plicit as

a? (E2+K) c:;— (K+2a2E2+Ka2) ci+azE2 +K+L*=0
(31
and in principle, we can solve 6,, in terms of other para-

meters if needed. Substituting the above series and using
the following simple changes of variables

_h _ .
p=—, c=cosb, s =sinf
-

(32)

in the integrals of Eqs. (28) and (29), they can be further
expanded with 1/r as the small parameter into the fol-
lowing series forms

- U+/} ijn,,i<p)(:o)idp

+s,/ [ i\;j( )idc,

1

(33)
[/1+/1}f;m(p>( ) o
TSR e

Cm i=

where ¢, 4, Ssan and the small dimensionless quantities
Psa are defined as

Dsa = rO/rs,a'v Csdm = COs gs,d,ms Ss.dm = Sin 05,d,m~

The coefficients n,;, ng;, m,;, my; can be computed to any
desired high order. Here we only list the first few orders
of them

Ny = 2p ( bE — 28280 )
r2 \/do(] —pz) \/Kgo +4E200 28mad2P |,
(35a)
S$28m
Ngo = —m, (35b)
ng1 =0, (35¢)
2 2
Sy8ua”(k+ E®)
__SSm@ K+ E) 35d
02 = T (kgo + 4E2cy) (35d)
1
My = — , (35¢)
\/(Kgo +4E%co)(1 - pHdy
I (4E%co +kgo)di p(1 + p) + (4E’c, + kg1)dop
P 214 p) kgo + 4E2c0r (1 - POk
(350
1 (359)
Mmy|=————,
o v/ Kkgo +4E%c g
Kg1 +4E%¢c,
= 35h
02 = 3 (kgo + AE2c) 2 (35h)
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Some higher-order terms are presented in Appendix A.
For the integrals over p in Egs. (33) and (34), we can
show that their integrands are always of the form
polynomrial(p)/ (1- p?)"* "(n=0,1,---) and therefore
integrable [33]. For the integral over c in these equations,
their  integrands are always of the form
polynomrial(c)/ [(1 - /e —cz] (n=0,1) and there-
fore also integrable.
The results of the integrations are of the form

Ap = Z f:Nr,i(p/) (rlo) + Z iNﬁJ(Cf’C'") (rio)

j=sd i=2 j=s.d i=0

(36)
<) ] i =] 1 i
S M) (3) =SS Mutenen (). @)
Jj=sd i=1 Jj=s.d i=1
where N,;, Ny;, M,;, My, are the corresponding integral

results of the n,;, ng;, m,;, my; terms respectively. Again,
the first few terms are

282 8o -1
N, = o [qu/l—p§+cos (pj)}
2b0,E\/1-p2
- L (38a)
\/ do(KgO + 4E2(JQ)
ST _1 CiSm
NH,O = — =S5 tan — y (38b)
2 Jer=c
N1 =0, (38¢)
2 2
SaSma®(K+E?) | (Ci)
== — 38d
27 Dkgo+4Ec) 0 \en )’ (38d)
-1
cos ;
M, = (p) , (38¢)
\/ (Kgo + 4E200)d0
4E%c\dy+ kg1 d, 1-p;
2= R { Li_cos™(py)
2 [(kgo +4E>co) dy] L+p,
(Kg() + 4E2C())d1 :|
_ ey T R 1= p?
(kg1 +4E2c)dy V' il
(381)
My, = ;COSA (C]) (382)

(kg +4E%c))

My, = ——21 772 CU
%27 T 2(kgo + 4E2co)2

(38h)

_ Cj
os”! (—’)
Cm

and some higher-order results are given in Appendix A.

B. Deflection angles

We note that the deflection A¢ in Eq. (36) still con-
tains the unknown 6, in its second term coefficients Ny;.
On the other hand, Eq. (37) effectively establishes a rela-
tion between 6, (or cosd,) and other parameters. There-
fore to solve the deflections A¢ and A8, we will have to
solve cos@, from Eq. (37) first. In the WDL, cos6, can
also be expressed in the series form

cosf, = Zh,» (—) .
ro

i=0

(39

where the coefficients A; are solvable from Eq. (37) us-
ing the method of undetermined coefficients. Here we
only show the first two orders

1
ho = €,y COS [\/d_o z:cos‘l(pj)—cos‘l (CCY)] ,

Jj=s.d m

(40a)
= =i\ | Vo 7 AEe S Moalp)
Jj=s.d
kg +4E%c i }
+ cos™ (p))].
2(kgo +4E%co) Vdy ; !
(40b)

and higher order ones are again in Appendix A.

Substituting solution Eq. (39) into Eq. (36) and carry-
ing out the small 1/, expansion again, the deflection A¢
is found finally as

2= Mo (L) Y Wptenen (L) an

j=s.d i=2 i=0

where the N,; were unchanged as in Eq. (38) and the first

few Nj; as
+tan”! <

B CsS
Njo=n—1s {tan ! (”")
: 32
Cnl CS

, 518uh

N, = “tmi
-1y -

h()sm
Ven=hi

(42a)

(42b)
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, S smhoh%(?)h% - ZC;‘; -1 S18,Mo
" am—2 (e -m) ¢ c = hi
sma(k+ E?) { 4 (cs> 4 (hoﬂ
7 lcos ' | = ) +cosT | — ).
2(Kg0 + 4E2€0) Cm Cm

(42¢)

Inspecting the above results, one can discover that s, is
just the sign of A¢ at the lowest order, which also means
that s, = +1 correspond to anticlockwise and clockwise
motions respectively. Naturally, the following relation
holds
s, = sign(L). (43)

In the infinite r,, limit, we see clearly from the Ny, term
that A¢ to the leading order equals s,x.

Similarly, substituting solution (39) into Eq. (19), the
deflection in @ direction becomes

ANI=0,+60,—m= k,(—) . 44
i 203 - (44)

where
ko =0, —7r+cos’1(h0), (45a)
k= —L, (45b)

V1-h3
2h3hy — hoh? —2h,

ky = (45¢)

2(1 -2y

Note that in the limit r;, — co, hy approaches —c, and
therefore k, approaches 0.

Egs. (41) and (44) are two important results of the
work and a few comments are for them. Firstly, these res-
ults apply to general SAS spacetimes that allow the exist-
ence of a GCC. This includes many well-known space-
times such as the Kerr, KN, and all SSS ones, which can
be obtained by setting all b, =0 for n > 2. Secondly, they
work for both light rays (setting x=0) and timelike
particles (setting « = —1). Indeed we can show that the
E — oo limits of these results for timlike signals equal ex-
actly their values for null rays. Thirdly, these deflections
also take into account the finite distance effect of the
source and detector. This effect could be important when
studying the GL effect. Setting p,, to zero, the infinite
distance version of the deflections can be obtained.
Fourthly, these deflections work for both non-equatorial
and equatorial trajectories. For the former, setting
0,4 — n/2, we have verified that the deflection angle A¢
reduces to its value on the equatorial plane in the Kerr

spacetime [23]. For the latter case, these formulas do not
rely on any near-equatorial plane approximation, i.e., 6;
and 6, can be far from 7/2. Last but not least, the deflec-
tions (41) and (44) can be further expanded around small
psa if the source and detector are far away, i.e., ry4 > ry,
and a dual series form will be obtained. Such a form will
be more appealing from the application point of view and
we will only do this in Sec. V.

IV. GRAVITATIONAL LENSING

As we've got the deflection angles for arbitrary inclin-
ation angles of the signals, we can study the GL in such
SAS spacetime in the off-equatorial plane. Since our de-
flection angles (41) and (44) contain the finite distance
effect, we can naturally establish the following GL equa-
tions

0p = Ap — s,m, (46a)

68 = A6. (46b)
Here 6¢ and 66 are the two small angles characterizing
the angular position of the source relative to the detector-
lens axis in the spherical coordinates as shown in the
schematic diagram in Fig. 1. Once r,,, 0, are fixed, then
substituting Egs. (41) and (44) into Eq. (46) will allow us
to solve the minimal radius and extreme azimuth angle

z
A
i
b S(rs; s, 05)
----- ] o
—————— IR = Ny
P ) __:“’— \,
Y v Ihie
~o 1
_______ R
------- T
]
]
]
]
] 1/
1
IR
B Rl DL LD > Y
X
—————— r-x
D(ra, ¢a, 0a)
Fig. 1. Schematic diagram for one trajectory from the source

at S(ry, ¢5, 05) to the detector at D(ry, ¢y, 64). The ry and 6,
mark the minimal radius and extreme € points on the traject-
ory. The (a, ) marks the apparent angle formed by this tra-
jectory on the celestial sphere of the observer.
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(ro, 9,,) for each pair of 6¢, 66. Unfortunately, Eq. (46) are
high-order polynomials of r, and more complicated func-
tions of 6,,, which usually can not be solved analytically.
This is particularly so when the effects of higher-order
parameters are sought. Therefore when solving them,
most of the time we will use the numerical method.

It is found that in general, there will be two sets of
(ro, 0,,) that allow the signal to reach the detector. Most of
the time when the deflection (66, 6¢) is not small, these
two solutions will have opposite orbital rotation direction
s, and the s; = sign(cos(6,,)) equals s, for each solution.
Only when the source, lens and detector are very aligned
(deflection less than 107 in the Sgr A* situation con-
sidered in Sec. V A) and the spacetime spin is large, there
could exist exceptions (see also Ref. [33]). Therefore we
will label these two solutions as (1., 8,,.) and (ro_, 6,,_) to
represent the prograde and retrograde rotating signals re-
spectively. In this paper, by prograde and retrograde, we
always and only mean that the trajectories are rotating an-
ticlockwise and clockwise around the +Z directions re-
spectively. No retrolensing is involved because we only
discuss the weak deflection cases in this work.

To link the solved (ry, 8,,) to the observables of the
GL however, we still need to work out the formula for the
apparent angles of the lensed images. For a static observ-
er in the spacetime with metric (1), the associated tetrad
(e, ) takes the form

ey = %g =Z, (47a)
o= e Gt pas) =k @M
e = %% =7 (47¢)
e3 = %% =0, (47d)

where Z is the four-velocity of the observer. Then for a
signal with four-velocity w* = (¢, ¢, i, ), its projection us-
ing the projection operator *, = ¢, +Z"Z, into the tetrad
frame yields the vector

Bé [B+4AC . .
@ = = —7"5 \/ XTzc"H VDit+ VEOD.  (48)

Here the (i, 6, ¢) are linked to (L, K) through Egs. (6),
(17) and (18) and then to the (ro., 6,,.) through Egs. (22)
and (23). Then the apparent angle y, measured by this
observer against the detector's radial direction 7; and a.
against the #,6, plane and 8. against the 7,4, plane are

respectively
Y. = cos™! (@7)
B |it] |71
D
= cos™! (i’ 5 - : ) s (49a)
BACh2 DI+ FO? ) |,
_ T -1 (’7{7 A)
@, = - —CO0S —
2 |it] P
. (B(p \/ (AB? +4A2C)/B? )
=-—sin | — YR - - )
24 \['BaaC oy pi2y Fep ) |,
(49b)
n o (@0)
P == =cos ! —
2 |22l 6]
. F
-
=sin 0 5 - - : ) ) (49¢)
( EL2ACH + DI+ F? ) |,

where the subscript |; means all coordinates should be
evaluated at the detector location. These equations are
valid for all trajectories in the SAS spacetimes including
those that are bent strongly. In the large r, limit, then
¥2 ~ a2 + B2 and therefore we only need to concentrate on
two of them, which are conventionally chosen as (., 8.).

V. APPLICATION TO PARTICULAR SPACE-
TIMES

In this section, we will apply the general method and
results in Secs. III and IV to some known SAS space-
times to examine the validity of the results and signific-
ance of the spacetime parameters on the off-equatorial
deflection and GL. We will focus on deflections A¢, A8,
the ry,6,, and apparent angles a., 3. .

A. Deflections and GL in KN spacetime

For KN BH, the deflection in its equatorial plane has
been considered using analytical methods repeatedly and
the (quasi-)equatorial motion was studied multiple times
too [51-55], let alone numerical solution of the trajector-
ies. However, to our best knowledge, the perturbative
study of the general off-equatorial deflection has not been
done yet.

The metric of KN is given by

SN = 2Mr+ Q2 a7 2a(2Mr— Q%) sin’ 0

ds* = drdg
2"KN z:KN
[(?+4%)" - Axna?sin® 6] sin’ @
+ d¢p?
2KN
kN 2 2
+ ——dr +2KNd9 .
AKN
(50)
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where

20 2 a2
kN = - +a”cos-6,

Axn =P =2Mr+d* + 02,

and M, Q,a=J/M are respectively the mass, charge and
spin angular momentum per unit mass of the spacetime.
In studying the trajectories, one can always choose a > 0
if the motion is allowed to go both clock- and anticlock-
wise. To use the method and results developed in Secs.
III and 1V, the first thing to check is whether the metric
(50) satisfies the separation requirements (30). Substitut-
ing the metric into these equations, it is easy to find that
the separation can be done and the r-dependent functions
are

a? @  Ma?

AQ =~ =40, 51
KN T A - 4 2p o0 (51a)
2 Mar
g _ 42
KN AKN
Ma -2M*a+aQ?
o Ma —2MataQ” 5 (51b)
r r2
o (r+a*)
KN — 4AKN
P Mr a>+4M?-Q? )
=—+— J 1
) + > ) +0(r), (51¢)
D(r)kn = ¥ —2Mr+ad* + 0%, (51d)
Gy =r (Sle)

and the X® (X €{A, B,C, ¥, G}) are exactly as given in
Eq. (30). This guarantees the existence of the GCC, as
was well-known prior, and the applicability of the results
of deflection angles.

Substituting the coefficients in Egs. (51) directly into
Eq. (41) and (44) and carrying out the small p,, expan-
sion, the deflection angles in KN spacetime are found as
dual series of M/ry and p,,
4aM? SS,Zn&M2 $28m

A¢KN = Sm+ P
SSVry

53
gKNMZ _ M (p; +Pd)}
v v2ry

vr3
2(1 +v)M
><{(+v)

> —(ps+pa)—
Vero

S1828uCs \/C2 —C2
+

4
S s

|:(p Pd) (1 2) :| 2
g Vzl"()
+0(6)3,

(52a)

s1 /€2 —c2
AOKN =
S5
(Zkn +32s28,0°0) M> - M (p, +pd)}
4v4r3

201 +vHM
{ (d+v) —(ps+pa)—

v2r0

Vzl"o

cys2 21 +v)M

S | (4 p)—
2s3 {(p Pa) v2r

2
} +0(e)’,
(52b)

where the infinitesimal e represents either the M/ry or
P s,d s and

Lin = 848V —12m° = 3mv* + m* (2 +19) 0%, (53)
a=a/M,0=0/M, and E has been replaced by the
asymptotic velocity v through Eq. (4). There are a few
limits that we can take for these deflections. Setting v = 1
or p,q =0, they reduce respectively to deflections of light
rays or deflections from infinity to infinity. A more un-
usual limit is to set a = 0, which pushes these deflections
to their values of the signal in an RN spacetime but with
arbitrary incoming direction. Setting O =0, they agree
with Egs. (32) and (39) of Ref. [33]. In the infinite dis-
tance and equatorial limit, py, ps, ¢ cs —> 0  and
sm, S5 — 1, and we have checked that A¢yy in this limit
agrees with Eq. (83) of Ref. [24].

Both Egs. (52a) and (52b) illustrate various effects of
the non-equatorial motion and spacetime parameters. For
the deflection A¢ky, the following observations can be
made. Firstly we observe that the non-equatorial effect
manifests in two ways. The first is through the terms pro-
portional to ¢, +/c2 —c2. These terms will vanish in the
equatorial limit and therefore we call them non-equatori-
al terms. The second way of the non-equatorial effect is
through the factor s” /s> of the other terms, which will be
called the equatorial terms. If the trajectory was in the
equatorial plane, these factors would all be one. There-
fore these factors effectively adjusted the contribution of
equatorial terms to the deflection. The second comment
concerns the effects of the spacetime charge and spin. As
in the case of equatorial motion, O and & start to appear
in the equatorial terms from the second order only, i.e.,
the (M/r)?, (ro/rsa)* or (M/ro)(ro/rsq) terms. While in
non-equatorial terms, they start to appear from the third
order.

The terms of the deflection A8 in Eq. (52b) are either
proportional to +/c2 —c2 or c¢,, which both approach zero
in the equatorial limit. At the leading orders of both
(M/ry) and p,,, the terms are proportional to +/c2 —c2.
For the effect of both Q and &, they both appear from the
second order, which is similar to the equatorial terms in
A¢kn. In both Agyxn and Abky, the sign of O does not
matter, as expected since the signal is neutral.
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To check the validity of these deflections (52a) and
(52b), in Fig. 2 we compare them with their correspond-
ing numerically integrated values. In this plot, we choose
relatively small ry so that the deflections are appreciable
to tell the effects of various parameters. It is seen from
Fig. 2 (a) and (b) that as ry increases, both |A¢xy| and
|Abkn| decrease monotonically. The analytical results ap-
proach the numerical value more closely as r, increases
too, which is expected because both deflections are series
of (M/rq). From Fig. 2 (¢) and (d), we see that as 6,, de-
creases, the deflection in 8 direction increases while that
in the ¢ direction decreases. This is intuitively consistent
with the physical expectation because the decreasing of
6,, corresponds to the motion of the trajectory asymptotic
line towards the z axis above the equatorial plane. Fig. 2
(e) shows the effect of O on the deflections. Previously it
was known from the equatorial plane case that the |[A¢gn|
would decrease as @ increase [55], which is still ob-
served here for the off-equatorial motion. We also note
that this is even true for Afxy, which shows the spherical
nature of the effect of O on the deflections. Lastly, the ef-
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Fig. 2.  (color online) The dependences of A¢ and A6 on
r0,6, and Q@ in KN spacetime. v=1,r;=ry=400M,
a=1/2,0,=n/4. In (a)b), 0=1/2, O,=x/5. In (c)(d),

Q=1/2,r0=20M. In (), ro =20M, 6,, = /5. All red lines rep-
resent numerical results.

A

fect of the spacetime spin a on these deflections was
studied in Ref. [33] in the Kerr spacetime and we found
that qualitatively that effect is not changed: larger a in-
creases (or decreases) the 6¢ of the prograde (or retro-
grade) signal.

With the correctness of the series results confirmed,
we can now solve the lensing equations (46) with Ag and
A¢ given by Egs. (52b) and (52a) to obtain the (r, 6,,) for
a fixed pair (6¢, 66) which characterizes the angular de-
flection of the source against the lens-observer axis. For
the non-equatorial motion in a SAS spacetime, the
source's azimuth angle 6, also becomes important. Since
these equations are high-order polynomials if the effects
of O and a are taken into account, we have only solved
them numerically: We used the Sgr A* BH as the lens
and set r; = ry = 8.34 kpc and varied (69, 66, 6,). We found
that qualitatively the effect of ¢, 56, 6, and & are similar
to their effects in the Kerr case studied in Ref. [33]. For
this reason, we will not show these figures here. Rather,
we only mention that a larger positive a decreases (or in-
creases) the ry of a counterclockwise (or clockwise) rotat-
ing trajectory, and therefore the trajectory is pulled to-
wards (or pushed away from) the z axis. The 6, will
change accordingly: a larger positive a will increase
|cos,| of both counterclockwise and clockwise rotating
orbits. For the charge O, its deviation from zero was
found to decrease ry for all & and orbit rotation directions
and increases |cos6,,| very weakly.

Finally, substituting the solved (ry, 6,,) together with
the initial parameters (66, 8, ;) into Egs. (49b) and (49¢),
we can obtain the apparent positions of the two images on
the celestial sphere of the detector

@y = sin”!
L. (Axn —d?sin® 0) +asin®0E (2Mr— Q%) 540
, a
sin€ \/ Ak [T E? + xSy = 2Mr+ 02)] la
ol 0. Ckn —2Mr+0?)
ﬁiKN = 51S8In ’
Tk [ZknE? + K (En = 2Mr+ 03] |,
(54b)

where ©, was defined in Eq. (14) and takes the form

0, =«kd’ c0s29—Li csc’0—a’E*sin®0- K, (55
in KN spacetime. The L., K. can be fixed by (rps, 0,2)
through Egs. (22) and (23). These apparent angles are
consistent with the results in Ref. [33]. For the null
particle in the WDL, we can make the following power
series approximation for them by taking M/ry and M/r,
as small quantities
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S2Sms 3+a*— Q* —4sys,.0
ALKN = ~ Por +1+ ~ s
Sata 2F0s
(56a)
2
s/
ﬁiKN - A
Sata
220 A2 A
a‘c;— QO —4sy8y.a

(?0i+1+3+ ) (56b)

and henthforce 7y, =ro./M, 2y =ri/M, Sp. =
sinf,... When we set O =0, they agree with Ref. [33].
When O #0 however, its effect does not only appear
from the Q%/(ro.r;) order as one might think superfi-
cially from Eq. (56). Indeed, O affects #,. by an amount
similar to the size of O itself and therefore its influence
on the image apparent angles is at the Q/r, order, i.e.,
one order lower than what appeared in Eq. (56). The off-
equatorial effect influences y.xx from the second order
because at the leading order the total apparent angle

Yikn ¥ /@ogn Bk Would not be tuned by the factor
Sms/Sq OF /83— 52, /s, in front of a.xy and B.xn respect-
ively.

In Fig. 3 the angular positions of the GL.images as
functions of §¢ (a) and 66 (b) are plotted. Itiis seen that as
6¢ varies from 0 to 10” while keeping 60 at 1” the two
images are in the first and third quadrants respectively.
The image in the third quadrant is separated further from
the lens than the one in the first'quadrant. Since in this
parameter settings, the effect of spin a on the apparent
angles of the images is weak, when we flip d¢ to the
range of —10” to 0, or 66 to —1”, the images are reflected
by the y and x axes respectively in the 2d celestial frame.
What is more interesting is the effect of 6, in this plot. It
is seen that the trace of the images as ¢ varies for
6, = /6 almost coincides with that for 6, = n/3. The reas-
on can be understood from the fact that when the spin a
effect is not strong, the total deflection in an SAS space-
time is approximately the same as in an SSS spacetime.
In SSS spacetimes, 6, only characterize the altitude of the
images while when 6¢ scans through a range, the traces
of the images will coincide if the origin of the local 2d
celestial sky is allowed to shift, as in the case of Fig. 3
(a). For the variation of 60 with fixed 6¢ = +1”, different
6, however allows a different contribution from 66 to the
total deflection 67, which roughly equals

6n ~ /662 +sin’ 0,6¢>.

And therefore the image traces will not coincide, as
shown in Fig. 3 (b).

Note that in both plots, we have set a=1/2,0=1/2.
The effect of these parameters under the current paramet-

2F0s

where

(57)
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Fig. 3. (color online) Apparent angles of lensed images in

the celestial sky in KN spacetime. (a) 6¢ varies from —10” to
10” with fixed 66=1" (o and x) and —1” (o and +). (b) 66
varies from -10” to 10” with fixed 6¢ =1” (o and x) and —1”
(o and +). The symbols o and o are for 6, = n/3 and the x and
+ are for 6, = n/6 respectively. The color of the symbols from
blue to red indicates that the changing angles increase from
—10” to 10”. (c¢) Variation of the apparent angles as @ in-
creases. In all plots, a=0=1/2,v=1,M=41x10Mp,
re=rq=834 kpc are used. In (c), 660=10"*",6¢=10"%",
0s=n/6. The apy =0.60780640", ag- = —0.60783265", Bo+ =
1.2776103"”,Bp- = —1.2776603" .

er settings, as seen from Eq. (56), is very small compared
to the apparent angles themselves, and therefore can not
be recognized in plots (a) and (b). Therefore in (c), we
show the small variation of the apparent angles
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(@axn, Baxn) as O increases, where ag. = a.xn(Q =0),
Bo = B.xn(Q = 0). As can be seen, the sizes of both im-
ages' apparent angles decrease by about 10 as O in-
creases. Both the trend and changed amount agree with
the prediction of Eq. (56).

B. Deflections and GL in KS spacetime

KS BH is a kind of rotating and charged black hole in
the four-dimensional heterotic string theory [40]. Al-
though both the strong [56] and weak [36] deflection lim-
its of GL effects have been studied in this spacetime us-
ing approaches different from ours, these studies are
either in the (quasi-)equatorial plane or did not express
the deflections in terms of the original source and kinetic
variables. Here we will extend them to the general non-
equatorial case, with finite distance effect and timelike ef-
fect taken into account.

The metric of the KS spacetime is given by [57]

ks —2Mr 4 4Mrasin®0

ds* = drdg
ks KS
[(+2br+a?)’ - Agsa? sin’ 6] sin’ 6
d¢?
ks
Zks 2 2
+ —dr” + Xgsdb”, (58)
KS
where

ks = r(r +2b) + d* cos? 6,
Axs = r(r+2b) —2Mr+a?,

with b= Q?/(2M) > 0. This metric reduces to the Kerr
one when b =0. The metric functions satisfy the separa-
tion conditions (10) too and the corresponding functions
and their asymptotic expansions are

2 2 2
w__ @ __a aM-b -
A =—7 A St o™, (59a)
M. M 2aM(M -
gy = -Mar__aM_ M=) ogya,  (sob)
AKS r r2
» _ (FP+2br+d*)?
CKS = A
4Axs
r* (M+byr a*>+4M? .
=7t~ t—3 +0(r)", (59¢)
D(F)gs = 1> —2(M - b)r+a°, (594)
Gyl = 1 +2br. (59¢)

Substituting the coefficients Egs. (59) into Egs. (41)
and (44) and carrying out the small p,, expansion, the
deflection angles in KS spacetime are found as
daM?  8s:aM? sy,
vz s
{2(1 + VM

> —(ps+pa) -
V°ry

N §1828mCs A/ C2, — C2

4
SS

A(bKS = S5n+

52
LksM® M (p, +Pd)}
4v4rd

v2r0

{(p + g 21 +v2)M} 2
s d V27‘0
+0(e)’,

(60a)

s1/C2—c2
AHKS =

{2(1 VM
Ss

5 —(ps+pa)
V°ry

\ (ks +32s25,V°a) M? _ M(p, +pd)}

2
4v4rg vZrg

C,y 8>

SPm

3
253

2(1 +vV)M

2
{(ps +pa)— —— } +0(e)’,
Vero

(60b)
where
4v*b(p,+ pa)ro

M
+(8V +4m” + 8 + 27rv4)l3 + b2,

lks =8+ 82— 12m” = 3mv* +

(61)

and b=b/M. Comparing Eq. (60) to the corresponding
results in Eq. (52) in KN spacetime, we see that the only
change is essentially in the definition of ks. This is un-
derstandable because both the KN and KS spacetimes re-
duce to the Kerr one if we set Q =0 in the former and b
(or Q) in the latter, and these two parameters only appear
from the second order in each of the deflections A¢ and
A6. The infinite source/detector limit and null limit of the
deflections (60) can be easily obtained by putting v =1
and p,, = 0 respectively. The equatorial plane case of A¢
was found in Eq. (49) of Ref. [56] for light ray and infin-
ite source/detector and agrees with our result under these
limits.

To study the effect of the new parameter b on the de-
flections, in Fig. 4 (a) we plot the dependence of A¢ks
and Afks on b. It is seen that as b increases, the both de-
flections A¢gs and Abgg for all spin a decrease monoton-
ically. This effect is qualitatively similar to the effect of
0? in KN spacetime.

With the deflection known, we can solve the GL
equations (46) for ry and 6,, too. Again, if we use the de-
flection angles of high enough order such that the effect
of b is taken into account, then these GL equations are
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Fig. 4. (color online) The dependences of A¢ and A6 (a) and

a and B on b in KS spacetime. In (a), v=1,a=1/2,
ry =rqg =400M, 05 = /4, 0, = /5,90 =20M were used. In’ (b),
v=1,a=1/2, M =4.1x10°My, ry = ry = 8.34kpc, 6 = 107",

66 =10"%", 6, = /6 were used.

polynomials whose solutions are too lengthy to present
here and therefore we will not do so."We also studied the
dependence of the solved (ry, 6,,) on b and found that it is
also qualitatively similar to the effect of Q% in KN space-
time. That is, the ry is decreased as b increases for fixed
a while |cos8,| is increased but only very weakly in the
WDL.

Using these r and 6,, in Eq. (49), the apparent angles
in the KS spacetime are found as

i L. (Ags—a?sin®6) +2aMErsin® 0

@sgs = Sin~ ,
sin6 \/AxsZxs [SxsE? + Kk (Zxs —2M1)] la
(62a)
0, (Sxs —2M
Biks = sysin”’ - (2 xS 2 ) (62b)
Sks [SxsE? +k (Sxs —2Mn)] |,

where the @, in the KS spacetime also takes the form of
Eq. (55) but its (L., K.) have different relations to
(roz, O,e) through Egs. (22) and (23). For null rays and
the small M/r, and M/r, limit, these apparent angles are

approximated as

828 m+ (A 2~ 3+&2—32—ZE—4S2S,”+&>
OiKs = — For +b+1+ = >
Satd 270+
(63a)
S1/S5— %
Biks = ————
Sata
R 34022 — D2 —2b—4sys,.
><<?0i+b+1+ 4 _ 525 *a>,
2)"04L
(63b)

In contrast to the parameter O in the KN apparent angles
(56), we see that the parameter b affects the apparent
angles in KS' spacetime from the order b/r, explicitly.
Howeyer, we also point out that as b increases from zero,
its‘influence on ro, is also at this order but slightly larger
and with an opposite sign.

Fig. 4 (b) shows the apparent locations of the images
in the KS spacetime as b varies. The ag. and S,. values
are the same as in Fig. 3 (c) since at b = 0, the KS space-
time reduces to the Kerr one. It is seen that as argued
above, the total effect of b from 0 to 1 is also the de-
crease of the image apparent angles by about 2x 1075 In
this sense, the effect of b in the KS spacetime is similar to
that of parameter Q* in the KN spacetime, both qualitat-
ively and quantitatively.

C. Deflections and GL in RSV spacetime

RSV spacetime is another modification from the Kerr
spacetime that satisfies the separation conditions (10). Its
metric is given by [41]

ZR-2M V2 + 2 4 4Masin*OVr? + 12 d1do

ds? =
’ T T
(P + P +a%)? - Aga?sin® 0] sin® 6,
d¢
2R
R 2 2
+ —dr- +2rdf”, (64)

Agr

where

Sk =12+ 1> +a*cos?6,
AR =P +P+a>-2MNr2 + 2,

The parameter />0 is a length scale responsible for the
regularization of the central singularity. When [ =0, this
reduces to the Kerr spacetime too. It can also describe
two-way traversable wormhole (/>2M), a one-way
wormhole (I =2M), and regular black hole (I<2M) at
different values of / [41]. The GL effects of null rays with
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source/detector at infinite distance in the equatorial plane
were studied in the strong deflection limit in this space-
time in Ref. [39]. The WDL deflection angle of the null
signal on the equatorial plane without the finite distance
effect was obtained using the Gauss-Bonnet theorem
method in Ref. [58].

The asymptotic expansions of separated functions as-
sociated with the metric are

2 2 2
»w__a _ a Ma 4
A =—, AT 2 +O(N™, (65a)
B _MaNrP+P _ Ma 2M’a L0,
AR r 2
(65b)
, rr+a®+12)?
Cl(z) - ( )
4Ag
2 M 24AM? + P
= %+%+%+O(r)_l, (65¢)
D(P)r=r =2Mr+ad*+ 1 +0(r)", (65d)
GY =r+P. (65¢)

Substituting the coefficients in these functions into Egs.
(41) and (44) and after the small p,, expansion, the de-
flection angles in the RSV spacetime becomes

4aM?  8s:aM? sy,
vri s2vrd 52
{2(1 + )M KM M (ps+pd)}

—(ps+pa)—
virg ! 44} vZr,

N §1828mCs 1/ C2, — €2

4
SS

A¢R = S+

|:( d) 2(1+V2)[W:|2
s VZI"O
+O(6)3,

(66a)

Ad s14/c%—c2 {2(1+v2)M
R:

> —(ps+pa)
S Vry

(&r+32528,v°0) M® M (p,+ pd)}
vl v2rg
21 +vHM

€S [( +pa)
2s3 Ps Pd V2ro

2
} +0(e)’,
(66b)

where

Lk =8+ 8 — 12m7 = 3mv* —mv* PP, (67)

and [=1/M. The reduction of Eq. (66a) on the equatorial
plane for null rays with infinite source/detector distance
agrees with Eq. (21) of [58]. Similar to KS deflections
(60), the deflections (66) are different from the KN case
result (52) also in its z. However unlike the 0% in lkn
and b in /s, here the regularization length scale /* has a
negative sign in {r and therefore its effects on the deflec-
tions (A¢g, AbR), ‘the (ry,0,) and the apparent angles
(asr,B:r) In Eq. (69) are all opposite to those two para-
meters, as we will show in Fig. 5 (a) and (b) respectively.

After solving (ry, 6,,) and substituting into Eq. (49),
the apparent angles-in the RSV spacetime are found to be

~1  Ls(Ar-a®sin® 0)+2aME V2 +2sin®
siné \/ ArZR [ZRE2+k (ZR—ZM Vi2 +12) ]

g ='Sin

(68a)

d

. 0. ():R—ZM V2 +12)

IR [ZRE2+K(ZR—2M W)] d’ (68b)

PBir = s18in”

where 0. is still given by Eq. (55) while its (L., K.) de-
pends on (rys, 6,,.) through Egs. (22) and (23). The ap-
proximations of these apparent angles are

~

(692)

aiR ~
Sala

S2Sms [ 3482+ —4sys,.0
For+ 1+ ,

2

2

s1/s5—82. (.

Bir = ———"= | Foa+ 1+
Sata

3482+ P —4sys,.0
2R '

(69b)

In Fig. 5 (b), we plotted the dependences of the de-
flections (A¢g, A6r) and the apparent angles (a.r,B:r) On
I. Unlike the effect of Q in KN spacetime, here I in-
creases ry. and consequently the apparent angles of the
images. The amount of reduction of either a.r or B.z as i
grows to 2.5 is comparable to that for Q in the KN case
or b in the KS case.

VI. CONCLUSIONS AND DISCUSSIONS

In this work, we studied the off-equatorial deflections
and GL of both null and timelike signals in general SAS
spacetimes in the weak deflection limit, with the finite
distance effect of the source and detector. It is found that
as long as the metric functions satisfy certain common
separable variable conditions (10), which allows the ex-
istence of a GCC, the deflection angles in both the ¢ and
0 directions can always be found using the perturbative
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Fig. 5. The dependences of A¢ and Ad (a) and vand S (b) on
I in RSV spacetime. In (a), r;=ry=400M,6,, =n/5,

ro=20M,60, =n/4 are used to see clearly the effect. In' (b),
M =4.1x10Mo, ry = rg = 8.34 kpc, 60 = 107, 6¢ = 10747, 6, =

7/6. In both plots, v=1,a =1/2 are used.

method. The results, as shown in Eqgs. (41) and (44), are
dual series of M/ry and ry/r,4, and can be directly used in
a set of exact GL equations (46). These equations are then
solved to find the apparent angles of images in such
spacetimes (49).

These results are then applied to the KN, KS, and
RSV spacetimes to validate the correctness of the meth-
od and results, and to find the effect of the spacetime spin

Table 1.

as well as that of the characteristic parameter (typically
an effective charge) of these spacetimes. It is found that
generally both the spacetime spin and charge appear in
the second order of both A¢ and A8, while the non-equat-
orial effect shows up from the very leading nontrivial or-
der, as illustrated in Egs. (52), (60) and (66).

For the image apparent angles, again both the space-
time spin and (effective) charge appear in the subleading,
as manifested in Eqs. (56), (63) and (69). Therefore these
parameters are quite hard to detect from the apparent
angles in relativistic GL in the WDL.

To show the generality of our method, we supplemen-
ted a few other spacetimes whose off-equatorial deflec-
tions can be found using our method in Appendix B. We
summarize the results computed in the main text and this
appendix in Table 1 to clearly present the results and the
effect of the main parameter(s) in the spacetime on the
deflection and/or apparent angles.

The results of this work can in principle be applied to
any spacetime with a (non-spherical) axisymmetry. In-
side the solar system however, the only known object that
can bend the light is the Sun, and yet its dimensionless
spin parameter & is only of order 1072 [59]. Therefore
the effect of the spin or the off-equatorial plane effect in
the deflection angle and/or apparent angle of images can
not be observed for the Sun in the foreseeable future. In-
stead, most spacetimes studied in this work are black hole
spacetimes. Therefore the results are more applicable to
more extreme rotating black holes, some particular ex-
amples include the M87* [11] and the Sgr A* [12],
whose spin parameter a could potentially reach a much
larger order (roughly a fraction of one). One can also as-
sume that such black holes carry extra parameters such as
those appearing in the Kerr-Sen or rotating-Simpson-Vis-
ser spacetimes, and attempt to use future observations to
constrain the corresponding parameters.

There are a few potential extensions to this work that
can be explored. The first is to study the magnification
and time delays of the images in the off-equatorial GL. In

Spacetime and their off equatorial deflections. From the second to last columns are the metric equation number, the main

parameter of the spacetime, the deflection angles in that spacetime, the lowest order in the deflection angle from which the main para-

meter appears, and the equation number of the image apparent angles for the spacetime studied in the main text, and lastly the effect of

the parameter on the apparent angles, i.e. the monotonicity of the apparent angle as the parameter increases.

Spacetime Metric Eq. Para. Def. angle Eq. Order App. angle Eq. Para. effect
Kerr-Newmann (50) 0 (52) 2 (56) N
Kerr-Sen (58) b (60) 2 (63) N
Rotating Simpson-Visser (64) ! (66) 2 (69) /
Rotating Bardeen (B1) with (B2) g (B7) with (B2) 3 or higher
Rotating Hayward (B1) with (B3) k (B7) with (B3) 3 or higher
Rotating Ghosh (B1) with (B4) h (B7) with (B4) 2
Rotating Tinchev (B1) with (B5) J (B7) with (BS) 3 or higher
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Ref. [33] for the Kerr spacetime, it is known that the
spacetime spin might have a stronger effect on the time
delay than on image locations. The second is that we
might also attempt to study the off-equatorial deflection
of charged particles in electromagnetic fields. However
there, the separation condition (10) has to be re-investig-
ated.
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APPENDIX A: HIGHER ORDER ITEMS OF
SERIES

Here we list some higher-order coefficients in the
series appearing in the main text of the III. For Eq. (35),
we present two more coefficients, which are also used in
the computations in the main text

(1+ p?)(kgo +4E?c)?

_ C2+C3C2—C]C4
2(c2 —c?)(kgo +4E2co)3?’

ny3

where

C,=d*(E*+x),

C2 = |Kg2+ 4E2C2 —4a2s,2n(l<g0 + 4E2C()) - a2E2 - S,chl +4S2Smb2E

)
2’

_ 2
C3 = cmC1 -

The corresponding integral coefficients are

Sdodl(Kgl +4E2C1) 16S2b2d(2)SmE
(1+p)kgo+4E%*co)  (1+p)\/kgo+4E>c
3 (A1)
(A2)

3(kg1 +4E%c))*] ,

Kgo + 4E2C0 - m [

1 4+5p; _ (I+p)?[2+p; B
Msy=—-—— 242 2{ S M—p2— 1 .}_451(1 J I 12 1o,
3 16(d0C4)5/2{ 0Cs [+ P2 \/717, 3cos™ (p;) od; C4Cs s \/7;7] cos™(p;)

2+p; 1+p;
+ (164,522 = 3d2 + 4dyds) C {p,- 1 —p§+cos_l(pj)} —32szsmEb2d§Ci/2{l+£é [y — cos-'(pj)”,
J

where

C4 =Kgo+ 4E260,

and

2C3—3C]C2 |: _1<Cj)
My = —— "1 -
o3 4(Kg0 + 4E2€0)3/2 o8 Cm

The second-order coefficient in Eq. (39) is

§1C;

e (A3)

C5 = Kg1 +4E2C1,

51¢,(Cic3ct, +2C5)

jtm

+ } + .
\ea—cid Ack(kgo+4E ) /2~ ¢
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(Kgl + 4E2C] )hl

/2 _ 12
Cn hO

r— hoh?
l’l2 = -5 \/Kg0+4E2C0 631_h(2)ZMV,3_ 2(C20 l

- hg)

Jj=sd n

Cs

1
+ \/ﬁ + ﬁ Zcos_l(pj)) (2C3 —3C1c}2n) +

Jj=s.d

APPENDIX B: APPLICATIONS IN OTHER SAS
SPACETIMES

In addition to the spacetimes that we discussed in de-
tail in Sec. V, many spacetimes also meet the require-
ments of the separation of variables we established in
Sec. II A. Here we briefly mentioned the off-equatorial
deflections in these spacetimes.

The following line element describe a class of space-
times satisfying these conditions

= —2m(r)r a7 4am(r)rsin* 0

ds? = drd
) S 0}
+ <r2 +a’+ 72a2m(2r sin’ 0) sin” 6d¢’
2
+ Kdr2 +3d6?,
where

2=1~2+512(:0529,A=r2—2m(r)r+a2

and a, m(r) are the spacetime spin and mass functions re-
spectively. This line element covers the Kerr spacetime
when m(r) = M is a constant, the rotating Bardeen black
hole [43] when

2 32 2
3g°M
r ) -m-28

o -3
oy S tOnT. (BY)

mp(r) =M (
the rotating Hayward black hole [43] when

P PM
my(r) = Mr3 s =M- — +0(r72, (B3)

+k
the rotating Ghosh black hole [44] when
M
o) =M =m-"2 o2, B
r

and the rotating Tinchev black hole [45] when

() = Me = m -2 1 0. (BS)
r

ho
" Axgo + 4E2co) K N
/’lo (2C2 + Clhgci) + Cy (2C2 + C]CxC’zn) :|

2 /o2 2 2 2 2
Cin Cn h() Cn Cn —Cs

2(kgo +4E%cy)

(AS5)

Here we have expanded m(r) into the following form

(B6)

and the coefficients m, for each spacetime can be easily
read off from Eqs. (B2)-(B5). For the rotating Bardeen
and Tinchev- spacetimes, their characteristic parameter
appears from the second order of the expansion. While
the rotating Ghosh and Hayward ones appear from the
first and third order respectively.

Using the line element (B1) and mass function (B6),
the deflection A9 and A¢ are found as

damj  8s:am}  sysp,

A¢ = ST+

vr3 s2vr} 52
2(1 +vHmy &mg mo(py+ pa)
BT AR v S
$1528mCs /€2 — 201 +v2)my |
L S 4\/7 (p5+pd)_270}
S Voro
+0(e)’,
(B7a)
s1y/c2—c2 [2(1+v)m
Aj= =V { S~ (Pt pa)
K 0

(£ +32505mv°a) my o (p, +pd)}

4v4r(2) vZr
s 2(1+v?)my 17
-3 {(pﬁpd)—zio} +0(e)’,
SS Vero
(B7b)
where
222 +12

[=8+ 87— 12m =3t = TV CTVIm e

2
myg

and all m; should be read off from corresponding space-
time.

We also computed the deflection in the Konoplya-
Zhidenko rotating non-Kerr spacetime whose metric is



Xinguang Ying, Junji Jia

Chin. Phys. C 49, (2025)

given by [42]

N?—W?sin’6
ds’ = - Tsmdt2 —2rWsin? 6drdg
+ %2 sin? 9d¢52 + dr? + 2d¢?, (B9)
N2

where

S=r+ad’cos’0, A =r*-2Mr+d?,

(A—n/r) 2Ma  na
N? = LW = -
r2 z * r’x
r+a’ 2—az(A—r]/r)sinzﬁ
g = L) el . ®BI0)

and # is the deformation parameter that describes the de-
viation from Kerr spacetime. However, it is found that to
order O(M/r,)?*, the parameter # does not appear in either
of A¢ or Af. Therefore the deflections to order O(M/r,)?
in this spacetime is also given by Eq. (B7) with m,s; = 0.

For future reference, we also test the applicability of
our methodology to SAS but non-asymptotically flat
spacetimes, such as the KN-(anti)de Sitter spacetime de-
scribed by [60]

A A, .
ds’ = =2 [adt— (* +d?) dg]” - = (di—asin®6dg)’
pr= pE
+0? <dr2 . d792)
At )
(B11)
where

A
P> =r+a’cos’0, Ag = 1 + —a’cos>6,

Ar? A
A, = (r2+a2) (I—Tr) -2Mr+Q* E= 1+§a2,

and Kerr-Taub-NUT spacetime with metric [61]

ds? = — A—a;sinzgdtz + Z[AX_Q(Z; ay)sin’ 6] drdo
2 2 o 29_ ZA 2
+( +ay)*sin“ 6 —y dp? + =dr? + 2deP,
z A
(B12)
where

Y =r’+(fi+acosb)?,
A=r*—2Mr+a*—i?,

x = asin’6—2hcos6.

It is found that they also satisfy the separation require-
ments (10) and therefore the deflection of both null and
timelike rays in the equatorial or off-equatorial plane in
them can be treated using our method. Lastly for C-type
metrics which does not have the reflective symmetry
about the equatorial plane, including the KN-(A)dS C-
metric [62]

oo L[ fo(dr_ o e\ T,
ds _Hz{ S (0/ asin QK) +f(r)dr

2 h(6) sin® 6 {adt , d¢r
WA o ) }
(B13)

where

2m  a*+é? r+a®
-—+ +—

f(r) = (1—A2r2) (1 2

2
&2
h(6) =1+2mAcosf+ {AZ (a*+¢€%) -

1—2} cos? 0,

2
T=1+% cos’d, H=1+Arcoso,
r

and its subcases with A # 0, we found that only for null
but not the timelike rays, the separation requirements (10)
can be met and therefore the deflection can be studied us-
ing our approach. For these metrics, however, we will not
list the formulas in the 6 and ¢ directions until more valu-
able applications arise.
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